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Abstract 

We present the important properties of electron propagation in 

molecular modelling, such as band structure, integrated density of 

state N(E) and density of state (DOS) using one-dimensional 

tight-binding model. The FORTRAN program have used to 

calculate these properties and to investigate the electron 

propagation on the one-dimensional crystal chain. We calculated 

the general band structure, number of eigenvalues less than E for 

small and large number of atoms and the DOS, we found that 

there was on line for the band structure attribute for one atom in 

the unit cell. In the N(E) calculation, the stairs line appeared when 

the system contains small number of atoms, whereas the line will 

be smooth at large number of atoms. These shows that the 

intensity of atoms in material play important role enhance the 

DOS. At the edges of band structure, the density of state goes to 

infinite and the DOS appeared with VAN-HOV singularity.  
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Introduction 

Recent years have witnessed a significant increase in attention of 

studies, which related to electronic structure of materials and the 

need for the miniaturization of electronic devices. [1] These years 

of research in atoms have recently brought about the field of 

nanoscience, aiming at establishing control and making useful 

things at the atomic scale. [1-3]  The modification of the 

electronic properties of such systems has applications such as the 

quantum interference effect transistor (QuLET) and development 

of molecular switch. [1-2] and [7]  In this chapter, we introduce 

some models of molecular systems to study most important 

properties of electron propagation, such as energy bands, density 

of states.  

 

 

 

 

 

 



6 
 

 

 

Chapter 1 

Electrical properties of molecular structure 

We use the tight binding model to study the band structure for 

periodic structures and the density of state for the ordered system 

by using a numerical decimation.  

Starting point to understand the electrical properties of a crystal 

is looking at its band structure. Here we start with very simple 

one-dimensional crystalline system as shown in Figure 1.1, and 

the band structure is shown in Figure 1.2. 

Density of states is one of the electrical properties that we try to 

understand within these band structures that lead to be able to 

know the mechanism of transport in the materials. 
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  1.1. The Tight Binding Model 

Tight binding has existed for many years as a convenient and 

transparent model for the description of electronic structure in 

molecules and solids [1]. 

 

Figure 1.1 shows simply the tight-bind model and how the wave 

functions of atoms will interact as we consider the nearest 

neighbour atoms. 

 

Figure 1.1 A model to describe the electronic structure in 

molecules and solids.The tight-binding model, we imagine how 

the wave functions of atoms will interact as we bring them 

together. 
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In our work, we use the tight binding model (TBM) (sometime 

referred to as the tight binding approximation). The TBM 

assumes that the electrons in a solid are sufficiently tightly bound 

that we need only consider nearest neighbours. This will be true 

in many physical problems when the wave functions at the 

individual atomic sites decay to zero before they reach the second 

nearest neighbour. 

We know, as well, that in our one-dimensional model the 

spreading of the wave function will be blocked by the nearest 

neighbours and there are no other directions for interaction to take 

place in. The tight binding Hamiltonian (including only nearest 

neighbour interaction) for a chain as shown in Figure 1.2. 

The behaviour of insulators and semiconductors has been 

described by using tight binding model and would be 

inappropriate for a metal (for which these assumptions would be 

incorrect as the electrons in a metal are highly mobile). 
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1.2. One dimensional (1-D) linear crystalline chain  

We consider simple tight-binding approach to get qualitative   

understanding of electronic structure calculation in periodic 

systems, as shown in figure 1.2. 

 

Figure 1.2: one dimension (1-D) linear crystalline chain [3] 

In this system, 𝜀𝑜  and  𝛾  are the site and hopping energies 

respectively. According to the time independent Schrodinger 

equation: 

𝐻|𝜓〉 = 𝐸|𝜓〉                                    (1.1) 
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The most general formula for infinite chain has given by: 

𝜀𝑜𝜓𝑗 − 𝛾𝜓𝑗−1 − 𝛾𝜓𝑗+1 = 𝐸𝜓𝑗                           (1.2) 

The equation (3.2) is satisfied for all  j  go to ±∞, and we can 

write (3.2) as : 

𝜓𝑗+1 = (
𝜀𝑜−𝐸

𝛾
)𝜓𝑗 − 𝜓𝑗−1                               (1.3) 

This is called Recurrent Relation. 

Block’s theorem has used to calculate the dispersion relation for 

this system by substituting   𝜓𝑗 = 𝐴𝑒
𝑖𝑘𝑗 into (1.2) eq. we get: 

𝐸(𝑘) = 𝜀𝑜 − 2𝛾𝑐𝑜𝑠𝑘                        (1.4) 

The spectrum of an infinite system is continuous. Where E as a 

function of k, and the bandwidth is directly proportional to the 

hopping integral, where  𝐵𝑊 = 4𝛾, as shown in Figure 1.3. 
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Figure 1.3: illustrates a simple band structure for (1-D) linear 

chain. 

  

Figure 1.4. Energy gap and general band structure at free electron. 

 

Figure 1.4 demonstrates (Left) the general band structure and 

(Right) the energy gap at free electron over a range of k points. 

We predict that the density of state lies within this range and 

outside it will be zero. 
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  1.3. Density of state (DOS) 

Density of state (DOS) is one of the physical quantities that is of 

great interest in Condensed Matter Physics [2, 5], that is described 

by analytical and numerical methods. 

Using differential equations (1.4) with (k) and (n) respectively, 

we calculate the analytical Formula for DOS: 

𝐷(𝐸) =
𝑑𝑛

𝑑𝐸
=
𝑑𝑛

𝑑𝑘
 .
𝑑𝑘

𝑑𝐸
 

𝐷(𝐸) =
𝑑𝑛

𝑑𝐸
=
(𝑁 + 1)

𝜋
 

1

√4𝛾2 − (𝜀𝑜 − 𝐸)
2
          (1.5) 

Where  dn  is the number of eigen values in an interval of  k ,  

D(E) is the density of state which is defined that the number of 

eigen values per unit energy, this is only correct if the energy lies 

within  the energy band : 

𝜀𝑜 − 2𝛾 < 𝐸 < 𝜀𝑜 + 2𝛾 

But when the energy lies outside these ranges then the energy 

band will be zero and then the DOS will be zero as well. 
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The density of state is proportional to the number of atoms, and 

also it is always going to proportional to   
𝑑𝑘

𝑑𝐸
   

𝐷(𝐸) =
1
𝑑𝐸

𝑑𝑘

                                          (1.6) 

In Figure 1.2, the slope is   
𝑑𝐸

𝑑𝑘
= 0, that means DOS goes to the 

infinite in the edges for energy band of crystals which are 𝐸𝑚𝑎𝑥 =

𝜀𝑜 + 2𝛾 and 𝐸𝑚𝑖𝑛 = 𝜀𝑜 − 2𝛾   this is called singularity DOS or 

Van Hove singularity-DOS, which is often referred to as critical 

points of the Brillouin zone [5]. As shown in Figure 1.5. 

 

Figure 1.5. demonstrates the Van Hove singularity density of state 

(VH-DOS). 

 

http://en.wikipedia.org/wiki/Critical_point_(mathematics)
http://en.wikipedia.org/wiki/Critical_point_(mathematics)
http://en.wikipedia.org/wiki/Brillouin_zone
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   The density of state per atom is given by: 

𝐷(𝐸)^ = (
𝑁 + 1

𝑁
)
1

𝜋
 

1

√4𝛾2 − (𝜀𝑜 − 𝐸)
2
                (1.7) 

    A Histogram and decimation are introduced as numerical 

methods to calculate the DOS numerically. 

 To create a Histogram of the eigen values as shown in Figure 1.6. 

it is important to know that these eigen values should put into box 

and the width of box is called   ∆𝐸 , where  ∆𝐸 =
𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛

𝑁
 , then 

the DOS can be computed by: 

𝐷(𝐸) =
𝑁(𝐸)

∆𝐸
                               (1.8) 

where 𝑁(𝐸)  is the number of eigen values or sometime called 

integrated density of state, and by making   ∆𝐸  small enough then 

we get a series delta function (𝛿) which is called the level spacing 

between   𝐸𝑚𝑖𝑛  and  𝐸𝑚𝑎𝑥 in this case the DOS can be described 

by: 

𝐷(𝐸) = ∑𝛿(𝐸 − 𝐸𝑛)                          (1.9)

𝑁

𝑛=1

 



15 
 

and the level spacing is   

𝛿 =
𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑁
                                   (1.10) 

 

Figure 1.6. illustrates a histogram for DOS as a function of 

energy.   

 

 1.4. Decimation Method 

A numerical decimation method is a powerful technique for the 

understanding of the electronic properties such as density of state 

and transport [3]. 
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We deal with a large Hamiltonian to calculating the electronic 

properties like density of state DOS and transport TR. 

𝐻𝑖𝑗
∼ = 𝐻𝑖𝑗 +

𝐻𝑖𝑁𝐻𝑁𝑗

𝐸 − 𝐻𝑁𝑁
                                  (1.11) 

This is the general formula to decimate the finite system for  N  

atoms, when 𝐻𝑖𝑗
∼ is a new Hamiltonian. It is important to know 

that the properties of lattice is preserved when we make a 

mathematical transformation. 
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Chapter 2 

Results and discussion 

FORTRAN_95 programs have written in this study to compute 

many electrical properties for our molecular model that is the one-

dimensional crystal chain. The calculated properties are the band 

structure, integrated density of state N(E) and density of states 

(DOS). These calculations show how to create the Hamiltonian 

for simple or large system in nature and find the eigenvalues and 

eigenvectors when we demonstrate the one-dimensional infinite 

system and solving the Schrodinger equation in small-unit cell to 

calculate the band structure with periodic boundary condition. In 

this work, we will show that the tight-binding approximation get 

qualitative understanding of electronic structure calculations in 
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periodic structure. The results summarized in the following 

points: 

 

Figure 1.2. shows the calculation of  band structure for single 

atom in unit cell for one-dimensional periodic chain over a range 

of k-points. 

 

By evaluating the equation 1.4 in the FORTARN program, we 

calculated the band structure for single atom in the unit cell for 

one-dimensional periodic chain over a range of k-points. The 

calculation shows that the band structure (blue curve) lies 

between  𝑘 = cos−1
𝐸−𝜀0

2𝛾
= 0 and  𝑘 = cos−1

𝐸−𝜀0

2𝛾
= 100, as 

shown in Figure 1.2. 
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Figure 2.2. shows (Left) general band structure and (Right) 

energy gap at free electron, where a represents the lattice vector. 

 

2.1. Calculation of integrated density of state N(E) 

Using FORTRAN code, we calculated the number of eigenvalues 

less than E for small and large number of atoms. Figure 3.2 shows 

the plot of step function at small number of atoms (N=5), whereas 

Figure 4.2 shows plots at N=10. The calculations exhibit that 

there is stairs line when the system contains small number of 

atoms.  Figure 5.2 shows the smooth plot at large number of 

atoms. 
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Figure 3.2. The calculation of integrated density of state N(E) 

versus  E , by using the Decimation method (Fortran), N=5. 

 

Figure 4.2. the calculation of integrated density of state N(E) 

versus  E , by using the Decimation method (Fortran), N=10. 
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Figure 5.2. The calculation of integrated density of state N(E) 

versus  E , by using the Decimation method (Fortran), N=500. 

 

Using FRTRAN program, we calculated the density (DOS) of 

states over a range of energies. The calculation shows (blue curve) 

Van Hove singularity of DOS appeared when the edges of band 

structure  𝐸𝑚𝑎𝑥 = 𝜀𝑜 + 2𝛾 = +2 and  𝐸𝑚𝑖𝑛 = 𝜀𝑜 − 2𝛾 = −2, as 

shown in Figure 6.2. 

 

 

 

E

N
(E

)

-1 -0.7 -0.4 -0.1 0.2 0.5 0.8
-150

150

450

750

1050



22 
 

  

Figure 6.2. Analytical density of state (DOS), the plot shows Van 

Hove singularity of DOS appeared when the edges of band 

structure  𝐸𝑚𝑎𝑥 = 𝜀𝑜 + 2𝛾 = +2 and  𝐸𝑚𝑖𝑛 = 𝜀𝑜 − 2𝛾 = −2. 
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Chapter 3 

An example of the realistic nanostructure 

materials  

We present a brief review for an example of the realistic 

nanostructure materials, which recently have studied. These 

examples show the nature of crystalline in the materials and their 

physical properties. 

Developing the performance of materials currently consider 

challenge for scientists [6,8,9,10]. Therefore, there are great 

efforts to study the electronic properties such as band structure 

and density of state (DOS) 
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Figure 1.3. Crystal structure of graphene. The structures show the 

hexagonal lattice in two periodic directions: Zigzag and 

Armchair. The both states give us different behaviour of 

properties.  

 

Figure 2.3. The Brillouin zone of graphene. 

The graphene band structure has higher energy band (conduction 

band) and lower energy band (valence band). These two bands 
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intersect each other at Dirac points in the Brillouin zone 

contributing to the zero gap. The band structure of charge carriers 

in graphene is displayed in Figure 4. For graphene, the valence 

band is completely filled [4] that means the Fermi level of charge 

carriers in graphene is near the intersection of valence and 

conduction bands. Therefore, the electronic properties of 

graphene are determined by the energy band near the Dirac point 

or at low energy. At low energy, charge carriers in graphene are 

described by the Hamiltonian and eigen energy  [5] where    m/s 

is the Fermi velocity and   are the Pauli matrices. This evidently 

indicates that charge carriers in graphene mimic the behaviors of 

massless relativistic particles described by Dirac equation. The Ek 

relation of charge carriers in graphene exhibits linear relation 

which differs from those in conventional metals and 

semiconductors where the energy spectrum are approximately 

parabolic relation [5].   



26 
 

 

Figure 3.3. The band structure in graphene the energy bands close 

to a Dirac point [4]. 

 

Figure 4.3. Different strips of relaxed structures for graphene/boron nitride 

hetero-ribbon [6] 
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Figure 5.3. Band structures for all structures of length l = 1 (top) to l = 5 

(bottom) hexagons. EF DFT is the DFT predicted value of the Fermi 

energy.[6] 
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Figure 6.3. The density of states, number of open channels and band 

structures for, (a) the un-doped 1BN-1G, (b) the doped 1BN-1G by electron 

acceptor-TCNE, and (c) the doped 1BN-1G by electron donor-TTF.[6] 

 

Figure 7.3. The density of states, number of open channels and band 

structures for, (a) the un-doped 1BN-3G, (b) the doped 1BN-3G by electron 

acceptor-TCNE, and (c) the doped 1BN-3G by electron donor-TTF.[6] 
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Figure 8.3. The density of states, number of open channels and band 

structures for, (a) the un-doped 1BN-5G, (b) the doped 1BN-5G by electron 

acceptor-TCNE, and (c) the doped 1BN-5G by electron donor-TTF.[6] 

 

 

 
 

 

Figure 9.3. Optimized structure-(1BN-5G) for graphene-boron nitride: (A) 

without doping, (B) doped by electron acceptor-TCNE, and (C) doped by 

electron donor-TTF.[6] 
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Conclusions  

We investigated the important properties of electron propagation 

in one-dimensional crystal chain. The FORTRAN program have 

used to calculate the simple band structure, integrated density of 

state N(E) and Density of state,  and to investigate also the 

electron propagation in this model. We found that there was one 

line for the band structure attribute for one atom in the unit cell. 

In the N(E) calculation, the stairs line appeared when the system 

contains small number of atoms, whereas the line will be smooth 

at large number of atoms. These shows that the intensity of atoms 

in material play important role enhance the DOS. At the edges of 

band structure, the density of state goes to infinite and the DOS 

appeared with VAN-HOV singularity.  
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