

For all those who planted in side me the love of science and learning
(My parents)
And to everyone who helped me throughout the fulfillment of my research
(My sisters and friends)

$$
\begin{aligned}
& D\left(x_{1}, x_{2}, \ldots, x_{i} x_{i}^{\prime}, \ldots, x_{n}\right)= \\
& x_{i} D\left(x_{1}, x_{2}, \ldots, x^{\prime}{ }_{i}, \ldots, x_{n}\right)+D\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right) x_{i}^{\prime} \quad \text { for all } x_{i}, x_{i}^{\prime} \in R, \\
& 1 \leq i \leq n .
\end{aligned}
$$

0	mapping $x \mapsto<f(x), x>$ is m-skew centralizing on R, then f is
${ }_{0}$	commuting on R
0	
0	Proof:- We define a mapping $D: R^{n} \rightarrow R$ by
0	
\%	$D\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[f\left(x_{1}\right), x_{2}\right]+\left[f\left(x_{2}\right), x_{3}\right]+\cdots+\left[f\left(x_{n-1}\right), x_{n}\right]+$
0	[$\left.f\left(x_{n}\right), x_{1}\right]$.
0	
0	for all $x_{1}, x_{2}, \ldots, x_{n} \in R$. Then it can be easily seen that D is permuting n -
0	additive mapping on R, also $d(x)=D(x, x, \ldots, x)=n[f(x), x]$ for all
0	$x \in R$. is the trace of D. Since it follows from the hypothesis that \ll
0	
0	$d(x), x>, x^{m}>\epsilon Z(R)$. for all $x \in R$. on commuting it with x we obtain
0	$\left.[<f(x), x\rangle, x^{m}+, x^{m}<f(x), x\right\rangle=0$ for all $x \in R$. This implies that
d	
0	$[<f(x), x>x] x^{m}+x^{m}[<f(x), x>x]=0 \quad$ for all $\quad x \in R$. Since
0	$[\langle y, x\rangle, x]=\langle[y, x], x\rangle$, for all $x, y \in R$, the latter verification yields
0	
0	that $\left\langle[f(x), x]>, x^{m}+, x^{m}<[f(x), x]>=0\right.$, for all $x \in R$. Since R is
0	$n!$-torsion free, we obtain $\langle d(x), x\rangle x^{m}+x^{m}\langle d(x), x\rangle=0$
0	for all $x \in R$. This implies that $\ll d(x), x>, x^{m}>=0$ for all $x \in R$.
0	Hence it follows from Corollary 2.8 that $d=0$ on R and so f is
0	commuting on R.
0	
0	Theorem 2.10:-
0	
${ }_{0}$	Let $n \geq 2$ be fixed positive integers and R be a $(n+1)$!-torsion free ring
0	
0	
0	
0	
0	
0	

