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ب لَْ هوَُ آي اَتٌ بيَِّن اَتٌ فِي صدُوُرِ الَّذِينَ أوُتوُا   ﴿

 ﴾الْعِلْم وما يجحد بآياتنا الاالظالمون
                 

 

 49 سورة ا لعنكبوت/جزء من آية

 

 
 

 

 



 
 

 
 

 شكر وتقدير

الحمد لله رب العالمين والصلاة والسلام على نبيه وسيد المرسلين محمد)صلى      

الله عليه واله وسلم( وبعد الحمد والثناء للبارئ عز وجل  ورسوله لا يسعني الا ان 

اتقدم بخالص الشكر والتقدير الى الدكتورة رجاء جفات شاهين )المشرفة على 

 م هذا البحث فجزاها الله عني افضل الجزاءالبحث( والتي كانت خير عون لي في اتما
 اتقدم بخالص شكري وامتناني لجميع اساتذتي في قسم الرياضيات.

في الختام فاني اقف احتراما لاقدم جميع كلمات الشكر والتقدير والاحترام والبر 

 لوالدي و والدتي لما قدماه لي من عطاء ليومنا هذا. 
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 Let 𝑅 be a ring and 𝐷 ∶  𝑅𝑛  →  𝑅 be n-additive mapping. A map 𝑑 ∶

𝑅 → 𝑅 is said to be the trace of 𝐷 if 𝑑(𝑥)  =  𝐷(𝑥, 𝑥, … , 𝑥) for all 𝑥 𝜖𝑅. 

Suppose that  are endomorphism of 𝑅. For any 𝑎, 𝑏 𝜖 𝑅.  Let <

𝑎, 𝑏 >(𝛼,𝛽)= 𝑎𝛼(𝑏) + 𝛽(𝑏)𝑎. In the present paper under certain suitable 

torsion restrictions it is shown that 𝐷 =  0 if 𝑅 satisfies either <

𝑑(𝑥), 𝑥𝑚 >(𝛼,𝛽)= 0 for all 𝑥𝜖𝑅 or << 𝑑(𝑥), 𝑥 >(𝛼,𝛽), 𝑥
𝑚 = 0 for all 

𝑥𝜖𝑅. Further, if < 𝑑(𝑥), 𝑥 > 𝜖𝑍(𝑅). the center of 𝑅, for all 𝑥 𝜖 𝑅 or <

 𝑑(𝑥)𝑥 −  𝑥𝑑(𝑥), 𝑥 >=  0 for all 𝑥 𝜖𝑅,then it is proved that 𝑑 is 

commuting on 𝑅. Some more related results are also obtained for additive 

mapping on 𝑅. 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

1) 𝒏- Torison free:- A ring 𝑅 is said to be n- Torison free if 𝑛𝑥 = 0  

implies that 𝑥 = 0 for all 𝑥𝜖𝑅. 

 

2) 𝒏!- Torison free:- If 𝑅 is 𝑛!- Torsion free, then it is 𝑑- Torison free 

any divisor d of 𝑛!. 

 

3) Prime:- Recall that the ring 𝑅 is said to beprime if the product of any 

two non- zero ideals of 𝑅 is non- zero equivalently 𝑎𝑅𝑏 = {0} with 

𝑎, 𝑏𝜖𝑅 implies that 𝑎 = 0 or 𝑏 = 0. 

 

4) Semi prime:- A ring 𝑅 is said to be semi prime if it has non-zero 

nilpotent ideals. Equivalently, 𝑎𝑅𝑎 = {0} with 𝑎𝜖𝑅 implies that 𝑎 = 0. 

5) Commutator:- The commutator 𝑥𝑦 − 𝑦𝑥 by [𝑥, 𝑦] and the skew 

commutator 𝑥𝑦 + 𝑦𝑥 by < 𝑥, 𝑦 >. 

 

6) < 𝒙, 𝒚 >(𝜶,𝜷) and [𝒙, 𝒚](𝜶,𝜷):- Let 𝛼, 𝛽 be endomorphism of 𝑅. For the 

convenience the sum 𝑥𝛼(𝑦) + 𝛽(𝑦)𝑥 and 𝑥𝛼(𝑦) − 𝛽(𝑦)𝑥 will be  

7) denoted by < 𝑥, 𝑦 >(𝛼,𝛽) and [𝑥, 𝑦](𝛼,𝛽) respectively. 

 

 



 
 

 
 

8) (𝜶, 𝜷) − Commuting:- The mapping 𝑓 is called (𝛼, 𝛽)- Commuting 

𝑓: 𝑅 → 𝑅 when[𝑓(𝑥), 𝑥](𝛼,𝛽) = 0 for all 𝑥𝜖𝑅. 

 

9) (𝛼, 𝛽)- centralizing:- A mapping 𝑓: 𝑅 → 𝑅 is said to be (𝛼, 𝛽)- 

centralizing on 𝑅, if [𝑓(𝑥), 𝑥](𝛼,𝛽)𝜖𝑍(𝑅) for all 𝑥𝜖𝑅. 

 

10) (𝛼, 𝛽)- skew centralizing:-  A mapping 𝑓: 𝑅 → 𝑅 is said to be 

(𝛼, 𝛽)-skew centralizing on 𝑅, if < 𝑓(𝑥), 𝑥 >(𝛼,𝛽) 𝜖𝑍(𝑅) for all 𝑥𝜖𝑅. 

11) (𝛼, 𝛽)- skew commuting:- In particular, if  < 𝑓(𝑥), 𝑥 >(𝛼,𝛽) 𝜖𝑍(𝑅) 

for all 𝑥𝜖𝑅, then 𝑓 is called (𝛼, 𝛽)- skew commuting on 𝑅. 

 

12) Permuting :- A map 𝐷:𝑅𝑛 → 𝑅 is said to be permuting if 

𝐷(𝑥1, 𝑥2, … , 𝑥𝑛) = (𝐷(𝑥𝜋(1), 𝑥𝜋(2), … , 𝑥𝜋(𝑛)) for all 𝜋𝜖𝑆𝑛 and 𝑥𝑖𝜖𝑅 

where 𝑖 = 1,2,… , 𝑛. 

13) Permuting n- derivation:- A permuting map 𝐷:𝑅𝑛 → 𝑅 is said to be 

permuting n- derivation if it is n- additive that mean: 

 

𝐷(𝑥1, 𝑥2, … , 𝑥𝑖 + 𝑥𝑖
′, … , 𝑥𝑛) = 𝐷(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛) +

𝐷(𝑥1, 𝑥2, … , 𝑥
′
𝑖 , … , 𝑥𝑛) and 



 
 

 
 

𝐷(𝑥1, 𝑥2, … , 𝑥𝑖𝑥𝑖
′, … , 𝑥𝑛) =

𝑥𝑖𝐷(𝑥1, 𝑥2, … , 𝑥
′
𝑖 , … , 𝑥𝑛)+ 𝐷(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛)𝑥𝑖

′   for all 𝑥𝑖 , 𝑥𝑖
′𝜖𝑅, 

1 ≤ 𝑖 ≤ 𝑛. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Introduction 

Throughout this paper 𝑅 will denote an associative ring with the center 

𝑍(𝑅) A ring 𝑅 is said to be n-torsion free if 𝑛𝑥 =  0 implies that 𝑥 =  0 

for all 𝑥 𝜖𝑅. If 𝑅 is 𝑛!-torsion free, then it is 𝑑-torsion free for any divisor 

𝑑 of 𝑛!. Recall that the ring 𝑅 is said to be prime if the product of any two 

non-zero ideals of 𝑅 is non-zero. Equivalently, 𝑎𝑅𝑏 = {0} with 𝑎, 𝑏 𝜖 𝑅 

implies that 𝑎 =  0 or 𝑏 =  0. A ring 𝑅 is said to be semi prime if it has 

no non-zero nilpotent ideals. Equivalently, 𝑎𝑅𝑎 = {0} with 𝑎 𝜖 𝑅 implies 

that 𝑎 =  0. As usual, we denote the commutator 𝑥𝑦 −  𝑦𝑥 by [𝑥, 𝑦] and 

the skew commutator 𝑥𝑦 + 𝑦𝑥 by <  𝑥, 𝑦 >. Let < 𝛼, 𝛽 > be 

endomorphism of 𝑅. For the convenience the sum 𝑥𝛼(𝑦) + 𝛽(𝑦)𝑥 and 

𝑥𝛼(𝑦) − 𝛽(𝑦)𝑥 will be denoted by < 𝑥, 𝑦 >(𝛼,𝛽) and [𝑥, 𝑦](𝛼,𝛽) 

respectively. A mapping 𝑓: 𝑅 → 𝑅 is said to be (𝛼, 𝛽)- centralizing on 𝑅, 

if [𝑓(𝑥), 𝑥](𝛼,𝛽)𝜖𝑍(𝑅) for all 𝑥𝜖𝑅. In the special case when 

[𝑓(𝑥), 𝑥](𝛼,𝛽) = 0 for all 𝑥𝜖𝑅. The mapping 𝑓 is called (𝛼, 𝛽)-commuting 

on 𝑅. A mapping 𝑓: 𝑅 → 𝑅 is said to be (𝛼, 𝛽)-skew centralizing on 𝑅. If 

< 𝑓(𝑥), 𝑥 >(𝛼,𝛽) 𝜖𝑍(𝑅) for all 𝑥𝜖𝑅. In particular, if < 𝑓(𝑥), 𝑥 >(𝛼,𝛽)= 0 

for all 𝑥𝜖𝑅, then 𝑓 is called (𝛼, 𝛽)-skew commuting on 𝑅. If 𝛼 = 𝛽 = 1 

(the identity map on 𝑅 then 𝑓 is called simply centralizing, commuting. 

Skew centralizing and skew commuting respectively, the following 



 
 

 
 

example due to Jung and Chang [9] assures that there exists map 𝑓: 𝑅 → 𝑅 

which is (𝛼, 𝛽)- skew commuting on 𝑅 but not skew commuting on 𝑅). 

Let 𝑅 = {(
𝑤 𝑥
𝑦 𝑧) /𝑤, 𝑥, 𝑦, 𝑧𝜖𝑍} be the ring of all 2 × 2 matrices over 𝑧, 

the ring of integers let 𝛼, 𝛽: 𝑅 → 𝑅 be mappings defined by  

𝛼 (
𝑤 𝑥
𝑦 𝑧) = (

−𝑤 0
0 0

) and 𝛽 (
𝑤 𝑥
𝑦 𝑧) = ⋯(

𝑤 −𝑥
0 0

)  

define the mapping 𝑓: 𝑅 → 𝑅 by 𝑓 (
𝑤 𝑥
𝑦 𝑧) = (

𝑤 0
0 0

) 

then 𝑓 is (𝛼, 𝛽)- skew commuting on 𝑅 but not skew commuting on 𝑅 

the study of centralizing and commuting mappings was initiated by a 

well-known theorem due to Posner [18] which states that existence of a 

non-zero centralizing derivation on prime ring 𝑅must be commutative 

This theorem has been extended by many authors in different ways (see 

eg., Bresar [7], Vukman [20] and references therein) Also Bell and Lucier 

[6] obtained some results concerning skew commuting and skew 

centralizing additive maps in which the condition of primness is replaced 

by the existence of a left identity Further Jung and Chang [9] obtained the 

similar results for biadditive maps in rings with left identity. Deng and 

Bell [5] extended the notion of commuting to 𝑛-commuting, where n is an 

arbitrary positive integer, by defining a mapping 𝑓: 𝑅 → 𝑅 to be n-

commuting on 𝑅 if  [𝑥𝑛, 𝑓(𝑥)] = 0 for all 𝑥𝜖𝑅. By the analogy with the 



 
 

 
 

definition of n-commuting introduced by them, for 𝑛 ≥ 2, Park and Jung 

[15] introduced the concept of n-skew commuting (resp. n- skew 

centralizing) mapping on 𝑅. A mapping 𝑓 ∶  𝑅 →  𝑅 is said to be n-skew 

commuting (resp. n-skew centralizing) on 𝑅 if < 𝑓(𝑥), 𝑥𝑛 >= 0 (resp. <

𝑓(𝑥), 𝑥𝑛 > 𝜖𝑍(𝑅) for all 𝑥𝜖𝑅. A map 𝑓 ∶  𝑅 →  𝑅 is said to be (𝛼, 𝛽)- 𝑛- 

skew (resp. (𝛼, 𝛽)-n- skew centralizing) on 𝑅 < 𝑓(𝑥), 𝑥𝑛 >(𝛼,𝛽)= 0 

(resp. < 𝑓(𝑥), 𝑥𝑛 >(𝛼,𝛽) 𝜖𝑍(𝑅) holds for all 𝑥 𝜖 𝑅. One interesting topic 

of all related works is to study the skew commuting and skew centralizing 

mappings involving the traces of symmetric biadditive maps on rings 

which was done by Jung and Chang [9]. For a fixed positive integer 𝑛 a 

map 𝐷:𝑅𝑛 → 𝑅 is said to be permuting if 𝐷(𝑥1, 𝑥2, … , 𝑥𝑛)  =

𝐷(𝑥𝜋(1), 𝑥𝜋(2), … , 𝑥𝜋(𝑛)) for all 𝜋𝜖 𝑆𝑛 and 𝑥𝑖𝜖 𝑅 where 𝑖 = 1, 2,… , 𝑛 The 

notion of permuting 𝑛-derivation was defined by Park [14] as follows: a 

permuting map 𝐷:𝑅𝑛 → 𝑅 is said to be permuting 𝑛-derivation if it is 𝑛-

additive that mean 

 𝐷(𝑥1, 𝑥2, … , 𝑥𝑖 + 𝑥𝑖
′, … , 𝑥𝑛) = 𝐷(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛) +

𝐷(𝑥1, 𝑥2, … , 𝑥
′
𝑖 , … , 𝑥𝑛)and 𝐷(𝑥1, 𝑥2, … , 𝑥𝑖𝑥𝑖

′, … , 𝑥𝑛) =

𝑥𝑖𝐷(𝑥1, 𝑥2, … , 𝑥
′
𝑖 , … , 𝑥𝑛)+ 𝐷(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛)𝑥𝑖

′   for all 𝑥𝑖 , 𝑥𝑖
′𝜖𝑅 , 

1 ≤ 𝑖 ≤ 𝑛. Let 𝑛 ≥ 2 be a fixed integer. A map 𝑑: 𝑅 → 𝑅 defined by 

𝑑(𝑥) = 𝐷(𝑥, 𝑥, … , 𝑥) for all 𝑥𝜖𝑅 where 𝐷:𝑅𝑛 → 𝑅 is a permuting map, is 

called the trace of 𝐷. Moreover, it can be easily seen that 



 
 

 
 

𝐷(𝑥1, 𝑥2, … ,−𝑥𝑖 , … , 𝑥𝑛) = −𝐷(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛) for all 𝑥𝑖𝜖𝑅, 𝑖 =

1,2,… , 𝑛 Various results with respect to the traces of permuting n -

derivation are obtained, see for reference [14]. The main objective of this 

paper is to consider some special skew commuting (skew centralizing) 

mappings (𝛼, 𝛽)- skew commuting mapping this paper generalize, extend 

and compliment several results obtained earlier. For example Theorem 3 

of [9], Theorem 4 of [9], Theorem 5 of [17], etc- to mention a few only. 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

For any additive mapping 𝛼, 𝛽: 𝑅 → 𝑅 and 𝑥, 𝑦, 𝑧𝜖𝑅, we will use the 

following basic identities without any specific mention 

< 𝑥, 𝑦 + 𝑧 >(𝛼,𝛽)=< 𝑥, 𝑦 >(𝛼,𝛽) +< 𝑥, 𝑧 >(𝛼,𝛽)and  

< 𝑥 + 𝑦, 𝑧 >(𝛼,𝛽)=< 𝑥, 𝑧 >(𝛼,𝛽) +< 𝑦, 𝑧 >(𝛼,𝛽). If 𝐷: 𝑅
𝑛 → 𝑅 is a 

permuting 𝑛-additive mapping with the trace 𝑑, then it can be easily seen 

that  

𝑑(𝑥 + 𝑦) = 𝑑(𝑥) + 𝑑(𝑦) + ∑ (𝑛
𝑖
)𝑛−1

𝑖=1 𝐷(𝑥, 𝑥, … , 𝑥⏟      
𝑛−𝑖 𝑡𝑖𝑚𝑒𝑠

, 𝑦, 𝑦, … , 𝑦⏟      
𝑖 𝑡𝑖𝑚𝑒𝑠

) for all 

𝑥, 𝑦𝜖𝑅. Using similar arguments as used in the proof of Theorem 2.3 of 

[14], one can easily obtain the following lemma. 

 

 

 

Lemma 2.1:- 

Let 𝑛 ≥ 2 be a fixed integer and 𝑅 be a 𝑛!-torsion free ring Suppose that 

𝐷:𝑅𝑛 → 𝑅 is a permuting 𝑛- additive map with the trace 𝑑 ∶ 𝑅 →  𝑅. If 

𝑑(𝑥) = 0, then 𝐷(𝑥1, 𝑥2, … , 𝑥𝑛) = 0. 

The following lemma will be used frequently throughout the text: 

 

Lemma 2.2 ([14], lemma 2.4):-  



 
 

 
 

Let 𝑛 be a fixed positive integer and 𝑅 be a 𝑛!-torsion free ring. Suppose 

that 𝑦1, 𝑦2, … , 𝑦𝑛𝜖𝑅 satisfy 𝜆𝑦1 + 𝜆
2𝑦2 +⋯+ 𝜆

𝑛𝑦𝑛 = 0 (or 𝜖𝑍(𝑅)) for 

𝜆 = 1,2,… , 𝑛. Then 𝑦𝑖 = 0( or 𝑦𝑖𝜖𝑍(𝑅)) for all 𝑖.  

Recently, Jung and Chang [9] proved that if 𝑅 is a (𝑛 +  1)! –torsion free 

ring with left identity 𝑒 and 𝐺: 𝑅 × 𝑅 → 𝑅 is a symmetric biadditive 

mapping with the trace 𝑔 of 𝐺, such that g is 𝑛 − (𝛼, 𝛽)-skew commuting 

on 𝑅, then 𝐺 =  0. We begin with 𝑛-additive mapping 𝐷:𝑅𝑛 → 𝑅 with 

the trace 𝑑 of 𝐷, such that d is 𝑚 − (𝛼, 𝛽) −skew commuting on 𝑅, then 

𝐷 =  0. 

Theorem 2.3:- 

Let 𝑛 ≥ 2 and 𝑚 ≥ 1 be fixed integer and let 𝑅 be a (𝑚 + 𝑛 − 1)!- 

torsion free ring with left identity 𝑒. Suppose that 𝐷:𝑅𝑛 → 𝑅 is a 

permuting 𝑛-additive mapping with trace 𝑑: 𝑅 → 𝑅. If 𝑑 is (𝛼, 𝛽) − 𝑚-

skew commuting on 𝑅, where 𝛼, 𝛽 are endomorphism and epimorphism 

of 𝑅 respectively, then 𝐷 =  0. 

Proof:- 

It is given that, for all 𝑥𝜖𝑅. 

(2.1)           < 𝑑(𝑥), 𝑒𝑚 >(𝛼,𝛽)= 𝑑(𝑥)𝛼(𝑥
𝑚) + 𝛽(𝑥𝑚)𝑑(𝑥) = 0  

Since 𝛽 is an epimorphism, 𝛽(𝑒) is also a left identity of 𝑅. Hence using 

(2.1), we have. 

(2.2)           < 𝑑(𝑒), 𝑒𝑚 >(𝛼,𝛽)=< 𝑑(𝑒), 𝑒 >(𝛼,𝛽)= 𝑑(𝑒)𝛼(𝑒) + 𝑑(𝑒) = 0  



 
 

 
 

Since 𝑅 is also 2-torsion free, multiplying by 𝛼(𝑒) from right side gives 

𝑑(𝑒)𝛼(𝑒) = 0. Hence by (2.2), we find that 𝑑(𝑒) = 0. Substituting 𝑒 +

𝑘𝑥 for 𝑥, where 1 ≤ 𝑘 ≤ 𝑚 + 𝑛 − 1, in the hypothesis we obtain, 

< 𝑑(𝑒 + 𝑘𝑥), (𝑒 + 𝑘𝑥)𝑚 >(𝛼,𝛽)= 0 for all 𝑥𝜖𝑅. This implies that,  

(2.3)            < 𝑑(𝑒) + 𝑑(𝑘𝑥) + ∑ (𝑛
𝑖
)𝐷(𝑒, 𝑒, … , 𝑒⏟    

𝑛−𝑖 𝑡𝑖𝑚𝑒𝑠

, 𝑘𝑥, 𝑘𝑥,… , 𝑘𝑥⏟        
𝑖 𝑡𝑖𝑚𝑒𝑠

)𝑛−1
𝑖=1 , 

(𝑒 + 𝑘𝑚)𝑚 >(𝛼,𝛽)= 0, or  

𝑘𝑃1(𝑥, 𝑒) + 𝑘
2𝑃2(𝑥, 𝑒) + ⋯+ 𝑘

(𝑚+𝑛−1)𝑃(𝑚+𝑛−1)(𝑥, 𝑒) = 0 for all 𝑥𝜖𝑅, 

where 𝑃𝑡(𝑥, 𝑒) is the sum of terms involving 𝑥 and 𝑒 such that 

𝑃𝑡(𝑥, 𝑘𝑒) = 𝑘
𝑡𝑃𝑡(𝑥, 𝑒), 𝑡 = 1,2,… ,𝑚 + 𝑛 − 1. Using hypothesis and 

Lemma 2.2, we have,  

(2.4)            𝑃𝑡(𝑥, 𝑒) = 0 for all 𝑥𝜖𝑅, and for all 𝑡 = 1,2,… ,𝑚 + 𝑛 − 1. 

In particular, we have for all 𝑥𝜖𝑅, 𝑃1(𝑥, 𝑒) = 0. This yield that 𝑛 <

𝐷(𝑥, 𝑒, 𝑒, … , 𝑒), 𝑒 >(𝛼,𝛽)= 0. Since 𝑅 is (𝑚 + 𝑛 − 1)! − torsion free, we 

find that < 𝐷(𝑥, 𝑒, 𝑒, … , 𝑒), 𝑒 >(𝛼,𝛽)= 0 for all 𝑥𝜖𝑅, or 

𝐷(𝑥, 𝑒, 𝑒, … , 𝑒)𝛼(𝑒) + 𝛽(𝑒)𝐷(𝑥, 𝑒, … , 𝑒) = 0. Since 𝛽(𝑒) is left identity 

we get. 𝐷(𝑥, 𝑒, … , 𝑒)𝛼(𝑒) + 𝐷(𝑥, 𝑒, … , 𝑒) = 0.  

Multiply by 𝛼(𝑒) from right and use the torsion restriction to get 

𝐷(𝑥, 𝑒, … , 𝑒)𝛼(𝑒) = 0. Hence above equation reduces to 

(2.5)                   𝐷(𝑥, 𝑒, … , 𝑒) = 0. 

Also from (2.4), we have 𝑃2(𝑥, 𝑒) = 0 for all 𝑥𝜖𝑅 that is  



 
 

 
 

(𝑛
2
) < 𝐷(𝑥, 𝑥, 𝑒 … , 𝑒), 𝑒 >(𝛼,𝛽)+ 𝑛 < 𝐷(𝑥, 𝑒, 𝑒, … , 𝑒), 𝑥  

+(𝑛 − 1)𝑥𝑒 >(𝛼,𝛽)= 0.  

Since 𝑅 is (𝑚 + 𝑛 − 1)!- torsion free, in view of (2.5), the above equation 

reduces to < 𝐷(𝑥, 𝑥, 𝑒 … , 𝑒), 𝑒 >(𝛼,𝛽)= 0. Now applying the same 

technique as used to obtain (2.5), we get 

(2.6)           < 𝐷(𝑥, 𝑥, 𝑒 … , 𝑒), 𝑒 > = 0 

Proceeding in the similar manner we get, 𝐷(𝑥, 𝑥,… , 𝑥⏟      
𝑛−𝑖 𝑡𝑖𝑚𝑒𝑠

, 𝑒, 𝑒, … , 𝑒⏟    
𝑖 𝑡𝑖𝑚𝑒𝑠

) = 0 

for all 1 ≤ 𝑖 ≤ 𝑛 − 1 

Again expanding Proceeding in the similar manner we get, 𝑃𝑡(𝑥, 𝑒) in 

(2.4) and using (2.7) we find that < 𝑑(𝑥), 𝑒 >(𝛼,𝛽)= 0, implies 

𝑑(𝑥)𝛼(𝑒) + 𝑑(𝑥) = 0. On right multiplying by 𝛼(𝑒) the above equation 

reduces to 2𝑑(𝑥)𝛼(𝑒) = 0 and hence 𝑑(𝑥)𝛼(𝑒) = 0. Therefore, we have 

𝑑(𝑥) = 0. For all 𝑥𝜖𝑅. Hence in view of Lemma 2.1 we conclude that 

𝐷 =  0. 

Corollary 2.4 ([9], Theorem 1):- 

Let R be a 2-torsion free ring with left identity 𝑒 and 𝛼, 𝛽 be 

endomorphism and epimorphism of 𝑅 respectively. Let 𝐺: 𝑅 × 𝑅 → 𝑅 be 

a symmetric biadditive mapping and 𝑔 the trace of 𝐺. If 𝑔 is (𝛼, 𝛽)-skew 

commuting on 𝑅, then 𝐺 =  0. Using similar techniques as used in the 

proof of Corollary 2 of [9] we have. 



 
 

 
 

Corollary 2.5:- 

let 𝑛 ≥ 2 be a fixed integer, 𝑅 be a 𝑛!-torsion free ring with left identity e 

and 𝛼, 𝛽 be endomorphism and epimorphism of 𝑅 respectively. If 𝑓 is an 

additive map on 𝑅 such that the mapping 𝑥 ⟼< 𝑓(𝑥), 𝑥 >(𝛼,𝛽) is (𝛼, 𝛽)- 

skew commuting on 𝑅, then 𝑓 =  0. 

Proof:-Define a map 𝐷: 𝑅𝑛 → 𝑅by 𝐷(𝑥1, 𝑥2, … , 𝑥𝑛) =<

𝑓(𝑥1), 𝑥2 >(𝛼,𝛽) +< 𝑓(𝑥2), 𝑥3 >(𝛼,𝛽)+⋯+ 

< 𝑓(𝑥𝑛=1), 𝑥𝑛 >(𝛼,𝛽) +< 𝑓(𝑥𝑛), 𝑥1 >(𝛼,𝛽) for all 𝑥1, 𝑥2, … , 𝑥𝑛𝜖𝑅 and a 

mapping 𝑑: 𝑅 → 𝑅 by 𝑑(𝑥) = 𝐷(𝑥, 𝑥, … , 𝑥) for all 𝑥𝜖𝑅. It can easily be 

shown that 𝐷 is permuting 𝑛-additive map and 𝑑 is the trace of 𝐷. In 

view of the hypothesis, using torsion restriction on 𝑅, we have 𝑑(𝑥) =

𝑛 < 𝑓(𝑥), 𝑥 >(𝛼,𝛽) which is (𝛼, 𝛽)- skew commuting on 𝑅, and so by 

Theorem 2.3 we obtain 𝑑 =  0. that is, f is (𝛽)-skew-commuting on 𝑅 

and hence it follows that  

(2.8)           𝑓(𝑒)𝛼(𝑒) + 𝛽(𝑒)𝑓(𝑒) = 𝑓(𝑒)𝛼(𝑒) + 𝑓(𝑒) = 0. 

Implies 2𝑓(𝑒)𝛼(𝑒) = 0 = 𝑓(𝑒)𝛼(𝑒). This in view of (2.8) yields that 

𝑓(𝑒) = 0. Therefore, 𝑓(𝑥 + 𝑒) = 𝑓(𝑥) for all 𝑥𝜖𝑅. 

Since < 𝑓(𝑥 + 𝑒), 𝑥 + 𝑒 >(𝛼,𝛽)= 0. from the above relation we find that 

𝑓(𝑥)𝛼(𝑒) + 𝑓(𝑥) = 0 for all 𝜖𝑅. On right multiplying by  𝛼(𝑒) and using 



 
 

 
 

torsion restriction on R we have 𝑓(𝑥)𝛼(𝑒) = 0, which results in𝑓(𝑥) = 0 

for all 𝑥𝜖𝑅. 

Theorem 2.6:- 

Let𝑛 ≥ 2bea fixed integer and 𝑅 be a 𝑛!-torsion free ring with left 

identity 𝑒 which admits a permuting 𝑛-additive map 𝐷: 𝑅𝑛 → 𝑅 with 

trace 𝑑 ∶ 𝑅 → 𝑅. If d is skew centralizing on 𝑅, then d is commuting on 

𝑅. 

Proof:- Since 𝑒 is left identity, we first remark that the relation [𝑥, 𝑒]𝑦 =

0 for all 𝑥, 𝑦 𝜖𝑅. It is given that 

(2.9)           < 𝑑(𝑥), 𝑥 > = 𝑑(𝑥)𝑥 + 𝑥𝑑(𝑥)𝜖𝑍(𝑅) for  all 𝑥𝜖𝑅. Hence 

(2.9) becomes, 

(2,10)          < 𝑑(𝑒), 𝑒 > = 𝑑(𝑒)𝑒 + 𝑒𝑑(𝑒)𝜖𝑍(𝑅)  

On commuting the above equation with 𝑒 we get [𝑑(𝑒), 𝑒] + [𝑑(𝑒), 𝑒] =

0. On right multiplying by e we have 2[𝑑(𝑒), 𝑒] = 0 or [𝑑(𝑒), 𝑒] = 0. 

Using this relation, above equation reduces to [𝑑(𝑒), 𝑒] = 0. Also we 

have, 𝑑(𝑒)𝑒 = 𝑑(𝑒) and hence from (2.10) we get 2𝑑(𝑒)𝜖𝑍(𝑅), that is 

𝑑(𝑒)𝜖𝑍(𝑅). Substituting 𝑒 + 𝑘𝑥 for 𝑥, 1 ≤ 𝑘 ≤ 𝑛 in the hypothesis we 

obtain that, for all 𝑥 𝜖 𝑅, < 𝑑(𝑒 + 𝑘𝑥), 𝑒 + 𝑘𝑥 > 𝜖𝑍(𝑅). This implies that 

< 𝑑(𝑒) + 𝑑(𝑘𝑥) + ∑ (𝑛
𝑖
)𝐷 (𝑒, 𝑒, … , 𝑒⏟    

𝑛−1 𝑡𝑖𝑚𝑒𝑠

, 𝑘𝑥, 𝑘𝑥, … , 𝑘𝑥⏟        
𝑖 𝑡𝑖𝑚𝑒𝑠

) , 𝑒 + 𝑘𝑥 >𝑛−1
𝑖=1

𝜖𝑍(𝑅)  



 
 

 
 

Or 𝑘𝑃1(𝑥, 𝑒) + 𝑘
2𝑃2(𝑥, 𝑒) + ⋯+ 𝑘

𝑛𝑃𝑛(𝑥, 𝑒)𝜖𝑍(𝑅) for all 𝑥𝜖𝑅. Where 

𝑃𝑡(𝑥, 𝑒) is the sum of terms involving 𝑥 and e such that  

𝑃𝑡(𝑥, 𝑘𝑒) = 𝑘
𝑡𝑃𝑡(𝑥, 𝑒), 𝑡 = 1,2,… , 𝑛.  

(2.11)           𝑃𝑡(𝑥, 𝑒)ϵZ(R) for all 𝑥𝜖𝑅, for all 𝑡 = 1,2,… , 𝑛 

In particular, for all 𝑥𝜖𝑅, we have 

𝑃1(𝑥, 𝑒) =< 𝑑(𝑒), 𝑥 > +𝑛 < 𝐷(𝑥, 𝑒, 𝑒, … , 𝑒), e > ϵZ(R). 

Since 𝑑(𝑒)𝜖𝑍(𝑅), we have 

(2.12)           2𝑥𝑑(𝑒) + 𝑛D(x, e, e, … , e)e + D(x, e, … , e))ϵZ(R). 

On commuting the above equation with e and using the fact that  

[𝑥, 𝑒]𝑦 = 0 for all 𝑥, 𝑦 𝜖𝑅 we obtain 

𝑛([𝐷(𝑥, 𝑒, … , 𝑒), 𝑒]𝑒 + [𝐷(𝑥, 𝑒, … , 𝑒), 𝑒]) = 0 and hence  

[𝐷(𝑥, 𝑒, … , 𝑒), 𝑒]𝑒 + [𝐷(𝑥, 𝑒, … , 𝑒), 𝑒] = 0. Since R is 𝑛!-torsion free 

ring, on right multiplying by e we have, 2[𝐷(𝑥, 𝑒, … , 𝑒), 𝑒]𝑒 = 0 and 

hence, [𝐷(𝑥, 𝑒, … , 𝑒), 𝑒]𝑒 = 0. Therefore, we get  

(2.13)          [𝐷(𝑥, 𝑒, … , 𝑒), 𝑒] = 0, for all 𝑥𝜖𝑅, that is  

𝐷(𝑥, 𝑒, … , 𝑒), 𝑒 = 𝐷(𝑥, 𝑒, … , 𝑒). Now it follows from (2.12) that  

(2.14)               2𝑥𝑑(𝑒) + 2𝑛𝐷(𝑥, 𝑒, … , 𝑒)𝜖𝑍(𝑅).  

Since 𝑅 is 𝑛!- torsion free, (2.14) yields that 

(2.15)           2𝑛[𝐷(𝑥, 𝑒, … , 𝑒), 𝑥] = [𝐷(𝑥, 𝑒, … , 𝑒), 𝑥] = 0. For all 𝑥𝜖𝑅. 

Also from (2.11) we have 𝑃2(𝑥, 𝑒)𝜖𝑍(𝑅). For all 𝑥𝜖𝑅, that is  

(𝑛
2
) < 𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒 > +𝑛 < 𝐷(𝑥, 𝑒, … , 𝑒), 𝑥 > 𝜖𝑍(𝑅). 



 
 

 
 

On using (2.15) above equation reduces to, 

(2.16) (𝑛
2
)(𝐷(𝑥, 𝑥, 𝑒, … , 𝑒)𝑒 + 𝐷(𝑥, 𝑥, 𝑒, … , 𝑒))) +

2𝑛𝑥𝐷(𝑥, 𝑒, … , 𝑒)𝜖𝑍(𝑅). 

On commuting (2.16) with e and using (2.13) we get, 

(𝑛
2
)([𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒]𝑒 + [𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒]) = 0. Since 𝑅 is 𝑛!-

torsion free, we have[𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒 + [𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒] = 0. 

On right multiplying by e and using torsion restriction on R we find that 

[𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒] = 0, which further reduces to[𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒] = 0, 

or 𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒 = 𝐷(𝑥, 𝑥, 𝑒, … , 𝑒) for all 𝑥𝜖𝑅. Therefore one can 

rewrite (2.16) as (𝑛
2
)2𝐷(𝑥, 𝑥, 𝑒, … , 𝑒) + 2𝑛𝑥𝐷(𝑥, 𝑒, … , 𝑒)𝜖𝑍(𝑅). 

Commuting the above equation with x and using (2.15) yields that 

(𝑛
2
)2[𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑥] = 0. Now since 𝑅 is 𝑛!-torsion free we obtain 

that [𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑥] = 0. On proceeding in the same manner, we 

obtain for 1 ≤ 𝑖 ≤ 𝑛 − 1. 

(2.17)           [𝐷 (𝑥, 𝑥, … , 𝑥⏟      
𝑛−𝑖 𝑡𝑖𝑚𝑒𝑠

, 𝑒, 𝑒, … , 𝑒⏟    
𝑖 𝑡𝑖𝑚𝑒𝑠

) , 𝑒] = 0. For all 𝑥𝜖𝑅. Also  

(2.18)       [𝐷 (𝑥, 𝑥, … , 𝑥⏟      
𝑛−𝑖 𝑡𝑖𝑚𝑒𝑠

, 𝑒, 𝑒, … , 𝑒⏟    
𝑖 𝑡𝑖𝑚𝑒𝑠

) , 𝑥] = 0. For all 𝑥𝜖𝑅. Again from 

(2.11) and using (2.18) we find that, 



 
 

 
 

< 𝑑(𝑥), 𝑒 > +𝑛(𝐷(𝑥, 𝑥, … , 𝑥, 𝑒), 𝑥 > 𝜖𝑍(𝑅). On simplification we obtain 

that, 𝑑(𝑥)𝑒 + 𝑑(𝑥) + 𝑛𝐷(𝑥, 𝑥, … , 𝑥, 𝑒), 𝑥 + 𝑥𝐷(𝑥, 𝑥, … , 𝑥, 𝑒))𝜖𝑍(𝑅). 

This further yields that 

(2.19)           𝑑(𝑥)𝑒 + 𝑑(𝑥) + 2𝑛𝑥𝐷(𝑥, 𝑥, … , 𝑥, 𝑒)𝜖𝑍(𝑅). For all 𝑥𝜖𝑅. 

Now on commuting the above expression with e and using (2.17) we get, 

[𝑑(𝑥), 𝑒]𝑒 + [𝑑(𝑥), 𝑒]  =  0 =  [𝑑(𝑥), 𝑒]𝑒. for all 𝑥𝜖𝑅. Therefore, 

[𝑑(𝑥), 𝑒]  =  0 for all 𝑥𝜖𝑅. or 

we have 𝑑(𝑥)𝑒 =  𝑑(𝑥). Thus (2.19) can be rewritten as 2𝑑(𝑥) +

2𝑛𝑥𝐷(𝑥, 𝑥, … , 𝑥, 𝑒). On commuting with x and using (2.18) we find that, 

[𝑑(𝑥), 𝑥]  =  0 for all 𝑥𝜖𝑅. 

Theorem 2.7:- 

Let 𝑛 ≥ 2 and 𝑚 ≥ 1 be fixed positive integers and 𝑅 be a (𝑚 + 𝑛)!- 

torsion free ring with left identity 𝑒. If 𝑅 admits a permuting 𝑛-additive 

map 𝐷 ∶ 𝑅𝑛 → 𝑅 such that the trace 𝑑 ∶  𝑅 →  𝑅 satisfies <<

𝑑(𝑥), 𝑥 >(𝛼,𝛽), 𝑥
𝑚 >(𝛼,𝛽)= 0. for all 𝑥𝜖𝑅, where 𝛼, 𝛽 are endomorphism 

and epimorphism of 𝑅 respectively, then 𝐷 =  0. 

Proof:- We have, << 𝑑(𝑥), 𝑥 >(𝛼,𝛽), 𝑥
𝑚 >(𝛼,𝛽)= 0. for all 𝑥𝜖𝑅.This 

yields that << 𝑑(𝑥), 𝑥 >(𝛼,𝛽), 𝑥
𝑚 >(𝛼,𝛽)= 𝑑(𝑒)𝛼(𝑒) + 𝑑(𝑒), 𝑒 >(𝛼,𝛽)=

0 or 𝑑(𝑒)𝛼(𝑒) + 𝑑(𝑒)𝛼(𝑒) + 𝑑(𝑒)𝛼(𝑒) + 𝑑(𝑒) = 0.On right multiplying 

by 𝛼(𝑒) we get, 4𝑑(𝑒)𝛼(𝑒) = 0. This implies that 𝑑(𝑒)𝛼(𝑒) = 0 and 

hence 𝑑(𝑒) = 0. Now on replacing 𝑥 by 𝑒 + 𝑘𝑥 for 1 ≤ 𝑘 ≤ 𝑚 + 𝑛 in 



 
 

 
 

our hypothesis we get, << 𝑑(𝑒 + 𝑘𝑥), 𝑒 + 𝑘𝑥 >(𝛼,𝛽), (𝑒 + 𝑘𝑥)
𝑚 >(𝛼,𝛽)=

0. for all 𝑥𝜖𝑅 or, 

<< 𝑑(𝑒) + 𝑑(𝑘𝑥) + ∑ (𝑛
𝑖
)𝑛−1

𝑖=1 𝐷(𝑒, 𝑒, … , 𝑒⏟    
𝑛−𝑖 𝑡𝑖𝑚𝑒

, 𝑘𝑥, 𝑘𝑥, … , 𝑘𝑥⏟        
𝑖 𝑡𝑖𝑚𝑒

) , 𝑒 +

𝑘𝑥 >(𝛼,𝛽), (𝑒 + 𝑘𝑥)
𝑚 >(𝛼,𝛽)= 0. Using hypothesis and d(e) = 0 we have,  

(2.20)          0 =<< 𝑑(𝑘𝑥), 𝑒 >(𝛼,𝛽), (𝑒 + 𝑘𝑥)
𝑚 >(𝛼,𝛽) 

+<< 𝑑(𝑘𝑥), 𝑘𝑥 >(𝛼,𝛽), (𝑒 + 𝑘𝑥)
𝑚 >(𝛼,𝛽) +<<

∑ (𝑛
𝑖
)𝑛−1

𝑖=1 𝐷(𝑒, 𝑒, … , 𝑒⏟    
𝑛−𝑖 𝑡𝑖𝑚𝑒

, 𝑘𝑥, 𝑘𝑥, … , 𝑘𝑥⏟        
𝑖 𝑡𝑖𝑚𝑒

) , 𝑘𝑥 >(𝛼,𝛽), (𝑒 + 𝑘𝑥)
𝑚 >(𝛼,𝛽)  

Or 𝑘𝑃1(𝑥, 𝑒) + 𝑘
2𝑃2(𝑥, 𝑒) + ⋯+ 𝑘

𝑚+𝑛𝑃(𝑚+𝑛)(𝑥, 𝑒) = 0 for all 𝑥𝜖𝑅, 

where 𝑃𝑡(𝑥, 𝑘𝑒) = 𝑘
𝑡𝑃𝑡(𝑥, 𝑒), 𝑡 = 1,2,… ,𝑚 + 𝑛. Using hypothesis and 

Lemma 2.2, we have,  

(2.21)             𝑃𝑡(𝑥, 𝑒) = 0 for all 𝑥𝜖𝑅, for all 𝑡 = 1,2,… ,𝑚 + 𝑛. In 

particular, for all 𝑥𝜖𝑅  

𝑃1(𝑥, 𝑒) = 0,. that is, 𝑛 << 𝐷(𝑥, 𝑒, … , 𝑒), 𝑒 >(𝛼,𝛽), 𝑒 >(𝛼,𝛽)= 0. Torsion 

restriction implies << 𝐷(𝑥, 𝑒, … , 𝑒), 𝑒 >(𝛼,𝛽), 𝑒 >(𝛼,𝛽)= 0. Simplifying 

the latter relation we find that, 3𝐷(𝑥, 𝑒, … , 𝑒)𝛼(𝑒) + 𝐷(𝑥, 𝑒, … , 𝑒) = 0. 

On right multiplying by 𝛼(𝑒) we obtain 3𝐷(𝑥, 𝑒, … , 𝑒)𝛼(𝑒) = 0. Since 𝑅 

is (𝑚 + 𝑛)!- torsion free we have, 𝐷(𝑥, 𝑒, … , 𝑒)𝛼(𝑒) = 0. Hence the 

above equation reduces to, 

(2.22)           𝐷(𝑥, 𝑒, … , 𝑒)  =  0 for all 𝑥𝜖𝑅.  



 
 

 
 

Also from (2.21) we have 𝑃2(𝑥, 𝑒)  =  0 for all 𝑥𝜖𝑅Therefore from (2.20) 

we find that 0 = (𝑛
2
) <<  𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒 >(𝛼,𝛽), 𝑒 >(𝛼,𝛽)  

                        +𝑛 << 𝐷(𝑥, 𝑒, … , 𝑒), 𝑒 >(𝛼,𝛽), 𝑥 + (𝑛 − 1)𝑥 >(𝛼,𝛽)  

                        + 𝑛 << 𝐷(𝑥, 𝑒, … , 𝑒), 𝑥 >(𝛼,𝛽), 𝑒 >(𝛼,𝛽). 

Using (2.22), and torsion restriction of 𝑅, the above equation reduces to 

<<  𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒 >(𝛼,𝛽), 𝑒 >(𝛼,𝛽)= 0. which on simplification 

becomes  

(2.23)           𝐷(𝑥, 𝑥, 𝑒, … , 𝑒) for all 𝑥𝜖𝑅. On proceeding in the same way 

for 1 ≤ 𝑖 ≤ 𝑛 − 1, we find that,  

(2.24)  𝐷 (𝑥, 𝑥, … , 𝑥⏟      
𝑛−𝑖 𝑡𝑖𝑚𝑒

, 𝑒, 𝑒, … , 𝑒⏟    
𝑖 𝑡𝑖𝑚𝑒

) = 0. Also, since 𝑃𝑛(𝑥, 𝑒) = 0, 𝑑(𝑥) =  0.   

Hence in view of Lemma 2.1 we conclude that 𝐷 = 0. 

Corollary 2.8:- 

Let 𝑛 ≥ 2 and 𝑚 ≥ 1 be fixed positive integers and 𝑅 be a 𝑛!-torsion free 

ring with left identity 𝑒. If 𝑅 admits a permuting n-additive map 

𝐷:𝑅𝑛 → 𝑅 such that the trace 𝑑: 𝑅 → 𝑅 satisfies << 𝑑(𝑥), 𝑥 >, 𝑥𝑚 > =

0 for all 𝑥 𝜖 𝑅, then 𝐷 = 0. 

Using similar techniques as used in Theorem 5 of [17], we obtain that 

Theorem 2.9:- 

Let 𝑛 ≥ 2 and 𝑚 ≥ 1 be fixed positive integers and 𝑅 be a 𝑛!-torsion free 

left with left identity 𝑒. If 𝑓 is an additive map on 𝑅 such that the 



 
 

 
 

mapping 𝑥 ⟼< 𝑓(𝑥), 𝑥 > is 𝑚-skew centralizing on 𝑅, then 𝑓 is 

commuting on 𝑅 

Proof:- We define a mapping 𝐷:𝑅𝑛 → 𝑅 by 

𝐷(𝑥1, 𝑥2, … , 𝑥𝑛) = [𝑓(𝑥1), 𝑥2] + [𝑓(𝑥2), 𝑥3] + ⋯+ [𝑓(𝑥𝑛−1), 𝑥𝑛] +

[𝑓(𝑥𝑛), 𝑥1]. 

for all 𝑥1, 𝑥2, … , 𝑥𝑛𝜖𝑅. Then it can be easily seen that 𝐷 is permuting 𝑛-

additive mapping on 𝑅, also 𝑑(𝑥)  =  𝐷(𝑥, 𝑥, … , 𝑥)  =  𝑛[𝑓(𝑥), 𝑥] for all 

𝑥𝜖𝑅. is the trace of 𝐷. Since it follows from the hypothesis that <<

𝑑(𝑥), 𝑥 >, 𝑥𝑚 >  𝜖𝑍(𝑅). for all 𝑥𝜖𝑅. on commuting it with 𝑥 we obtain 

[< 𝑓(𝑥), 𝑥 >, 𝑥𝑚 +, 𝑥𝑚 < 𝑓(𝑥), 𝑥 > = 0 for all 𝑥 𝜖𝑅. This implies that 

[< 𝑓(𝑥), 𝑥 > 𝑥]𝑥𝑚 + 𝑥𝑚[< 𝑓(𝑥), 𝑥 > 𝑥]  = 0 for all 𝑥𝜖𝑅. Since 

[<  𝑦, 𝑥 >, 𝑥] =< [𝑦, 𝑥], 𝑥 >, for all 𝑥, 𝑦𝜖 𝑅, the latter verification yields 

that < [𝑓(𝑥), 𝑥] >, 𝑥𝑚 +, 𝑥𝑚 < [𝑓(𝑥), 𝑥] > = 0, for all 𝑥𝜖𝑅. Since 𝑅 is 

𝑛!-torsion free, we obtain <  𝑑(𝑥), 𝑥 >  𝑥𝑚  +  𝑥𝑚  <  𝑑(𝑥), 𝑥 >=  0 

for all 𝑥𝜖 𝑅. This implies that <<  𝑑(𝑥), 𝑥 >, 𝑥𝑚  >=  0 for all 𝑥𝜖𝑅. 

Hence it follows from Corollary  2.8 that 𝑑 = 0 on 𝑅 and so 𝑓 is 

commuting on 𝑅.  

Theorem 2.10:-  

Let 𝑛 ≥ 2 be fixed positive integers and 𝑅 be a (𝑛 + 1)!-torsion free ring 



 
 

 
 

with left identity 𝑒 which admits a permuting 𝑛-additive mapping 

𝐷:𝑅𝑛 → 𝑅. With trace 𝑑 ∶  𝑅 →  𝑅 satisfying < [𝑑(𝑥), 𝑥], 𝑥 >=  0 for 

all 𝑥 𝜖𝑅. Then 𝑑 is commuting on 𝑅.  

Proof:- By our assumption < [𝑑(𝑥), 𝑥], 𝑥 >=  0, for all 𝑥𝜖 𝑅 and hence 

we have  

(2.25)           < [𝑑(𝑒), 𝑒], 𝑒 >=  [𝑑(𝑒), 𝑒]𝑒 + [𝑑(𝑒), 𝑒]  =  0. 

On right multiplying by 𝑒 and using torsion restriction, (2.25) becomes 

[𝑑(𝑒), 𝑒]𝑒 =  0, which further reduces to [𝑑(𝑒), 𝑒]  =  0. Now 

considering [𝑑(𝑥 +  𝑒), 𝑥 +  𝑒] and using (2.25) we get, 

(2.6)  [𝑑(𝑥 +  𝑒), 𝑥 +  𝑒] = [𝑑(𝑥) +  𝑑(𝑒) +

∑ (𝑛
𝑖
)𝐷 (𝑒, 𝑒, … , 𝑒⏟    

𝑛−1 𝑡𝑖𝑚𝑒𝑠

, 𝑥, 𝑥 … , 𝑥⏟    , 𝑥
𝑖 𝑡𝑖𝑚𝑒𝑠

)𝑛−1
𝑖=1 , 𝑥 + 𝑒  

                               = [𝑑(𝑥), 𝑥]  + [𝑑(𝑥), 𝑒]  + [𝑑(𝑒), 𝑥] 

+∑(
𝑛

𝑖
)𝐷 (𝑒, 𝑒, … , 𝑒⏟    

𝑛−1 𝑡𝑖𝑚𝑒𝑠

, 𝑥 , 𝑥, … , 𝑥⏟    , 𝑥
𝑖 𝑡𝑖𝑚𝑒𝑠

)

𝑛−1

𝑖=1

 

+∑(
𝑛

𝑖
)𝐷 (𝑒, 𝑒, … , 𝑒⏟    

𝑛−1 𝑡𝑖𝑚𝑒𝑠

, 𝑥 , 𝑥, … , 𝑥,⏟    𝑒
𝑖 𝑡𝑖𝑚𝑒𝑠

)

𝑛−1

𝑖=1

 

On replacing 𝑥 by 𝑒 +  𝑘𝑥, where 1 ≤ 𝑘 ≤  𝑛 +  1 in the hypothesis 

and using (2.25), we obtain, for all 𝑥𝜖𝑅, 

< [𝑑(𝑒 +  𝑘𝑥), 𝑒 +  𝑘𝑥], 𝑒 +  𝑘𝑥 >=  0 

This implies that, 



 
 

 
 

(2.27)                  0 = < [𝑑(𝑘𝑥), (𝑘𝑥)]  + [𝑑(𝑘𝑥), 𝑒]  + [𝑑(𝑒), 𝑘𝑥] 

+[∑(
𝑛

𝑖
)𝐷 (𝑒, 𝑒, … , 𝑒⏟    

𝑛−1 𝑡𝑖𝑚𝑒𝑠

, 𝑥 , 𝑥, … , 𝑥⏟    
𝑖 𝑡𝑖𝑚𝑒𝑠

) , 𝑒]

𝑛−1

𝑖=1

 

                   +∑(
𝑛

𝑖
)𝐷 (𝑒, 𝑒, … , 𝑒⏟    

𝑛−1 𝑡𝑖𝑚𝑒𝑠

, 𝑥 , 𝑥, … , 𝑥⏟    
𝑖 𝑡𝑖𝑚𝑒𝑠

)

𝑛−1

𝑖=1

, 𝑘𝑥], 𝑘𝑥 + 𝑒 > 

Or 𝑘𝑃1(𝑥, 𝑒) + 𝑘
2𝑃2(𝑥, 𝑒) + ⋯+ 𝑘

𝑛𝑝𝑛(𝑥, 𝑒) + 𝑘
𝑛+1𝑝𝑛+1(𝑥, 𝑒) = 0 for 

all 𝑥𝜖𝑅, where 𝑃𝑡(𝑥, 𝑒) is the sum of terms involving 𝑥 and 𝑒 such that 

𝑘𝑃𝑡(𝑥, 𝑘𝑒) = 𝑘
𝑡𝑃𝑡(𝑥, 𝑒), 𝑡 =  1,2,… , 𝑛, 𝑛 +  1. Using hypothesis and 

Lemma 2.2, we have,  

(2.28)          𝑃𝑡(𝑥, 𝑒)  =  0, for all 𝑥𝜖𝑅, for all 𝑡 =  1, 2, … , 𝑛 +  1. In 

view of (2.27), in particular, we find that 

0 = 𝑃1(𝑥, 𝑒)  =<  [𝑑(𝑒), 𝑥], 𝑒 >  +𝑛 <  [𝐷(𝑥, 𝑒, … , 𝑒), 𝑒], 𝑒 >,for 

all 𝑥𝜖 𝑅. or 

(2.29)           [𝑑(𝑒), 𝑥]  +  𝑛[𝐷(𝑥, 𝑒, … , 𝑒), 𝑒]  =  0, for all 𝑥𝜖𝑅. Also from 

(2.28), we obtain 𝑃2(𝑥, 𝑒) = 0, that is 

0 =< [𝑑(𝑒), 𝑥], 𝑥 > + < 𝑛[𝐷(𝑥, 𝑒, … , 𝑒), 𝑥], 𝑒 >  

+< 𝑛[𝐷(𝑥,… , 𝑒 ), 𝑒], 𝑥 > +< (𝑛
2
)[𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒], 𝑒 >  

0 =< [𝑑(𝑒), 𝑥], 𝑥 + 𝑛[𝐷(𝑥, 𝑒, … , 𝑒), 𝑥], 𝑒 > +< 𝑛[𝐷(𝑥,… , 𝑒 ), 𝑒], 𝑥+<

(𝑛
2
)[𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒], 𝑒 > for all 𝑥𝜖𝑅. On using (2.29) we get, 

 <  𝑛[𝐷(𝑥, 𝑒, … , 𝑒), 𝑥] + (𝑛
2
)[𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒], e >=  0. or 



 
 

 
 

(2.30)         𝑛[𝐷(𝑥, 𝑒, … , 𝑒), 𝑥]  + (𝑛
2
)[𝐷(𝑥, 𝑥, 𝑒, … , 𝑒), 𝑒]  = 0 for all 𝑥𝜖𝑅. 

On proceeding in a similar manner, as the above we find that  

(2.31)           ( 𝑛
𝑛−1
)[𝐷(𝑒, 𝑥, … , 𝑥), 𝑒]  + ( 𝑛

𝑛−2
)[𝐷(𝑒, 𝑒, 𝑥, … , 𝑥), 𝑥]  =  0. 

Also, for 𝑃𝑛(𝑥, 𝑒)  =  0 we get,  

0 = < [𝑑(𝑥), 𝑒], 𝑒 > +< ( 𝑛
𝑛−2
)[𝐷(𝑒, 𝑒, 𝑥, … , 𝑥), 𝑥], 𝑥 >  

+ < ( 𝑛
𝑛−1
)[𝐷(𝑒, 𝑥, … , 𝑥), 𝑥], 𝑒 > +< ( 𝑛

𝑛−1
)[𝐷(𝑒, 𝑥, … , 𝑥), 𝑒], 𝑥 >=  0. 

Using (2.31) we obtain,  

(2.32)           [𝑑(𝑥), 𝑒]  + ( 𝑛
𝑛−1
)[𝐷(𝑒, 𝑥, … , 𝑥), 𝑥] = 0 for all 𝑥 𝜖 𝑅. In 

view of (2.32), the relation (2.26) becomes [𝑑(𝑥 + 𝑒), 𝑥 +  𝑒]  =

 [𝑑(𝑥), 𝑥]. Now 

< [𝑑(𝑥 +  𝑒), 𝑥 + 𝑒], 𝑥 + 𝑒 >= 0 implies that < [𝑑(𝑥), 𝑥], 𝑥 + 𝑒 >=  0. 

This on simplification reduces to < [𝑑(𝑥), 𝑥], 𝑥 > + <  [𝑑(𝑥), 𝑥], 𝑒 >=

0 or [𝑑(𝑥), 𝑥] = 0 for all 𝑥𝜖 𝑅. 

Corollary 2.11:- 

Let 𝑛 ≥ 1 be a fixed integer and 𝑅 be a 𝑛!-torsion free ring with left 

identity 𝑒. If 𝑅 admits a permuting 𝑛-additive mapping 𝐷:𝑅𝑛 → 𝑅 with 

trace 𝑑 ∶  𝑅 → 𝑅 such that <  𝑑(𝑥), 𝑥 > is commuting on 𝑅 for all 𝑥 𝜖𝑅, 

then 𝑑 is commuting on 𝑅. 

Proof:- By our assumption <  𝑑(𝑥), 𝑥 > is commuting on 𝑅, we have [<

 𝑑(𝑥), 𝑥 >, 𝑥]  =  0 for all 𝑥 𝜖𝑅. Using the fact < [𝑦, 𝑥], 𝑥 >=  [<



 
 

 
 

 𝑦, 𝑥 >, 𝑥] for all 𝑥, 𝑦 𝜖𝑅. We have < [𝑑(𝑥), 𝑥], 𝑥 >=  0 for all 𝑥 𝜖𝑅. 

Hence in view of Theorem 2.10 we obtain the required result. 
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