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GENERALIZED HYERS-ULAM STABILITY OF MIXED TYPE

ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN

RANDOM NORMED SPACES

SHAYMAA ALSHYBANI, S. MANSOUR VAEZPOUR, REZA SAADATI

Abstract. In this paper, using the direct and fixed point methods, we have

established the generalized Hyers-Ulam stability of the following additive-
quadratic functional equation

f(2x+ y) + f(2x− y) = 2[f(x+ y) + f(x− y)] + 2[f(x) + f(−x)]

− [f(y) + f(−y)],

in random normed spaces.

1. Introduction

Random theory is a setting in which uncertainty arising from problems in various
fields of science, can be modeled. It is a practical tool for handling situations where
classical theories fail to explain. In fact, there are many cases in which the norm of
a vector is impossible to be determined exactly. In these cases the idea of random
norm seems to be useful.

Random theory has many application in several fields, for example, population
dynamics, computer programming, nonlinear dynamical systems, nonlinear oper-
ators, statistical convergence, and so forth. The notion of random normed space
goes back to Šherstnev in [26] and extended by Alsina, Schweizer and Sklar in [1].
One of the most important issues in the theory of functional equations concerning
the famous Ulam stability problem is as follows: when is it true that a mapping
satisfying a functional equation approximately, must be close to an exact solution
of the given functional equation?

Ulam [31] in 1940 who was the first person speaking about the stability, pro-
posed a stability problem between a group and a metric group. Hyers [12] was
the first mathematician to present an affirmative partial answer to the question of
Ulam for Banach spaces. Subsequently, Hyers’ theorem was generalized by Aoki
[2] for additive mappings and by Rassias [23] for linear mappings by considering an
unbounded Cauchy difference. Gavruta [10] obtained generalized result of Rassias’
theorem which allows the Cauchy difference to be controlled by a general unbounded
function.

The stability problems of a wide class of functional equations have been inves-
tigated by a number of authors, and there are many interesting results concerning
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this problem (see, e.g., [3, 11, 13, 14, 21, 27, 29, 30, 32]). Also by using fixed point
method, the stability problems of several functional equations have been extensively
investigated by number of authors (see, e.g., [5, 6, 7, 18, 22]).

The generalized Hyers-Ulam stability of different mixed type functional equa-
tions in random normed spaces, fuzzy normed spaces and non-Archimedean random
normed spaces has been studied by many authors. For example, Park et al. [20]
proved the Hyers-Ulam stability of the following additive-quadratic-cubic-quatric
functional equation

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x)

+ f(2y) + f(−2y)− 4f(y)− 4f(−y), (1.1)

in random normed spaces. Sheng, Saadati, and Sadeghi [28] proved the Hyers-Ulam
stability of the following quadratic and additive functional equation

f(x+ y) + f(x+ z) + f(y + z) = f(x) + f(y) + f(z) + f(x+ y + z), (1.2)

in non-Archimedean random normed spaes.
In 2011 Mohamadi et al. [19] was proved and investigated the generalized Hyers-

Ulam stability of the following additive-quadratic-quartic functional equation

f(x+ 2y) + f(x− 2y) = 2f(x+ y) + 2f(−x− y) + 2f(x− y)

+ 2f(y − x)− 4f(−x)− 2f(x)

+ f(2y) + f(−2y)− 4f(y)− 4f(−y) (1.3)

in random normed spaces via fixed point method. In this paper we present the
generalized Hyers-Ulam stability of the following mixed type additive and quadratic
functional equation

f(2x+y)+f(2x−y) = 2[f(x+y)+f(x−y)]+2[f(x)+f(−x)]−[f(y)+f(−y)] (1.4)

under arbitrary t-norms by direct method and under min t-norm by fixed point
method in random normed spaces and provide an example. Our research is a
generalization of the Ravi and Suresh work [24] to random normed spaces.

2. Preliminaries

Before giving the main result, we present some basic facts related to random
normed spaces and some preliminary results. We say f : R −→ [0, 1] is a distribution
function if and only if it is a monotone, nondecreasing, left continuos, infx∈R f(x) =
0 and supx∈R f(x) = 1. By △+ we denote a collection of all distribution functions
and D+ is a subset of △+ consisting of all functions f ∈ △+ for which L−f(+∞) =
1, where L−f(x) denotes the left limit of the function f at the point x, that is,
L−f(x) = limt−→x− f(t). The space △+ is partially ordered by the usual point wise
ordering of functions , i.e., F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R. The
maximal element for △+ in this order is the distribution function H0 given by

H0(t) :=

{
0 if t ≤ 0

1 if t > 0
.

It is obvious that H0 ≥ f for all f ∈ D+.

Definition 2.1. [25, 8] A mapping T : [0, 1]× [0, 1] → [0, 1] is a continuous trian-
gular norm (briefly a t-norm) if T satisfies the following conditions:
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(1) T is commutative and associative;
(2) T is continuous;
(3) T (a, 1) = a for all a ∈ [0, 1];
(4) T (a, b) ≤ T (c, d) whenewer a ≤ c and b ≤ d.

Typical examples of continuous t-norms are Tp(a, b) = ab, TM (a, b) = min(a, b)
and TL(a, b) = max(a+ b− 1, 0) (the Lukasiewicz t-norm).
Recall (see [11], [8]) that if T is a t-norm and xn is a given sequene of numbers in
[0, 1], Tn

i=1xi is defined recurrently by T 1
i=1xi = x1 and Tn

i=1xi = T (Tn−1
i=1 xi, xn) for

n ≥ 2.
It is known [11] that for the Lukasiewicz t-norm the following implication holds:

lim
n→∞

(TL)
∞
i=1xn+i = 1 ⇐⇒

∞∑
n=1

(1− xn) < ∞.

Definition 2.2. [26] A random normed space (briefly RN-space) is a triple (X,µ, T )
where X is a vector space, T is a continuous t-norm, and µ is a mapping from X
into D+ such that the following conditions hold:

(1) µx(t) = H0(t) for all t > 0 iff x = 0;
(2) µαx(t) = µx(

t
|α| ) for all x ∈ X, t > 0 and α ̸= 0;

(3) µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 2.3. [17] Let (X,µ, T ) be a RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0
and λ > 0, there exists a positive integer N such that µxn−x(ε) > 1 − λ
whenever n ≥ N .

(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0
and λ > 0, there exists a positive integer N such that µxn−xm(ε) > 1 − λ
whenever n ≥ m ≥ N .

(3) An RN-space (X,µ, T ) is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X.

Theorem 2.4. [25] If (X,µ, T ) is a RN-space and {xn} is a sequnce such that
xn −→ x, then limn→∞ µxn(t) = µx(t) almost every where.

Definition 2.5. [15] Let X be a set. A function d : X ×X −→ [0,∞] is called a
generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 2.6. [9, 4] Let (X, d) be a complet generalized metric spaces and let
J : X −→ X be a strictly contractive mapping with Lipschitz constant α < 1. Then
for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
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(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) < ∞};
(4) d(y, y∗) 6 1

1−αd(y, Jy) for all y ∈ Y .

3. Hyers-Ulam Stability of the additive-quadratic functioal
equation (1.4) by direct method

One can easily show that an even mapping f : X −→ Y satisfies equation (1.4)
if and only if the even mapping f : X −→ Y is a quadratic mapping, that is,

f(2x+ y) + f(2x− y) = 2[f(x+ y) + f(x− y)] + 4f(x)− 2f(y).

Also, one can easily show that an odd mapping f : X −→ Y satisfies equation
(1.4) if and only if the odd mapping f : X −→ Y is an additive mapping, that is,

f(2x+ y) + f(2x− y) = 2[f(x+ y) + f(x− y)].

For a given mapping f : X −→ Y , we define

Dsf(x, y) : = f(2x+ y) + f(2x− y)− 2[f(x+ y) + f(x− y)]

− 2[f(x) + f(−x)] + [f(y) + f(−y)],

for all x, y ∈ X and t > 0.
In this section, using the direct method, we prove the generalized Hyers-Ulam

stability of the additive -quadratic functional equation (1.4) in complete RN-spaces.
Also, we present an illustrative example under the min t-norm.

Theorem 3.1. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
and f : X −→ Y be an even mapping with f(0) = 0 for which there is ϕ : X2 −→
D+ (ϕ(x, y) is denoted by ϕx,y) such that

µDsf(x,y)(t) > ϕx,y(t), (3.1)

for all x, y ∈ X and t > 0, if

lim
j→∞

T∞
i=1(ϕ2i+j−1x,0(2

i+2j+1t)) = 1, (3.2)

and

lim
m→∞

ϕ2mx,2my(2
2mt) = 1, (3.3)

for all x, y ∈ X and t > 0, then there exists a unique quadratic mapping S : X −→ Y
satisfies equation (1.4) and the inequality

µf(x)−s(x)(t) ≥ T∞
i=1(ϕ2i−1x,0(2

i+1t), (3.4)

for all x ∈ X and t > 0.

Proof. Letting y = 0 in (3.1) we get

µ2f(2x)−8f(x)(t) ≥ ϕx,0(t), (3.5)

for all x ∈ X. Then we get

µ f(2x)
4 −f(x)

(t) ≥ ϕx,0(8t), (3.6)

therefore,
µ f(2k+1x)

22k+2 − f(2kx)

22k

(t) ≥ ϕ2kx,0(2
2k+3t), (3.7)

that is

µ f(2k+1x)

22k+2 − f(2kx)

22k

(
t

2k+1
) ≥ ϕ2kx,0(2

k+2t), (3.8)
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for every k ∈ N , t > 0. As

1 >
1

2
+

1

22
+

1

23
+ ...+

1

2k
,

by the triangle inequality it follows:

µ f(2nx)

22n
−f(x)

(t) ≥ µ f(2nx)

22n
−f(x)

(

n−1∑
k=0

1

2k+1
t)

≥ Tn−1
k=0

(
µ f(2k+1x)

22k+2 − f(2kx)

22k

(
1

2k+1
t)

)
> Tn−1

k=0 (ϕ2kx,0(2
k+2t)

= Tn
i=1

(
ϕ2i−1x,0(2

i+1t)
)
, (3.9)

x ∈ X, t > 0. In order to prove the convergence of the sequence { f(2jx)
22j }, we

replace x with 2jx and multiplying the left hand side of (3.9) by 22j

22j ,

µ f(2n+jx)

22(n+j)
− f(2jx)

22j

(t) ≥ Tn
i=1

(
ϕ2j+i−1x,0(2

i+2j+1t)
)
. (3.10)

Since the right hand side of the inequality (3.10) tends to 1 as i and j tend to

infinity, the sequence { f(2jx)
22j } is a Cauchy sequence. Therefore, we may define

S(x) = lim
j−→∞

f(2jx)

22j
,

for all x ∈ X. Since f : X −→ Y is even, S : X −→ Y is an even mapping.
Replacing x, y with 2mx and 2my, respectiveiy, in (3.1) then multiplying the right

hand side by 22m

22m , it follows that:

µ 1
22m

Dsf(2mx,2my)(t) ≥ ϕ2mx,2my(2
2mt),

for all x, y ∈ X. Taking the limit as m → ∞ we find that S satisfies (1.4), that is,
S is a quadratic map. To prove (3.4) take the limit as n → ∞ in (3.9).
Finally, to prove the uniqueness of the sextic function S, let us assume that there
exists a quadratic function r which satisfies (3.4) and equation (1.4). Therefore

µr(x)−s(x)(t) =µ
r(x)− f(2jx)

22j
+

f(2jx)

22j
−s(x)

(t)

≥ T (µ
r(x)− f(2jx)

22j

(
t

2
), µ f(2jx)

22j
−s(x)

(
t

2
)).

Taking the limit as j → ∞, we find µr(x)−s(x)(t) = 1. Therefore r = s. �

In Theorem 3.1 if f is an odd mapping, then the following theorem can be proved
similarly.

Theorem 3.2. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
and f : X −→ Y be an odd mapping with f(0) = 0 for which there is ϕ : X2 −→ D+

(ϕ(x, y) is denoted by ϕx,y) such that

µDsf(x,y)(t) > ϕx,y(t), (3.11)

for all x, y ∈ X and t > 0. If

lim
j→∞

T∞
i=1(ϕ2i+j−1x,0(2

j+1t)) = 1, (3.12)
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and

lim
m→∞

ϕ2mx,2my(2
mt) = 1, (3.13)

for all x, y ∈ X and t > 0, then there exists a unique additive mapping S : X −→ Y
satisfies equation (1.4) and the inequality

µf(x)−s(x)(t) ≥ T∞
i=1(ϕ2i−1x,0(2t), (3.14)

for all x ∈ X and t > 0.

Corollary 3.3. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and f : X −→ Y be an even mapping satisfying

µDsf(x,y)(t) > 1− ∥x∥
t+ ∥x∥

, (3.15)

for all x ∈ X, t > 0. Then there exists a unique quadratic mapping S : X −→
Y satisfying (1.4) and

µf(x)−s(x)(t) > T∞
i=1(1−

∥x∥
4t+ ∥x∥

),

for every x ∈ X, and t > 0.

Proof. It is enough to put,

ϕx,y(t) = 1− ∥x∥
t+ ∥x∥

,

for all x, y ∈ X and t > 0, in Theorem 3.1. �

Corollary 3.4. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and f : X −→ Y be an even mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, and t > 0 and ε > 0. Then there exists a unique quadratic mapping
S : X −→ Y satisfying (1.4) and

µf(x)−s(x)(t) > T∞
i=1(

2i+1t

2i+1t+ ε∥x0∥
).

Proof. It is enough to put,

ϕx,y(t) =
t

t+ ε∥x0∥
,

for all x, y ∈ X and t > 0, in Theorem 3.1. �

Corollary 3.5. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and let L ≥ 0 and p be a real number with p < 1 and
f : X −→ Y be an even mapping satisfying

µDsf(x,y)(t) >
t

t+ L(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0. Then there exists a unique quadratic mapping S : X −→
Y satisfying (1.4) and

µf(x)−s(x)(t) ≥ T∞
i=1(

2i+1t

2i+1t+ L2(i−1)p∥x∥p
),
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for every x ∈ X and t > 0.

Proof. It is enough to put,

ϕx,y(t) =
t

t+ L(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0, in Theorem 3.1. �
In Corollary 3.5 if

ϕx,y(t) =
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)L
,

then the result is similar.

Example 3.6. Let (X, ∥.∥) be a Banach algebra and

µx(t) =

{
1− ∥x∥

t if t > 0,

0 if t ≤ 0
,

for all x, y ∈ X and t > 0. Let

φx,y(t) =

{
1− 12(∥x∥+∥y∥)

t if t > 0,

0 if t ≤ 0
.

We note that φx,y(t) is a distribution function and limj→∞ φ2jx,2jy(2
2jt) = 1 for

all x, y ∈ X and t > 0.
It is easy to show that (X,µ, TM ) is a RN-space. Indeed, µx(t) = 1 ∀t > 0 =⇒
∥x∥
t = 0 and hence x = 0 for all x ∈ X and t > 0. Obviously, µλx(t) = µx(

t
λ ) for

all x ∈ X and t > 0. Now let

1− ∥x∥
t

≤ 1− ∥y∥
s

,

for all x, y ∈ X.
if x = y, we have s ≥ t. Thus, otherwise, we have

∥x+ y∥
t+ s

≤ ∥x∥
t+ s

+
∥y∥
t+ s

≤ 2
∥x∥
t+ s

≤ ∥x∥
t

.

Then

1− ∥x+ y∥
t+ s

≥ 1− ∥x∥
t

and so

µx+y(t+ s) ≥ TM (1− ∥x∥
t

, 1− ∥y∥
s

) = TM (µx(t), µy(s)).

It is easy to see that (X,µ, TM ) is complete, for

µx−y(t) = 1− ∥x− y∥
t

∀x, y ∈ X

and t > 0 and (X, ∥.∥) is complete. Define a mapping f : X −→ X by f(x) =
x2 + ∥x∥x0 for all x ∈ X, where x0 is a unite vector in X. A simple computation
shows that

∥f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 4f(x) + 2f(y)∥ =

|∥2x+ y∥+ ∥2x− y∥ − 2∥x+ y∥ − 2∥x− y∥ − 4∥x∥+ 2∥y∥|
≤ 12(∥x∥+ ∥y∥),
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for all x, y ∈ X. Hence µDsf(x,y)(t) ≥ ϕx,y(t) for all x, y ∈ X and t > 0. Fix x ∈ X
and t > 0, then it follows that,

(TM )∞i=1

(
ϕ2i+j−1x,0(2

2j+i+1)t)
)
= 1− 12∥x∥

2j+2t
,

for all x ∈ X, n ∈ N and t > 0. Hence

lim
j→∞

(TM )∞i=1

(
φ2i+j−1x,0(2

1+2j+i)t)
)
= 1,

for all x ∈ X and t > 0. Thus, all the conditions of Theorem 3.1 hold. Since

(TM )∞i=1

(
ϕ2i−1x,0(2

1+it)
)
= 1− 12.2i−1∥x∥

2i+1t
= 1− 3∥x∥

t
,

for all x ∈ X and t > 0. We can deduce that S(x) = x2 is the unique quadratic
mapping S : X −→ X such that

µf(x)−s(x)(t) ≥ 1− 3∥x∥
t

,

for all x ∈ X and t > 0.

Using the idea of Theorem 3.2, the following corollaries can be proved.

Corollary 3.7. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and f : X −→ Y be an odd mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, and t > 0 and ε > 0. Then there exists a unique additive mapping
S : X −→ Y satisfying (1.4) and

µf(x)−s(x)(t) > T∞
i=1(

2t

2t+ ε∥x0∥
).

Proof. It is enough to put,

ϕx,y(t) =
t

t+ ε∥x0∥
,

for all x, y ∈ X and t > 0, in Theorem 3.2. �
Corollary 3.8. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and let L ≥ 0 and p be a real number with p ≤ 0 and
f : X −→ Y be an odd mapping satisfying

µDsf(x,y)(t) >
t

t+ L(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0. Then there exists a unique additive mapping S : X −→ Y
satisfying (1.4) and

µf(x)−s(x)(t) ≥ T∞
i=1(

2t

2t+ L2(i−1)p ∥ x ∥p
),

for every x ∈ X and t > 0.

Proof. It is enough to put,

ϕx,y(t) =
t

t+ L(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0, in Theorem 3.2. �
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In Corollary 3.8 if

ϕx,y(t) =
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)L
,

then the result is similar.

4. Hyers-Ulam stability of the additive-quadratic functional
equation (1.4) by fixed point method

In this section, using the fixed point method, we prove the generalized Hyers–
Ulam stability of the additive-quadratic functional equation (1.4) in complete RN-
spaces.

Theorem 4.1. Let X be a real linear space and (Y, µ, TM ) be a complete RN-
space and f : X −→ Y be an even mapping with f(0) = 0 for which there is
ϕ : X2 −→ D+ (ϕ(x, y) is denoted by ϕx,y) such that

ϕ2x,2y(αt) ≥ ϕx,y(t), 0 < α < 4,

and

µDsf(x,y)(t) > ϕx,y(t), (4.1)

for all x, y ∈ X, and t > 0. Then there exists a unique quadratic mapping g : X −→
Y such that

µf(x)−g(x)(t) > ϕx,0(2(4− α)t), (4.2)

for all x ∈ X and t > 0. Moreover, we have

g(x) = lim
m−→∞

f(2nx)

4n
.

Proof. Let y = 0 in (4.1); we get

µ2f(2x)−8f(x)(t) ≥ ϕx,0(t), (4.3)

for all x ∈ X and t > 0 and hence

µ f(2x)
4 −f(x)

(t) ≥ ϕx,0(8t). (4.4)

Consider the set

E := {g : X → Y : g(0) = 0},
and the mapping dG defined on E × E by

dG(g, h) = inf{ϵ > 0 : µg(x)−h(x)(ϵt) ≥ ϕx,0(8t)},

for all x ∈ X, t > 0. Then (E, dG) is a complete generalized metric space (see the
proof of [16, Lemma 2.1]). Now, let us consider the linear mapping J : E → E
defined by

Jg(x) =
g(2x)

4
.

Now, we show that J is a strictly contractive self-mapping of E with the Lipschitz
constant k = α

4 . Indeed, let g, h ∈ E be the mappings such that dG(g, h) < ϵ. Then
we have

µg(x)−h(x)(ϵt) ≥ ϕx,0(8t)
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for all x ∈ X and t > 0 and hence

µJg(x)−Jh(x)(
ϵαt

4
) = µ g(2x)

4 −h(2x)
4

(
ϵαt

4
)

= µg(2x)−h(2x)(αεt)

≥ ϕ2x,0(α8t),

for all x ∈ X and t > 0. Since

ϕ2x,2y(αt) ≥ ϕx,y(t), 0 < α < 4,

we have

µJg(x)−Jh(x)(
ϵαt

4
) ≥ ϕx,0(8t),

that is,

dG(g, h) < ϵ =⇒ dG(Jg, Jh) <
α

4
ϵ.

This means that

dG(Jg, Jh) <
α

4
dG(g, h),

for all g, h ∈ E. Next, from

µ f(2x)
4 −f(x)

(t) ≥ ϕx,0(8t),

it follows that dG(f, Jf) ≤ 1. Using Theorem 2.6, we show the existence of a fixed
point of J , that is, the existence of a mapping g : X −→ Y such that g(2x) = 4g(x)
for all x ∈ X. For all x ∈ X and t > 0,

dG(u, v) < ϵ =⇒ µu(x)−v(x)(t) ≥ ϕx,0(
8t

ϵ
).

Since dG(J
nf, g) −→ 0, then limm−→∞

f(2nx)
4n = g(x) for all x ∈ X. Since f :

X −→ Y is even, g : X −→ Y is an even mapping.
Also from

dG(f, g) ≤
1

1− L
d(f, Jf),

for all g, h ∈ E, we have dG(f, g) ≤ 1
1−α

4
, and it immediately follows that

µg(x)−f(x)(
4

4− α
t) > ϕx,0(8t),

for all x ∈ X and t > 0. This means that

µg(x)−f(x)(t) > ϕx,0(2(4− α)t),

for all x ∈ X and t > 0. Finally, the uniqueness of g follows from the fact that g is
the unique fixed point of J such that there exists C ∈ (0,∞) satisfying

µg(x)−f(x)(Ct) > ϕx,0(8t),

for all x ∈ X and t > 0. This completes the proof. �

In Theorem 4.1 if f is an odd mapping, then the following Theorem can be
proved similarly.
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Theorem 4.2. Let X be a real linear space and (Y, µ, TM ) be a complete RN-space
and f : X −→ Y be an odd mapping with f(0) = 0 for which there is ϕ : X2 −→ D+

(ϕ(x, y) is denoted by ϕx,y) such that

ϕ2x,2y(αt) ≥ ϕx,y(t), 0 < α < 2,

and

µDsf(x,y)(t) > ϕx,y(t), (4.5)

for all x, y ∈ X, and t > 0. Then there exists a unique an additive mapping
g : X −→ Y such that

µf(x)−g(x)(t) > ϕx,0(2(2− α)t), (4.6)

for all x ∈ X and t > 0. Moreover, we have

g(x) = lim
m−→∞

f(2nx)

2n
.

Corollary 4.3. Let X be a real linear space, (Y, µ, TM ) a complete RN-space, and
f : X −→ Y an even mapping satisfying

µDsf(x,y)(t) > 1− ∥x∥
t+ ∥x∥

, (4.7)

for all x ∈ X, t > 0. Then there exists a unique quadratic mapping s : X −→ Y
satisfying (1.4) and

µf(x)−s(x)(t) > 1− ∥x∥
2(4− α)t+ ∥x∥

,

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

4n
.

Proof. It is enough to put,

ϕx,y(t) = 1− ∥x∥
t+ ∥x∥

,

for all x ∈ X and t > 0 in Theorem 4.1. Then we can choose 2 ≤ α < 4 and so we
get the desired result. �

Corollary 4.4. Let X be a real linear space, (Y, µ, TM ) a complete RN-space and
f : X −→ Y an even mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, t > 0, and ε > 0. Then there exists a unique quadratic mapping s : X −→
Y satisfying (1.4) and

µf(x)−s(x)(t) >
2(4− α)t

2(4− α)t+ ε∥x0∥
,

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

4n
.
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Proof. It is enough to put

ϕx,y(t) =
t

t+ ε∥x0∥
,

for all x ∈ X, and t > 0 in Theorem 4.1. Then we can choose 1 ≤ α < 4 and so we
get the desired result. �

Corollary 4.5. Let X be a real linear space, (Y, µ, TM ) a complete RN-space and
f : X −→ Y an even mapping satisfying

µDsf(x,y)(t) >
t

t+ θ(∥x∥p + ∥y∥p)
,

for all x, y ∈ X, t > 0, θ > 0, and p ≤ 1. Then there exists a unique quadrtic
mapping s : X −→ Y satisfying (1.4) and

µf(x)−s(x)(t) ≥
2(4− α)t

2(4− α)t+ θ∥x∥p
,

for every x ∈ X and t > 0. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

4n
.

Proof. It is enough to put

ϕx,y(t) =
t

t+ θ(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0 in Theorem 4.1. Then we can choose 2p ≤ α < 4 and so
we get the desired result. �

Corollary 4.6. Let X be a real linear space and (Y, µ, TM ) be a complete RN-space
and let z0 ≥ 0 and p be a real number with p < 1 and f : X −→ Y be an even
mapping satisfying

µDsf(x,y)(t) >
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)z0
,

for all x, y ∈ X and t > 0. Then there exists a unique quadratic mapping s : X −→
Y satisfying (1.4) and

µf(x)−s(x)(t) ≥
2(4− α)t

2(4− α)t+ z0∥x∥p
,

for every x ∈ X and t > 0. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

4n
.

Proof. It is enough to put,

ϕx,y(t) =
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)z0
,

for all x, y ∈ X and t > 0, in theorem 4.1. Then we can choose 22p ≤ α < 4 and so
we get the desired result. �

Using the idea of Theorem 4.2, the following corollaries can be proved.
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Corollary 4.7. Let X be a real linear space, (Y, µ, TM ) a complete RN-space, and
f : X −→ Y an odd mapping satisfying

µDsf(x,y)(t) > 1− ∥x∥
t+ ∥x∥

, (4.8)

for all x ∈ X, t > 0. Then there exists a unique additive mapping s : X −→ Y
satisfying (1.4) and

µf(x)−s(x)(t) > 1− ∥x∥
2(2− α)t+ ∥x∥

,

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

2n
.

Proof. It is enough to put,

ϕx,y(t) = 1− ∥x∥
t+ ∥x∥

,

for all x ∈ X and t > 0 in Theorem 4.2. Then we can choose α = 2 and so we get
the desired result. �
Corollary 4.8. Let X be a real linear space, (Y, µ, TM ) a complete RN-space and
f : X −→ Y an odd mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, t > 0, and ε > 0. Then there exists a unique additive mapping s : X −→ Y
satisfying (1.4) and

µf(x)−s(x)(t) >
2(2− α)t

2(2− α)t+ ε∥x0∥
,

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
m−→∞

f(2nx)

2n
.

Proof. It is enough to put

ϕx,y(t) =
t

t+ ε∥x0∥
,

for all x ∈ X, and t > 0 in Theorem 4.2. Then we can choose 1 ≤ α < 2 and so we
get the desired result. �
Corollary 4.9. Let X be a real linear space, (Y, µ, TM ) a complete RN-space and
f : X −→ Y an odd mapping satisfying

µDsf(x,y)(t) >
t

t+ θ(∥x∥p + ∥y∥p)
,

for all x, y ∈ X, t > 0, θ > 0, and p < 1. Then there exists a unique additive
mapping s : X −→ Y satisfying (1.4) and

µf(x)−s(x)(t) ≥
2(2− α)t

2(2− α)t+ θ∥x∥p
,

for every x ∈ X and t > 0. Moreover, we have

s(x) = lim
m−→∞

f(2nx)

2n
.
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Proof. It is enough to put

ϕx,y(t) =
t

t+ θ(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0 in Theorem 4.2. Then we can choose 2p ≤ α < 2 and so
we get the desired result. �

Corollary 4.10. Let X be a real linear space and (Y, µ, TM ) be a complete RN-
space and let z0 ≥ 0 and p be a real number with p ≤ 0 and f : X −→ Y be an odd
mapping satisfying

µDsf(x,y)(t) >
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)z0
,

for all x, y ∈ X and t > 0. Then there exists a unique additive mapping s : X −→ Y
satisfying (1.4) and

µf(x)−s(x)(t) ≥
2(2− α)t

2(2− α)t+ z0∥x∥p
,

for every x ∈ X and t > 0. Moreover, we have

s(x) = lim
m−→∞

f(2nx)

2n
.

Proof. It is enough to put,

ϕx,y(t) =
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)z0
,

for all x, y ∈ X and t > 0, in Theorem 4.2. Then we can choose 22p ≤ α < 2 and
so we get the desired result. �
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