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ABSTRACT

Abstract

In this thesis, we prove stability of a sextic functional equation and additive-

quadratic functional equations in random normed spaces, intuitionistic random normed

space and non-Archimedean random normed space via direct method under arbitrary

t-norms. Also stability for these functional equations will be proved in random normed

spaces and intuitionistic random normed spaces via fixed point method.

Keywords: Random normed space, Intuitionistic random normed space, non-

Archimedean random normed space, Fixed point, Sextic functional equation, Addi-

tive mapping, Quadratic mapping.
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PREFACE

Preface

In the fall of 1940, S.M. Ulam [70] gave a wide-ranging talk before a mathematical

colloquium at the University of Wisconsin in which he discussed a number of impor-

tant unsolved problems. Among those he asked a question concering the stability of

homomorphisms: given a group G1, a metric group G2 with the metric d(., .), and a

positive number ε, dose there exist δ > 0 such that, if a mapping f : G1 −→ G2 sat-

isfies d(f(xy), f(x)f(y)) ≤ δ for all x, y ∈ G1, then a homomorphism h : G1 −→ G2

exists with d(f(x), h(x)) ≤ ε for all x ∈ G1? If the answer is affirmative, we say that

the functional equation is stable.

Several mathematicians have dealt with special cases as well as generalizations of

Ulam’s problem. Hyers [35] provided a partial solution to Ulam’s problem for the

case of approximately additive mappings in which G1 and G2 are Banach spaces with

ε = δ.

Taking this famous result into consideration, the additive Cauchy equation f(x+

y) = f(x) + f(y) is said to have the Hyers-Ulam stability on (E1, E2) if for every

function f : E1 −→ E2 satisfying the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ δ,

for some δ ≥ 0 and for all x, y ∈ E1, there exists an additive function A : E1 −→ E2

such that f − A is bounded on E1.

In 1968, Forti [26] proved that Hyers’ proof remains unchanged if G1 is an Abelian

semigroup. In 1950, Aoki [8] addressed the Hyers’ stability theorem and attempted

to weaken the condition for the bound of the norm of Cauchy difference f(x + y) −
f(x)−f(y). In 1978, Th.M. Rassias [55] formulated and proved the stability theorem

for the linear mapping between Banach spaces E1 and E2 subject to the continuity

of f(tx) with respect to t ∈ R for each fixed x ∈ E1. This Rassias’ theorem implies

Aoki’s theorem as a special case. Let f : E1 −→ E2 be a function between Banach

spaces. If f satisfies the functional inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ(∥x∥p + ∥y∥p)

1



PREFACE

for some θ ≥ 0, 0 ≤ p ≤ 1 and for all x, y ∈ E1, then there exists a unique additive

function A : E1 −→ E2 such that ∥f(x) − A(x)∥ ≤ 2θ
2−2p

∥x∥p for each x ∈ E1. If in

addition, f(tx) is continuous in t for each fixed x ∈ E1, then the function A is linear.

In 1983, a generalized Hyers-Ulam stability problem for the quadratic functional

equation was proved by Skof [69] for mappings f : X −→ Y , where X is a normed

space and Y is a Banach space. In 1984, Cholewa [19] noticed that the theorem of

Skof is still true if the relevant domain X is replaced by an Abelian group and, in

1990, Th.M. Rassias [56] observed that the proof of his stability theorem also holds

true for p < 0. In 1991, Gajda [27] showed that the proof of Rassias’ Theorem can be

proved also for the case p > 1 by just replacing n by −n in

g(x) = lim
n−→∞

f(2nx)

2n
.

In 2002, Czerwik [22] proved the generalized Hyers-Ulam stability of the quadratic

functional equation.

On the other hand, random theory is a setting in which uncertainty arising from

problems in various fields of science, can be modeled. It is a practical tool for handling

situations where classical theories fail to explain. In fact, there are many cases in

which the norm of a vector is impossible to be determined exactly. In these cases the

idea of random norm seems to be useful. Random theory has many application in

several fields, for example, population dynamics, computer programming, nonlinear

dynamical systems, nonlinear operators, statistical convergence, and so forth. The

notion of random normed space goes back to Šherstnev in [67] and extended by Alsina,

Schweizer and Sklar in [6].

In the sequel, several mathematicians have extensively studied stability theorems

for several kinds of functional equations in various spaces. For example, in 2008,

Baktash et al. [11] proved the stability theorem for this quartic functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y),

in random normed spaces. In 2009, the general solution and the stability result for

2
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the following quadratic-quartic functional equation

f(2x+ y) + f(2x− y) = 4[f(x+ y) + f(x− y)] + 2[f(2x)− 4f(x)]− 6f(y),

was proved by M. Eshaghi Gordji, M. Bavand Savadkouhi and Choonkil Park [29].

In 2011, the stability problem for a cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x),

was proved by Saadati, Vaezpour and Park [62] in intuitionistic random normed

spaces. In 2011, J. M. Rassias et al. [54] proved the stability for quartic functional

equation

16f(x+ 4y) + f(4x− y) = 306[9f(x+
y

3
) + f(x+ 2y)]

+ 136f(x− y)− 1394f(x+ y) + 425f(y)− 1530f(x),

in non-Archimedean random normed spaces. In 2012, Afshin Erami et al. [25] proved

the generalized Hyers-Ulam stability of the following cubic functional equation:

3f(x+ 3y) + f(3x− y) = 15f(x+ y) + 15f(x− y) + 80f(y),

in random normed spaces via fixed point method. In 2014, J. Vahidi, S. J. Lee, F.

Fallah, and R. Ahmadi [71] proved the stability of some functional equations in the

random normed spaces under arbitrary t-norms. In 2016, Kim et al. [39] investigated

stability of the general cubic functional equation

f(x+ ky)− kf(x+ y) + kf(x− y)− f(x− ky) = 2k(k2 − 1)f(y),

for fixed k ∈ Z+ with k ≥ 0 via direct and fixed point methods in random normed

spaces. In 2017, Yang-Hi Lee and Soon-Mo Jung [43] prove stability theorem for a

class of functional equations including quadratic-additive functional equations. There

are more examples which can be found in [1, 6, 11, 17, 25, 28, 29, 30, 39, 41, 43, 44,

45, 54, 58, 61, 63, 65, 66, 68, 73].
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This thesis includes four chapters as follows. In Chpater 1, we will recall some in-

troductory facts which are needed in the subsequent chapters. In Chapter 2, we prove

Stability of a sextic functional eqution and an additive-quadratic funcional equation

in random normed spaces via direct method under arbitrary t-norms and via fixed

point method undrt min t-norm. In Chapter 3, we prove stability of the same sex-

tic functional eqution and an additive-quadratic funcional equations in intuitionistic

random normed spaces via direct and fixed point methods. In chapter 4, we prove

stability of the same functional equtions in non-Archimedean random normed spaces

via direct method. Finally, we would like to mention that the papers resulted from

this thesis are:

1. Sh. Alshabbani, S.M. Vaezpour, R. Saadati, Generalized Hyers–Ulam stability

of sextic functional equation in random normed spaces, J. Comput. Anal. Appl.,

24 (2018), 370-381.

2. Sh. Alshabbani, S.M. Vaezpour, R. Saadati, Generalized Hyers-Ulam stability

of mixed type additive-quadratic functional equation in random normed spaces,

Journal of Mathematical Analysis, Accepted.

3. Sh. Alshabbani, S.M. Vaezpour, R. Saadati, Generalized stability of an additive-

quadratic functional equation in various random normed spaces, submitted

4. Sh. Alshabbani, S.M. Vaezpour, R. Saadati, Stability of the sextic functional

equation in various spaces, submitted
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CHAPTER 1. PRELIMINARIES

In this chapter, we recall definitions of t-norms, random normed spaces, intuition-

istic random normed spaces, non-Archimedean random normed spaces. Also we will

recall fixed point theorems in the last section. We shall adopt usual terminology,

notation and conventions of the theory of random normed spaces, as in [6, 7].

1.1 t-norms

Definition 1.1.1 ([18, 32, 64]). A mapping T : [0, 1]× [0, 1] → [0, 1] is a continuous
triangular norm (briefly a t-norm) if T satisfies the following conditions:

1. T is commutative and associative;

2. T is continuous;

3. T (a, 1) = a for all a ∈ [0, 1];

4. T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d.

Definition 1.1.2 ([32, 64]). If T is a t-norm, then its dual t-conorm S : [0, 1] ×
[0, 1] −→ [0, 1] is given by

S(x, y) = 1− T (1− x, 1− y).

It is obvious that a t-conorm is a commutative, associative, and monotone operation
on [0,1] with unit element 0.

Example 1.1.1. ([32, 64])
The following are the four basic t-norms together with their dual t-conorms:

1. Minimum TM and maximum SM given by

TM(x, y) = min(x, y),

SM(x, y) = max(x, y).

2. Product TP and probabilistic sum SP given by

TP (x, y) = x.y,

SP (x, y) = x+ y − x.y.

6
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3. Lukasiewice t-norm TL and Lukasiewicz t-conorm SL given by

TL(x, y) = max(x+ y − 1, 0),

SL(x, y) = min(x+ y, 1).

4. Weakest t-norm (drastic product) TD and strongest t-conorm SD given by

TD(x, y) =

{
min(x, y) if max(x, y) = 1,

0 otherwise,

SD(x, y) =

{
max(x, y) if min(x, y) = 0,

1 otherwise.

If, for any two t-norms T1 and T2, the inequality T1(x, y) ≤ T2(x, y) holds for all

(x, y) ∈ [0, 1]2, then we say that T1 is weaker than T2 or, equivalently, T2 is stronger

than T1. Also we can prove the following ordering for four basic t-norm:

TD < TL < TP < TM .

Proposition 1.1.1. ([18])

1. The minimum t-norm TM is the only t-norm satisfying T (x, x) = x for all
x ∈ (0, 1);

2. The weakest t-norm TD is the only t-norm satisfying T (x, x) = 0 for all x ∈
(0, 1).

Proposition 1.1.2. A t-norm T is continuous if and only if it is continuous in its
first component, i.e., for all y ∈ [0, 1], if the one place function

T (., y) : [0, 1] −→ [0, 1], x 7→ T (x, y),

is continuous. For example, the minimum TM and Lukasiewicz t-norm TL are con-
tinuous.

7



CHAPTER 1. PRELIMINARIES

If T is a t-norm, then x
(n)
T is defined for every x ∈ [0, 1] and n ∈ N ∪ {0} by 1, if

n = 0 and T (x
(n−1)
T , x), if n ≥ 1. A t-norm T is said to be of Hadz̆ić-type (denoted by

T ∈ H) if the family {x(n)T }n∈N is equicontinuous at x = 1, that is, for any ε ∈ (0, 1),

there exists δ ∈ (0, 1) such that

x > 1− δ =⇒ x
(n)
T > 1− ε ∀n ≥ 1.

The t-norm TM is a trivial example of Hadz̆ić type but Tp is not of Hadz̆ić type (see

[18, 32]).

Other important triangular norms are (see [33]):

1. the Sugeno-Weber family {T SW
λ }λ∈[−1,∞], defined by T SW

−1 = TD, T
SW
∞ = TP and

T SW
λ (x, y) = max

(
0,
x+ y − 1 + λxy

1 + λ

)
, λ ∈ (−1,∞).

2. the Domby family {TD
λ }λ∈[0,∞], defined by TD, if λ = 0, TM , if λ = ∞ and

TD
λ (x, y) =

1

1 +
(
(1−x

x
)λ + (1−y

y
)λ
) 1

λ

, λ ∈ (0,∞).

3. the Aczel-Alsina family {TAA
λ }λ∈[0,∞],defined by TD, if λ = 0, TM , if λ = ∞ and

TAA
λ (x, y) = e−(| log x|

λ+| log y|λ)
1
λ

, λ ∈ (0,∞).

A t-norm T can be extended (by associativity) in a unique way to an n-array operation

taking for (x1, x2, ..., xn) ∈ [0, 1]n the value T (x1, x2, ..., xn) defined by

T 0
i=1xi = 1, T n

i=1xi = T
(
T n−1
i=1 xi, xn

)
= T (x1, x2, ..., xn).

T can also be extended to a countable operation taking for any sequence {xn}n∈N in

[0, 1]. Moreover,

T∞
i=1xi = lim

n−→∞
T n
i=1xi. (1.1.1)

8



CHAPTER 1. PRELIMINARIES

The limit on the right-hand side of (1.1.1) exists since the sequence {T n
i=1xi}n∈N is

nonincreasing and bounded from below.

Proposition 1.1.3. ([32, 33])

1. for T ≥ TL the following implication hold:

lim
n−→∞

T∞
i=1xn+i = 1 ⇐⇒

∞∑
n=1

(1− xn) <∞.

2. If T is of Hadz̆ić-type, then limn−→∞ T∞
i=1xn+i = 1 for every sequence {xn}n∈N

in [0, 1] such that
lim

n−→∞
xn = 1.

3. If T ∈ {TAA
λ }λ∈(0,∞) ∪ {TD

λ }λ∈(0,∞), then

lim
n−→∞

T∞
i=1xn+i = 1 ⇐⇒

∞∑
n=1

(1− xn)
α <∞.

4. If T ∈ {T SW
λ }λ∈[−1,∞), then

lim
n−→∞

T∞
i=1xn+i = 1 ⇐⇒

∞∑
n=1

(1− xn) <∞.

1.2 Random normed spaces

Let△+ denote the space of all distribution functions, that is, the space of all mappings

f : R∪{−∞,+∞} −→ [0, 1] such that f is monotone, nondecreasing, left continuous,

f(0) = 0 and f(+∞) = 1. D+ is a subset of △+ consisting of all functions f ∈ △+

for which L−f(+∞) = 1, where L−f(x) denotes the left limit of the function f at

the point x, that is, L−f(x) = limt−→x− f(t). The space △+ is partially ordered by

the usual point wise ordering of functions , i.e., F ≤ G if and only if F (t) ≤ G(t) for

all t ∈ R. The maximal element for △+ in this order is the distribution function H0

9
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given by

H0(t) =

0 if t ≤ 0,

1 if t > 0.

Example 1.2.1. The function G(t) defined by

G(t) =

{
0 if t ≤ 0,

1− e−t if t > 0,

is a distribution function. Since limt−→∞G(t) = 1, G ∈ D+.

Example 1.2.2. The function F (t) defined by

F (t) =


0 if t ≤ 0,

t if 0 ≤ t ≤ 1,

1 if 1 ≤ t.

is a distribution function. Since limt−→∞ F (t) = 1, F ∈ D+. See[18, 32].

Definition 1.2.1 ([67]). A random normed space (briefly RN-space) is a triple
(X,µ, T ) where X is a vector space, T is a continuous t-norm, and µ is a mapping
from X into D+ such that the following conditions hold:

1. µx(t) = H0(t) for all t > 0 iff x = 0;

2. µαx(t) = µx(
t
|α|) for all x ∈ X, t > 0 and α ̸= 0;

3. µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y, z ∈ X and t, s ≥ 0.

Example 1.2.3. Let (X, ∥.∥) be a linear normed space. Define a mapping

µx(t) =

{
0 if t ≤ 0,

t
t+∥x∥ if t > 0.

Then (X,µ, Tp) is a random normed space. Also (X,µ, TM) is a random normed
space.

Example 1.2.4. Let (X, ∥.∥) be a linear normed space. Define a mapping

µx(t) =

{
0 if t ≤ 0,

e−(
∥x∥
t

) if t > 0.

Then (X,µ, Tp) is a random normed space.

10
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Definition 1.2.2. Let (X,µ, T ) be an RN-space. We define the open ball Bx(r, t)
and the closed ball Bx[r, t] with center x ∈ X and radius 0 < r < 1 for all t > 0 as
follows:

Bx(r, t) = {y ∈ X : µx−y(t) > 1− r},

Bx[r, t] = {y ∈ X : µx−y(t) ≥ 1− r},

respectively.

Theorem 1.2.1 ([18]). Let (X,µ, T )be an RN-space. Every open ball Bx(r, t) is open
set.

Different kinds of topologies can be introduced in a random normed space [64].

The (r, t)-topology is introduced by a family of neighborhoods

{Bx(r, t)}x∈X,t>0,r∈(0,1).

In fact, every random norm µ on X generates a topology ((r, t) − topology) on X

which has as a base the family of open sets of the form

{Bx(r, t)}x∈X,t>0,r∈(0,1).

Theorem 1.2.2 ([18]). Every RN-space (X,µ, T ) is a Hausdorff space.

Definition 1.2.3 ([18]). Let (X,µ, T ) be an RN-space. A subset A of X is said to
be R-bounded if there exist t > 0 and r ∈ (0, 1) such that µx−y(t) > 1 − r for all
x, y ∈ A.

Lemma 1.2.3. ([18]) If (X,µ, T ) is an RN-space, then we have

1. The function (x, y) −→ x+ y is continuous;

2. The function (α, x) −→ αx is continuous.

Theorem 1.2.4 ([18]). Every compact subset A of an RN-space (X,µ, T ) is R-
bounded.

Definition 1.2.4 ([45]). Let (X,µ, T ) be an RN-space. Then

11
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1. A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and
λ > 0, there exists a positive integer N such that µxn−x(ε) > 1 − λ, whenever
n ≥ N .

2. A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and
λ > 0, there exists a positive integer N such that µxn−xm(ε) > 1− λ, whenever
n ≥ m ≥ N .

3. An RN-space (X,µ, T ) is said to be complete if and only if every Cauchy se-
quence in X is convergent to a point in X.

Theorem 1.2.5 ([64]). If (X,µ, T ) is a RN-space and {xn} is a sequnce such that
xn −→ x, then limn→∞ µxn(t) = µx(t) almost every where.

1.3 Intuitionistic random normed spaces

Definition 1.3.1 ([18, 54, 62]). A non-measure distribution function is a function
ν : R −→ [0, 1] which is non-increasing, right continuous, infx∈Rν(x) = 1 and
supx∈Rν(x) = 0. We denote by B the collection of all non-measure distribution
functions, and by G a special element of B defined by

G(t) =

{
1 if t ≤ 0,

0 if t > 0.

If X is a nonempty set, then ν : X −→ B is called a probabilistic non-measure on X
and ν(x) is denoted by νx.

Lemma 1.3.1. ([18]). Define the set L∗ and the operation ≤L∗ defined by

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2, x1 + x2 ≤ 1}

(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1, x2 ≥ y2,∀(x1, x2), (y1, y2) ∈ L∗.

Then (L∗,≤L∗) is a complete lattice ([59, 60]). We denote the units by 0L∗ = (0, 1)
and 1L∗ = (1, 0).

Definition 1.3.2 ([62]). A triangular norm (t-norm) on L∗ is a mapping τ : (L∗)2 −→
L∗ satisfying the following conditions:

1. ∀x ∈ L∗, τ(x, 1L∗) = x (boundary condition);

2. ∀(x, y) ∈ (L∗)2, τ(x, y) = τ(y, x) (commutativity);

3. ∀(x, y, z) ∈ (L∗)3, τ(x, τ(y, z)) = τ(τ(y, x), z) (associativity);

12
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4. ∀(x, x′, y, y′) ∈ (L∗)4, x ≤L∗ x′, y ≤L∗ y′ =⇒ τ(x, y) ≤L∗ τ(x′, y′) (monotonic-
ity).

Definition 1.3.3 ([62]). A continuous t-norm τ on L∗ is said to be continuous t-
representable if there exists a continuous t-norm ∗ and a continuous t-conorm ⋄ on
[0, 1] such that for all x = (x1, x2), y = (y1, y2) ∈ L∗,

τ(x, y) = (x1 ∗ y1, x2 ⋄ y2).

For example,
τ(a, b) = (a1b1,min{a2 + b2, 1}),

and
M(a, b) = (min{a1, b1},max{a2, b2}),

for all a = (a1, a2), b = (b1, b2) ∈ L∗ are continuous t-representable.

Definition 1.3.4 ([18]). Let µ and ν be measure and non-measure distribution func-
tions from X × (0,+∞) to [0, 1] such that µx(t) + νx(t) ≤ 1 for all x ∈ X and t > 0,
where X is a real vector space. The triple (X, ρµ,ν , τ) is said to be an intuitionistic
random normed spaces (briefly IRN-spaces) if X is a vector space, τ is a continuous
t-representable, and ρµ,ν is a mapping X × (0,+∞) −→ L∗ satisfying the folowing
conditions: for all x, y ∈ X and t, s > 0,

1. ρµ,ν(x, 0) = 0L∗ ;

2. ρµ,ν(x, t) = 1L∗ if and only if x = 0;

3. ρµ,ν(αx, t)= ρµ,ν(x,
t
|α|) for all α ̸= 0;

4. ρµ,ν(x+ y, t+ s) ≥L∗ τ(ρµ,ν(x, t), ρµ,ν(y, s)).

In this case, ρµ,ν is called an intuitionistic random norm. Here ρµ,ν(x, t) = (µx(t), νx(t)).

Example 1.3.1 ([18]). Let (X, ∥.∥) be a normed space. Let τ(a, b) = (a1b1,min(a2+
b2, 1)) for all a = (a1, a2), b = (b1, b2) ∈ L∗ and µ, ν be measure and non-measure
distribution functions defined by

ρµ,ν(x, t) = (µx(t), νx(t)) = (
t

t+ ∥x∥
,

∥x∥
t+ ∥x∥

),

∀t ∈ R. Then (X, ρµ,ν , τ) is an IRN-space.

13
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Definition 1.3.5 ([54, 62]). A negator on L∗ is any decreasing mapping N : L∗ −→
L∗ satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If N (N (x)) = x for all x ∈ L∗,
then N is called an involutive negator. A negator on [0, 1] is a decreasing mapping
N : [0, 1] −→ [0, 1] satisfying N(0) = 1 and N(1) = 0. Ns denotes the standard
negator on [0, 1] defined by Ns(x) = 1− x, ∀x ∈ [0, 1].

Definition 1.3.6 ([62]). Let (X, ρµ,ν , τ) be an IRN-space.

1. A sequence {xn} in X is said to be convergent to a point x ∈ X denoted by

({xn}
ρµ,ν−→x) if, ρµ,ν(xn − x, t) −→ 1L∗ as n −→ ∞ for every t > 0.

2. A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and t > 0,
there exists a positive integer n0 ∈ N such that ρµ,ν(xn − xm, t) >L∗ (Ns(ϵ), ϵ)
∀n,m ≥ n0 where Ns is a standard negator.

3. An IRN-space (X, ρµ,ν , τ) is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X.

1.4 Non-Archimeadean random normed spaces

By a non-Archimedean field we mean a field K equipped with a function (valuation)

|.| from K in to [0,∞) such that

1. |r| = 0 if and only if r = 0;

2. |rs| = |r||s|;

3. |r + s| ≤ max{|r|, |s|} for all r, s ∈ K.

clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ≥ 1. By the trivial valuation, we mean

the mapping |.| taking everything but 0 into 1 and |0| = 0. Let X be a vector space

over a field K with a non-Archimedean nontrivial valuation |.|, that is, there exists

a0 ∈ K such that |a0| is not in {0, 1}.

The most important examples of non-Archimedean spaces are P-adic numbers. In

14
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1897, Hensel [34] discovered the P-adic numbers as a number theoretical analogue of

power series in complex analysis. Fix a prime number p.

For any nonzero rational number x, there exsits a unique integer nx ∈ Z such that

x = a
b
P nx , where a and b are integers not divisible by P . Then |x|P := P−nx defines

a non-Archimedean norm on Q. The completion of Q with respect to the metric

d(x, y) = |x− y|P is denoted by Qp, which is called the P-adic number field.

A function ∥.∥ : X → [0,∞) is called a non-Archimedean if it satisfies the following

conditions:

1. ∥x∥ = 0 if and only if x = 0;

2. for any r ∈ K, x ∈ X, ∥rx∥ = |r|∥x∥;

3. the strong triangle inequality (ultrametric), namely,

∥x+ y∥ ≤ max{∥x∥, ∥y∥}, ∀x, y ∈ X

Then (X, ∥.∥) is called a non-Archimedeam normed space. Due to the fact that

∥xn − xm∥ ≤ max{∥xj+1 − xj∥ : m ≤ j ≤ n− 1}

for all n,m ≥ 1 with n > m, a sequence {xn} is a Cauchy sequence in X if and only

if {xn+1 − xn} converges to zero in a non-Archimedean normed space. By a complete

non-Archimedean normed space, we mean one in which every Cauchy sequence is

convergent.

Definition 1.4.1 ([18, 65]). A non-Archimedean random normed space (briefly, non-
Archimedean RN-space) is a triple (X,µ, T ), where X is a Linear space over a non-
Archimedean field K, T is a continuous t-norm, and µ is a mapping from X into D+

such that the following conditions hold:
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1. µx(t) = H0(t) for all t > 0 if and only if x = 0;

2. µαx(t) = µx(
t

|α|
) for all x ∈ X, t > 0 and α ̸= 0;

3. µx+y(max{t, s}) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0. It is easy to see
that, if (3) holds, then so is

4. µx+y(t+ s) ≥ T (µx(t), µy(s)).

Example 1.4.1. As a classical example, if (X, ∥.∥) is a non-Archimedean normed
linear space, then the triple (X,µ, TM), where

µx(t) =

{
0 if t ≤ ∥x∥;
1 if t > ∥x∥,

is a non-Archimedean RN-space.

Example 1.4.2. Let (X, ∥.∥) be a non-Archimedean normed linear space. Define

µx(t) =
t

t+ ∥x∥
,

for all x ∈ X and t > 0. Then (X,µ, TM) is a non-Archimedean RN-space.

Definition 1.4.2 ([18, 65]). Let (X,µ, T ) be a non-Archimedean RN-space. Let {xn}
be a sequence in X.

1. The sequence {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞

µxn−x(t) = 1,

for t > 0. In this case, the point x is called the limit of the sequence {xn}.

2. The sequence {xn} in X is called a Cauchy sequence if, for any ε > 0 and t > 0,
there exists n0 ≥ 1 such that, for all n ≥ n0 and p > 0

µxn+p−xn(t) > 1− ε.

3. If each Cauchy sequence in X is convergent, then the random space is said
to be complete and the non-Archimedean RN-space (X,µ, T ) is called a non-
Archimedean random Banach space.

Remark 1.4.1 ([18]). Let (X,µ, TM) be a non-Archimedean RN-space. Then we have

µxn+P−xn(t) ≥ min{µxn+j+1−xn+j
(t) : j = 0, 1, 2, · · · , P − 1}.

Thus, the sequence {xn} is a Cauchy sequence in X if, for any ε > 0 and t > 0, there
exists n0 ≥ 1 such that, for all n ≥ n0,

µxn+1−xn(t) > 1− ε.
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1.5 Fixed point theorems

The Banach fixed point theorem (also known as the Banach contraction principle) is

an important tool in the theory of metric spaces because it guarantees the existence

and uniqueness of fixed points of certain self mappings of metric spaces and provides

a constructive method to find those fixed points. The theorem is named after Banach

(1892-1945) and was first stated by him in 1922.

Theorem 1.5.1 (Banach [12]). Let (X, d) be a complete metric space and T : X −→
X be a contraction, i.e., there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y)

for all x, y ∈ X. Then there exists a unique a ∈ X such that Ta = a. Moreover, for
all x ∈ X,

lim
n−→∞

T nx = a

and, in fact, for all x ∈ X,

d(x, a) ≤ 1

1− α
d(x, Tx).

Definition 1.5.1 ([64]). Let X be a set. A function d : X ×X −→ [0,∞] is called a
generalized metric on X if it satisfies

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We remark that the only difference between the generalized metric and the usual

metric is that the range of the former is permitted to include the infinity. We now

introduce one of the fundamental results of the fixed point theory.

Theorem 1.5.2. ([15, 23]) Let (X, d) be a complete generalized metric space and let
J : X −→ X be a strictly contractive mapping with Lipschitz constant α < 1. Then
for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n, or there exists a positive integer n0 such that
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1. d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

2. the sequence {Jnx} converges to a fixed point y∗ of J ;

3. y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <∞};

4. d(y, y∗) 6 1
1−α

d(y, Jy) for all y ∈ Y .
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CHAPTER 2. STABILITY OF CERTAIN FUNCTIONAL EQUATIONS IN
RANDOM NORMED SPACES

In this chapter, we prove the stability of functional equations in random normed

spaces under arbitrary t-norms via direct method and under min t-norm via fixed

point method. It is necessary to mention that one of the results of this chapter has

published in Ref. [2] and the other result in Ref. [3], has been sent for publication.

2.1 Introduction

A functional equation is called stable if any function satisfying the functional equation

”approximately” is near to a true solution of the functional equation.

In the following we mention some examples of functional equations that Hyers-Ulam

stability was investigated for them in several generalized spaces.

One of the most famous functional equation is the additive functional equation

f(x+ y) = f(x) + f(y).

It was first solved by A.L. Cauchy in the class of continuous real-valued functions.

The second famous functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (2.1.1)

is said to be quadratic functional equation because the quadratic function f(x) = ax2

is a solution of the functional equation (2.1.1). J.M. Rassias [53] introduced the

following cubic functional equation

f(x+ 2y) + 3g(x) = 3g(x+ y) + g(x− y) + 6g(y).

and investigated its Ulam stability problem. The quartic functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4[f(x+ y) + f(x− y) + 6f(y)].
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was first introduced by J.M. Rassias [52], who solved its Ulam stability problem. The

general solution of quintic functional equatin

f(x+ 3y)− 5f(x+ 2y) + 10f(x+ y)−

10f(x) + 5f(x− y)− f(x− 2y) = 120y,

and sextic functional equation

f(x+ 3y)− 6f(x+ 2y) + 15f(x+ y)− 20f(x) + 15f(x− y)

− 6f(x− 2y) + f(x− 3y) = 720f(y),

was introduced and investigated the generalized Hyers-Ulam stability in quasi -β-

normed spaces via fixed point method by Xu et al., [72].

Since the time the above stated results have been proved, several mathematicians

have extensively studied stability theorems for several kinds of functional equations

in random normed spaces. For example, Baktash et al., [11] proved the following

stability theorem for quartic functional equation.

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y)

in random normed spaces.

Theorem 2.1.1. Let X be a linear space, (Z, µ′,min) an RN-space, and φ : X ×
X −→ Z a function such that for some 0 < α < 16,

µ′
φ(2x,0)(t) ≥ µ′

αφ(x,0)(t), ∀x ∈ X, t > 0,

f(0) = 0 and limn−→∞ µ′
φ(2nx,2ny)(16

nt) = 1 for all x, y ∈ X and all t > 0. Let

(Y, µ,min) be a complete RN-space. If f : X −→ Y is a mapping such that

µf(2x+y)+f(2x−y)−4f(x+y)−4f(x−y)−24f(x)+6f(y)(t) > µ′
φ(x,y)(t), ∀x, y ∈ X, t > 0,

then there exists a unique quartic mapping Q : X −→ Y such that

µf(x)−Q(x)(t) ≥ µ′
φ(x,0)(2(16− α)t).
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In 2016, Kim et al. [39] investigated stability of the general cubic functional

equation

f(x+ ky)− kf(x+ y) + kf(x− y)− f(x− ky) = 2k(k2 − 1)f(y) (2.1.2)

for fixed k ∈ Z+ with k ≥ 0 via direct method in random normed spaces as follows:

Theorem 2.1.2. Let X be a real linear space, (X,µ′, TM) be an RN-space and
(Y, µ, TM) be a complete RN-space and let φ : X2 −→ Z be an even function such
that, for some 0 < α < k3

µ′
φ(kx,ky)(t) ≥ µ′

αφ(x,0)(t), ∀x ∈ X, t > 0,

limn−→∞ µ′
φ(knx,kny)(k

3nt) = 1 for all x, y ∈ Xand all t > 0. If f : X −→ Y is a

mapping with f(0) = 0 such that

µDf(x,y)(t) ≥ µ′
φ(x,y)(t),

for all x, y ∈ X and t > 0, where

Df(x, y) = f(x+ ky)− kf(x+ y) + kf(x− y)− f(x− ky)− 2k(k2 − 1)f(y)

for all x, y ∈ X and k ∈ Z+ with k ≥ 2, then there exists a unique cubic mapping
C : X −→ Y such that

µf(y)−C(x)(t) ≥ µ′
φ(0,y)(

2k(k2 − 1)(k3 − α)t

k3 + α
), ∀x ∈ X, t > 0.

See also, Cho et al.,[20], Kenary et al., [38], Mohamadi et al., [47],...] .

2.2 Stability of sextic functional equation via di-

rect method

In this section, using the direct method, we prove the generalized stability of the sextic

functional equation (2.2.1) and the additive-quadratic functional equation (2.3.1) in

complete RN-spaces. The functional equation

f(nx+ y) + f(nx− y) + f(x+ ny)+f(x− ny) = (n4 + n2)[f(x+ y) + f(x− y)]

+ 2(n6 − n4 − n2 + 1)[f(x) + f(y)], (2.2.1)
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is called the sextic functional equation since the function f(x) = cx6 is a solution for

this equation, where c is a constant. The following theorem states a stability result

for the sextic functional equation (2.2.1) in complete RN-spaces.

Theorem 2.2.1. Let X be a real linear space, (Y, µ, T ) a complete RN-space and
f : X −→ Y be a mapping with f(0) = 0 for which there is ϕ : X2 −→ D+ (ϕ(x, y)
is denoted by ϕx,y) such that

µDsf(x,y)(t) > ϕx,y(t), (2.2.2)

where

Dsf(x, y) := f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny)

− (n4 + n2)[f(x+ y) + f(x− y)]− 2(n6 − n4 − n2 + 1)[f(x) + f(y)]

for all x, y ∈ X and t > 0. If

lim
m→∞

T∞
i=1(ϕni+m−1x,0(n

6m+5it)) = 1, (2.2.3)

and

lim
m→∞

ϕnmx,nmy(n
6mt) = 1 (2.2.4)

for all x, y ∈ X and t > 0, then there exists a unique sextic mapping S : X −→ Y
satisfying (2.2.1) and the inequality

µf(x)−s(x)(t) ≥ T∞
i=1(ϕni−1x,0(n

5it) (2.2.5)

for all x ∈ X and t > 0.

Proof. Letting y = 0 in (4.2.1), we get

µf(nx)−n6f(x)(t) ≥ ϕx,0(2t) ≥ ϕx,0(t) (2.2.6)

for all x ∈ X. Then we get

µ f(nx)

n6 −f(x)
(t) ≥ ϕx,0(n

6t), (2.2.7)

therefore,
µ f(nk+1x)

n6k+6 − f(nkx)

n6k

(t) ≥ ϕnkx,0(n
6k+6t), (2.2.8)

that is,

µ f(nk+1x)

n6k+6 − f(nkx)

n6k

(
t

nk+1
) ≥ ϕnkx,0(n

5(k+1)t) (2.2.9)
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for every k ∈ N , t > 0, n positive integer, n > 1. As

1 >
1

n
+

1

n2
+

1

n3
+ ...+

1

nk
,

by the triangle inequality it follows:

µ f(nmx)

n6m −f(x)
(t) ≥ µ f(nmx)

n6m −f(x)
(
m−1∑
k=0

1

nk+1
t)

≥ Tm−1
k=0

(
µ f(nk+1x)

n6k+6 − f(nkx)

n6k

(
1

nk+1
t)

)
> Tm−1

k=0 (ϕnkx,0(n
5k+5t)

= Tm
i=1

(
ϕni−1x,0(n

5it)
)
,

(2.2.10)

x ∈ X, t > 0, and n > 1. In order to prove the convergence of the sequence {f(njx)
n6j },

we replace x by njx, and multiplying the left-hand side of (3.3.9) by n6j

n6j , we get

µ f(nm+jx)

n6m+6j − f(njx)

n6j

(t) ≥ Tm
i=1

(
ϕnj+i−1x,0(n

6j+5it)
)
. (2.2.11)

Since the right-hand side of the inequality (3.3.10) tends to 1 as m and j tend to

infinity, the sequence {f(njx)
n6j } is a Cauchy sequence. Therefore, we may define

S(x) = lim
j−→∞

f(njx)

n6j

for all x ∈ X.
Replacing x, y by nmx and nmy, respectively, in (4.2.1), then multiplying the right

hand-side by n6m

n6m , it follows that

µ 1
n6mDsf(nmx,nmy)(t) ≥ ϕnmx,nmy(n

6mt)

for all x, y ∈ X, and positive integer n, n > 1. Taking the limit as m → ∞ we find
that S satisfies (2.2.1), that is, S is a sextic map. To prove (4.2.4) take the limit as
m→ ∞ in (3.3.9).

Finally, to prove the uniqueness of the sextic function S, let us assume that there
exists a sextic function r which satisfies (4.2.4) and equation (2.2.1). Therefore

µr(x)−s(x)(t) = µ
r(x)− f(njx)

n6j +
f(nj)

n6j −s(x)
(t)

≥ T (µ
r(x)− f(njx)

n6j

(
t

2
), µ f(njx)

n6j −s(x)
(
t

2
)).

Taking the limit as j → ∞, we find µr(x)−s(x)(t) = 1. Therefore r = s.
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Corollary 2.2.2. Let X be a real liner space and (Y, µ, T ) a complete RN-space such
that (T = TM , Tp or TL) and f : X −→ Y be a mapping satisfying

µDsf(x,y)(t) > 1− ∥x∥
t+ ∥x∥

(2.2.12)

for all x ∈ X, t > 0. Then there exists a unique sextic mapping S : X −→ Y
satisfying (2.2.1) and

µf(x)−s(x)(t) > T∞
i=1(1−

∥x∥
n4i+1t+ ∥x∥

)

for every x ∈ X, and t > 0.

Proof. It is enough to put,

ϕx,y(t) = 1− ∥x∥
t+ ∥x∥

for all x, y ∈ X and t > 0, in Theorem 3.2.1.

Corollary 2.2.3. Let X be a real liner space and (Y, µ, T ) a complete RN-space such
that (T = TM , Tp or TL) and f : X −→ Y be a mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, t > 0, and ε > 0. Then there exists a unique sextic mapping S : X −→ Y
satisfying (2.2.1) and

µf(x)−s(x)(t) > T∞
i=1(

n5it

n5it+ ε∥x0∥
).

Proof. It is enough to put,

ϕx,y(t) =
t

t+ ε∥x0∥
for all x, y ∈ X and t > 0, in Theorem 3.2.1.

Corollary 2.2.4. Let X be a real linear space and (Y, µ, T ) a complete RN-space
such that (T = TM , Tp or TL) and let L ≥ 0 and p be a real number with 0 < p < 5
and f : X −→ Y be a mapping satisfying

µDsf(x,y)(t) >
t

t+ L(∥ x ∥p + ∥ y ∥p)
for all x, y ∈ X and t > 0. Then there exists a unique sextic mapping S : X −→ Y
satisfying (2.2.1) and

µf(x)−s(x)(t) ≥ T∞
i=1(

t

t+ Lni(p−5)−p ∥ x ∥p
)

for every x ∈ X and t > 0.
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Proof. It is enough to put

ϕx,y(t) =
t

t+ L(∥ x ∥p + ∥ y ∥p)

for all x, y ∈ X and t > 0, in Theorem 3.2.1.

Example 2.2.1. Let (X, ∥.∥) be a Banach algebra and

µx(t) =

{
max{1− ∥x∥

t
, 0} if t > 0,

0 if t ≤ 0,

for all x, y ∈ X and t > 0. Let

φx,y(t) =

{
max{1− (8n6)(∥x∥+∥y∥)

t
, 0} if t > 0,

0 if t ≤ 0.

We note that φx,y(t) is a distribution function and limj→∞ φnjx,njy(n
6jt) = 1 for

all x, y ∈ X and t > 0.
It is easy to show that (X,µ, TL) is an RN-space (this was essentially proved by

Mushtari in ([48]), see also ([57])). Indeed, µx(t) = 1, ∀t > 0 implies ∥x∥
t

= 0 and
hence x = 0 for all x ∈ X and t > 0. Obviously, µλx(t) = µx(

t
λ
) for all x ∈ X and

t > 0. Next, for all x, y ∈ X and t, s > 0, we have

µx+y(t+ s) = max{1− ∥x+ y∥
t+ s

, 0}

= max{1− ∥x+ y

t+ s
∥, 0}

= max{1− ∥ x

t+ s
+

y

t+ s
∥, 0}

≥ max{1− ∥x
t
∥ − ∥y

s
∥, 0}

= TL(µx(t), µy(s)).

It is easy to see that (X,µ, TL) is complete, for

µx−y(t) ≥ 1− ∥x− y∥
t

, ∀x, y ∈ X,

and t > 0 and (X, ∥.∥) is complete. Define a mapping f : X −→ X by f(x) =
x6+∥x∥x0 for all x ∈ X, where x0 is a unit vector in X. A simple computation shows
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that

∥f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny)

− (n4 + n2)[f(x+ y) + f(x− y)]− 2(n6 − n4 − n2 + 1)[f(x) + f(y)]∥
= | ∥ nx+ y ∥ + ∥ nx− y ∥ + ∥ x+ ny ∥ + ∥ x− ny ∥
− (n2 + n4)[∥ x+ y ∥ + ∥ x− y ∥]
− 2(n6 − n4 − n2 + 1)[∥ x ∥ + ∥ y ∥]|

≤ 2(n6 + n+ 2)(∥ x ∥ + ∥ y ∥) ≤ 8n6(∥ x ∥ + ∥ y ∥)

for all x, y ∈ X. Hence µDsf(x,y)(t) ≥ ϕx,y(t) for all x, y ∈ X and t > 0. Fix x ∈ X
and t > 0. Then it follows that,

(TL)
∞
i=1

(
ϕni+j−1x,0(n

6j+5i)t)
)
= max

{
∞∑
i=1

(
ϕni+j−1x,0(n

6j+5i)t)− 1
)
+ 1, 0

}

= max

{
1− 8n5∥x∥

n5j(n4 − 1)t
, 0

}
for all x ∈ X, n ∈ N and t > 0. Hence

lim
j→∞

(TL)
∞
i=1

(
φni+j−1x,0(n

6j+5i)t)
)
= 1

for all x ∈ X and t > 0. Thus, all the conditions of Theorem 3.2.1 hold. Since

(TL)
∞
i=1

(
ϕni−1x,0(n

5it)
)
= max{1− 8n5∥x∥

(n4 − 1)t
, 0}

for all x ∈ X and t > 0, we can deduce that S(x) = x6 is the unique sextic mapping
S : X −→ X such that

µf(x)−s(x)(t) ≥ max{1− 8n5∥x∥
(n4 − 1)t

, 0}

for all x ∈ X and t > 0.

2.3 Stability of additive-quadratic functioal equa-

tion via direct method

The generalized stability of different mixed type functional equations in random

normed spaces and generalized spaces has been studied by many authors. For ex-

ample, Madjid Eshaghi Gordji and Meysam Bavand Savadkouhi [31] in 2011, proved
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the stability of the additive, quadratic and cubic functional equation

f(x+ 3y) + f(x− 3y) = 9(f(x+ y)− f(x− y))− 16f(x),

in random normed space under arbitrary t-norms. The general solution and the

Hyers-Ulam stability of the following quartic-additive functional equation

f(x+ 2y)− 4f(x+ y)− 4f(x− y) + f(x− 2y) =
12

7
(f(2y)− 2f(y))− 6f(x),

in random normed space was proved by Abasalt Bodaghia [13] in 2014. (See also,

e.g., [9, 36, 47, 49, 58, 65]).

Now, the functional equation

f(2x+y)+f(2x−y) = 2[f(x+y)+f(x−y)]+2[f(x)+f(−x)]−[f(y)+f(−y)], (2.3.1)

is called the additive-quadratic functional equation since the function f(x) = ax2+bx

is a solution for this equation where a and b are constants. One can easily show that

an even mapping f : X −→ Y satisfies equation (2.3.1) if and only if the even mapping

f : X −→ Y is a quadratic mapping, that is,

f(2x+ y) + f(2x− y) = 2[f(x+ y) + f(x− y)] + 4f(x)− 2f(y).

Also, one can easily show that an odd mapping f : X −→ Y satisfies equation

(2.3.1) if and only if the odd mapping f : X −→ Y is an additive mapping, that is,

f(2x+ y) + f(2x− y) = 2[f(x+ y) + f(x− y)].

For a given mapping f : X −→ Y , we define

Dsf(x, y) : = f(2x+ y) + f(2x− y)− 2[f(x+ y) + f(x− y)]

− 2[f(x) + f(−x)] + [f(y) + f(−y)],
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for all x, y ∈ X and t > 0.

The following theorem states the generalized stability of the additive-quadratic

functional equation (2.3.1) in complete RN-spaces. Also, we present an illustrative

example under the min t-norm.

Theorem 2.3.1. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
and f : X −→ Y be an even mapping with f(0) = 0 for which there is ϕ : X2 −→ D+

(ϕ(x, y) is denoted by ϕx,y) such that

µDsf(x,y)(t) > ϕx,y(t), (2.3.2)

for all x, y ∈ X and t > 0, if

lim
j→∞

T∞
i=1(ϕ2i+j−1x,0(2

i+2j+1t)) = 1, (2.3.3)

and

lim
m→∞

ϕ2mx,2my(2
2mt) = 1, (2.3.4)

for all x, y ∈ X and t > 0, then there exists a unique quadratic mapping S : X −→ Y
satisfies equation (2.3.1) and the inequality

µf(x)−s(x)(t) ≥ T∞
i=1(ϕ2i−1x,0(2

i+1t), (2.3.5)

for all x ∈ X and t > 0.

Proof. Letting y = 0 in (4.2.1) we get

µ2f(2x)−8f(x)(t) ≥ ϕx,0(t), (2.3.6)

for all x ∈ X. Then we get

µ f(2x)
4

−f(x)
(t) ≥ ϕx,0(8t), (2.3.7)

therefore,
µ f(2k+1x)

22k+2 − f(2kx)

22k

(t) ≥ ϕ2kx,0(2
2k+3t), (2.3.8)

that is

µ f(2k+1x)

22k+2 − f(2kx)

22k

(
t

2k+1
) ≥ ϕ2kx,0(2

k+2t), (2.3.9)
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for every k ∈ N , t > 0. As

1 >
1

2
+

1

22
+

1

23
+ ...+

1

2k
,

by the triangle inequality it follows:

µ f(2nx)

22n
−f(x)

(t) ≥ µ f(2nx)

22n
−f(x)

(
n−1∑
k=0

1

2k+1
t)

≥ T n−1
k=0

(
µ f(2k+1x)

22k+2 − f(2kx)

22k

(
1

2k+1
t)

)
> T n−1

k=0 (ϕ2kx,0(2
k+2t)

= T n
i=1

(
ϕ2i−1x,0(2

i+1t)
)
. (2.3.10)

x ∈ X, t > 0. In order to prove the convergence of the sequence {f(2jx)
22j

}, we replace

x with 2jx and multiplying the left hand of (3.3.9) by 22j

22j
,

µ f(2n+jx)

22(n+j)
− f(2jx)

22j

(t) ≥ T n
i=1

(
ϕ2j+i−1x,0(2

i+2j+1t)
)
. (2.3.11)

Since the right hand side of the inequality (3.3.10) tends to 1 as i and j tend to

infinity, the sequence {f(2jx)
22j

} is a Cauchy sequence. Therefore, we may define

S(x) = lim
j−→∞

f(2jx)

22j
,

for all x ∈ X. Since f : X −→ Y is even, S : X −→ Y is an even mapping. Replacing
x, y with 2mx and 2my, respectiveiy, in (4.2.1) then multiplying the right hand side
by 22m

22m
, it follows that:

µ 1
22m

Dsf(2mx,2my)(t) ≥ ϕ2mx,2my(2
2mt).

for all x, y ∈ X. Taking the limit as m → ∞ we find that S satisfies (2.2.1), that is,
S is a quadratic map. To prove (4.2.4) take the limit as n→ ∞ in (3.3.9).
Finally, to prove the uniqueness of the sextic function S, let us assume that there
exists a quadratic function r which satisfies (4.2.4) and equation (2.2.1). Therefore

µr(x)−s(x)(t) =µr(x)− f(2jx)

22j
+

f(2jx)

22j
−s(x)

(t)

≥ T (µ
r(x)− f(2jx)

22j

(
t

2
), µ f(2jx)

22j
−s(x)

(
t

2
)).

Taking the limit as j → ∞, we find µr(x)−s(x)(t) = 1. Therefore r = s.
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In Theorem (4.2.1), if f is an odd mapping, then the following theorem can be

proved similarly.

Theorem 2.3.2. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
and f : X −→ Y be an odd mapping with f(0) = 0 for which there is ϕ : X2 −→ D+

(ϕ(x, y) is denoted by ϕx,y) such that

µDsf(x,y)(t) > ϕx,y(t), (2.3.12)

for all x, y ∈ X and t > 0. If

lim
j→∞

T∞
i=1(ϕ2i+j−1x,0(2

j+1t)) = 1, (2.3.13)

and

lim
m→∞

ϕ2mx,2my(2
mt) = 1, (2.3.14)

for all x, y ∈ X and t > 0, then there exists a unique additive mapping S : X −→ Y
satisfies equation (2.2.1) and the inequality

µf(x)−s(x)(t) ≥ T∞
i=1(ϕ2i−1x,0(2t), (2.3.15)

for all x ∈ X and t > 0.

Corollary 2.3.3. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and f : X −→ Y be an even mapping satisfying

µDsf(x,y)(t) > 1− ∥x∥
t+ ∥x∥

, (2.3.16)

for all x ∈ X, t > 0. Then there exists a unique quadratic mapping S : X −→
Y satisfying (2.2.1) and

µf(x)−s(x)(t) > T∞
i=1(1−

∥x∥
4t+ ∥x∥

),

for every x ∈ X, and t > 0.

Proof. It is enough to put,

ϕx,y(t) = 1− ∥x∥
t+ ∥x∥

,

for all x, y ∈ X and t > 0, in Theorem (4.2.1).
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Corollary 2.3.4. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and f : X −→ Y be an even mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, and t > 0 and ε > 0. Then there exists a unique quadratic mapping
S : X −→ Y satisfying (2.2.1) and

µf(x)−s(x)(t) > T∞
i=1(

2i+1t

2i+1t+ ε∥x0∥
).

Proof. It is enough to put,

ϕx,y(t) =
t

t+ ε∥x0∥
,

for all x, y ∈ X and t > 0, in Theorem (4.2.1).

Corollary 2.3.5. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and let L ≥ 0 and p be a real number with p < 1 and
f : X −→ Y be an even mapping satisfying

µDsf(x,y)(t) >
t

t+ L(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0. Then there exists a unique quadratic mapping S : X −→ Y
satisfying (2.3.1) and

µf(x)−s(x)(t) ≥ T∞
i=1(

2i+1t

2i+1t+ L2(i−1)p∥x∥p
),

for every x ∈ X and t > 0.

Proof. It is enough to put,

ϕx,y(t) =
t

t+ L(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0, in Theorem (4.2.1).

In corollary (2.3.5) if

ϕx,y(t) =
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)L
,

then the result is similar.
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Example 2.3.1. Let (X, ∥.∥) be a Banach algebra and

µx(t) =

{
1− ∥x∥

t
if t > 0,

0 if t ≤ 0
,

for all x, y ∈ X and t > 0. Let

φx,y(t) =

{
1− 12(∥x∥+∥y∥)

t
if t > 0,

0 if t ≤ 0
.

We note that φx,y(t) is a distribution function and limj→∞ φ2jx,2jy(2
2jt) = 1 for all

x, y ∈ X and t > 0.
It is easy to show that (X,µ, TM) is a RN-space. Indeed, µx(t) = 1 ∀t > 0 =⇒

∥x∥
t

= 0 and hence x = 0 for all x ∈ X and t > 0. Obviously, µλx(t) = µx(
t
λ
) for all

x ∈ X and t > 0. Now let

1− ∥x∥
t

≤ 1− ∥y∥
s
,

for all x, y ∈ X.
if x = y, we have s ≥ t. Thus, otherwise, we have

∥x+ y∥
t+ s

≤ ∥x∥
t+ s

+
∥y∥
t+ s

≤ 2
∥x∥
t+ s

≤ ∥x∥
t
.

Then

1− ∥x+ y∥
t+ s

≥ 1− ∥x∥
t

and so

µx+y(t+ s) ≥ TM(1− ∥x∥
t
, 1− ∥y∥

s
) = TM(µx(t), µy(s)).

It is easy to see that (X,µ, TM) is complete, for

µx−y(t) = 1− ∥x− y∥
t

∀x, y ∈ X

and t > 0 and (X, ∥.∥) is complete. Define a mapping f : X −→ X by f(x) =
x2 + ∥x∥x0 for all x ∈ X, where x0 is a unite vector in X. A simple computation
shows that

∥f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 4f(x) + 2f(y)∥ =

|∥2x+ y∥+ ∥2x− y∥ − 2∥x+ y∥ − 2∥x− y∥ − 4∥x∥+ 2∥y∥|
≤ 12(∥x∥+ ∥y∥),
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for all x, y ∈ X. Hence µDsf(x,y)(t) ≥ ϕx,y(t) for all x, y ∈ X and t > 0. Fix x ∈ X
and t > 0, then it follows that,

(TM)∞i=1

(
ϕ2i+j−1x,0(2

2j+i+1)t)
)
= 1− 12∥x∥

2j+2t
,

for all x ∈ X, n ∈ N and t > 0. Hence

lim
j→∞

(TM)∞i=1

(
φ2i+j−1x,0(2

1+2j+i)t)
)
= 1,

for all x ∈ X and t > 0. Thus, all the conditions of theorem (4.2.1) hold. Since

(TM)∞i=1

(
ϕ2i−1x,0(2

1+it)
)
= 1− 12.2i−1∥x∥

2i+1t
= 1− 3∥x∥

t
,

for all x ∈ X and t > 0. We can deduce that S(x) = x2 is the unique quadratic
mapping S : X −→ X such that

µf(x)−s(x)(t) ≥ 1− 3∥x∥
t

,

for all x ∈ X and t > 0.

Similar to what we had for an even mapping, the following corollaries can be

proved.

Corollary 2.3.6. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and f : X −→ Y be an odd mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, and t > 0 and ε > 0. Then there exists a unique additive mapping S : X −→
Y satisfying (2.2.1) and

µf(x)−s(x)(t) > T∞
i=1(

2t

2t+ ε∥x0∥
).

Proof. It is enough to put,

ϕx,y(t) =
t

t+ ε∥x0∥
,

for all x, y ∈ X and t > 0, in Theorem (4.2.2).
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Corollary 2.3.7. Let X be a real linear space and (Y, µ, T ) be a complete RN-space
such that T = TM , or Tp and let L ≥ 0 and p be a real number with p ≤ 0 and
f : X −→ Y be an odd mapping satisfying

µDsf(x,y)(t) >
t

t+ L(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0. Then there exists a unique additive mapping S : X −→ Y
satisfying (2.2.1) and

µf(x)−s(x)(t) ≥ T∞
i=1(

2t

2t+ L2(i−1)p ∥ x ∥p
),

for every x ∈ X and t > 0.

Proof. It is enough to put,

ϕx,y(t) =
t

t+ L(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0, in Theorem (4.2.2).

In corollary (2.4.3) if

ϕx,y(t) =
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)L
,

then the result is similar.

Stability of certain functional equations via fixed

point method

Fixed point theorems play important roles in proving our main theorems. All sta-

bility results for functional equations were proved by applying direct method. The

direct method sometimes does not work. In consequence, the fixed point method for

studying the stability of functional equations was used for the first time by Baker in

1991 [10]. Next, in 2003, V. Radu [51] gave a lecture at seminar on fixed point theory

Cluj-Napoca and proved the Hyers-Ulam-Rassias stability of functional equation by
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fixed method. Then, in 2003, Cadariu and Radu [15, 16] considered Jensen functional

equation and proved a stability result via fixed point method. Jung and Chang [37]

proved the stability of a cubic type functional equation with the fixed point alter-

native. Since then, some authors (see e.g., [14, 23, 24, 32, 33, 42, 46]) considered

some important functional equations and proved the stability results via fixed point

method in several spaces.

Jin and Lee [36], Ebadian et al [24], [18, chapter 5] investigated the stability in the

setting of random normed spaces by fixed point method. In 2012, Afshin, Erami et

al. [25] proved the generalized Hyers-Ulam stability of the following cubic functional

equation:

3f(x+ 3y) + f(3x− y) = 15f(x+ y) + 15f(x− y) + 80f(y),

in random normed spaces via fixed point method as follows:

Theorem 2.3.8. Let X be a real linear space, (Z, µ′,min) be an RN-space and φ :
X2 −→ Z be a function such that there exists 0 < α < 1

27
such that

µ′
φ(x

3
, y
3
)(t) ≥ µ′

αφ(x,y)(t)

for allx, y ∈ X and t > 0 and limn−→∞ µ′
27nα( x

3n
, y
3n

)(t) = 1 for all x, y ∈ X and t > 0.

Let (Y, µ,min) be a complete RN-space. If f : X −→ Y is a mapping with f(0) = 0
and such that

µ3f(x+3y)+f(3x−y)−15f(x+y)−15f(x−y)−80f(y)(t) ≥ µ′
φ(x,y)(t)

for all x, y ∈ X and t > 0, then the limit C(x) = limn−→∞ 27nf( x
3n
) exist for all

x ∈ Xand defines a unique cubic mapping C : X −→ Y such that

µf(x)−C(x)(t) ≥ µ′
αφ(x,0)
1−27α

(t).

for all x ∈ X and t > 0.

The following theorem was proved by Kim [39] in random normed spaces by fixed

point method.
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Theorem 2.3.9. Let X be a real linear space, (X,µ′, TM) be an RN-space and
(Y, µ, TM) be a complete RN-space and let φ : X2 −→ D+, (φ(x, y) is denoted by
φ(x,y)) be an even function such that, for some 0 < α < k3

φ(x,y)(t) ≤ φ(kx,ky)(αt) ∀x ∈ X, t > 0.

If f : X −→ Y is a mapping with f(0) = 0 which satisfies

µDf(x,y)(t) ≥ φ(x,y)(t),

for all x, y ∈ X and t > 0. Then there exists a unique cubic mapping C : X −→ Y
such that

µf(y)−C(x)(t) ≥ φ(0,y)(
2k(k2 − 1)(k3 − α)t

k3 + α
), ∀x ∈ X, t > 0,

for all x, y ∈ X and t > 0.

2.4 Fixed point method and sextic functional equa-

tion

In this section, using the fixed point method, we prove the generalized stability of the

sextic functional equation (2.2.1) in complete RN-spaces.

Theorem 2.4.1. Let X be a real linear space and (Y, µ, TM) be a complete RN-space
and f : X −→ Y be a mapping with f(0) = 0 for which there is ϕ : X2 −→ D+

(ϕ(x, y) is denoted by ϕx,y) such that

ϕnx,ny(αt) ≥ ϕx,y(t), 0 < α < n6,

and

µDsf(x,y)(t) > ϕx,y(t) (2.4.1)

for all x, y ∈ X, and t > 0, where

Dsf(x, y) := f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny)

− (n4 + n2)[f(x+ y) + f(x− y)]− 2(n6 − n4 − n2 + 1)[f(x) + f(y)]

for all x, y ∈ X and t > 0. Then there exists a unique sextic mapping g : X −→ Y
such that

µf(x)−g(x)(t) > ϕx,0(2(n
6 − α)t) (2.4.2)
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for all x ∈ X and t > 0. Moreover, we have

g(x) = lim
m−→∞

f(nmx)

n6m
.

Proof. Let y = 0 in (3.5.1); we get

µ2f(nx)−2n6f(x)(t) ≥ ϕx,0(t) (2.4.3)

for all x ∈ X and t > 0 and hence

µ f(nx)

n6 −f(x)
(t) ≥ ϕx,0(2n

6t). (2.4.4)

Consider the set
E := {g : X → Y : g(0) = 0},

and the mapping dG defined on E × E by

dG(g, h) = inf{ϵ > 0 : µg(x)−h(x)(ϵt) ≥ ϕx,0(2n
6t)},

for all x ∈ X, t > 0. Then (E, dG) is a complete generalized metric space (see the
proof of [44, Lemma 2.1]). Now, let us consider the linear mapping J : E → E defined
by

Jg(x) =
g(nx)

n6
.

Now, we show that J is a strictly contractive self-mapping of E with the Lipschitz
constant k = α

n6 . Indeed, let g, h ∈ E be the mappings such that dG(g, h) < ϵ. Then
we have

µg(x)−h(x)(ϵt) ≥ ϕx,0(2n
6t)

for all x ∈ X and t > 0 and hence

µJg(x)−Jh(x)(
ϵαt

n6
) = µ g(nx)

n6 −h(nx)

n6
(
ϵαt

n6
)

= µg(nx)−h(nx)(αεt)

≥ ϕnx,0(2αn
6t)

for all x ∈ X and t > 0. Since

ϕnx,ny(αt) ≥ ϕx,y(t), 0 < α < n6,

we have

µJg(x)−Jh(x)(
ϵαt

n6
) ≥ ϕx,0(2n

6t),
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that is,

dG(g, h) < ϵ =⇒ dG(Jg, Jh) <
α

n6
ϵ.

This means that
dG(Jg, Jh) <

α

n6
dG(g, h),

for all g, h ∈ E. Next, from

µ f(nx)

n6 −f(x)
(t) ≥ ϕx,0(2n

6t),

it follows that dG(f, Jf) ≤ 1. Using Theorem (1.5.2), we show the existence of a fixed
point of J , that is, the existence of a mapping g : X −→ Y such that g(nx) = n6g(x)
for all x ∈ X. Since, for all x ∈ X and t > 0,

dG(u, v) < ϵ =⇒ µu(x)−v(x)(t) ≥ ϕx,0(
2n6t

ϵ
),

it follows from dG(J
nf, g) −→ 0 that limm−→∞

f(nmx)
n6m = g(x) for all x ∈ X. Also from

dG(f, g) ≤
1

1− L
d(f, Jf)

for all g, h ∈ E, we have dG(f, g) ≤ 1
1− α

n6
, and it immediately follows that

µg(x)−f(x)(
n6

n6 − α
t) > ϕx,0(2n

6t)

for all x ∈ X and t > 0. This means that

µg(x)−f(x)(t) > ϕx,0(2(n
6 − α)t)

for all x ∈ X and t > 0. Finally, the uniqueness of g follows from the fact that g is
the unique fixed point of J such that there exists C ∈ (0,∞) satisfying

µg(x)−f(x)(Ct) > ϕx,0(2n
6t)

for all x ∈ X and t > 0. This completes the proof.

Corollary 2.4.2. Let X be a real linear space, (Y, µ, TM) a complete RN-space, and
f : X −→ Y a mapping satisfying

µDsf(x,y)(t) > 1− ∥x∥
t+ ∥x∥

(2.4.5)
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for all x ∈ X, t > 0. Then there exists a unique sextic mapping s : X −→ Y satisfying
(2.2.1) and

µf(x)−s(x)(t) > 1− ∥x∥
2(n6 − α)t+ ∥x∥

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
m−→∞

f(nmx)

n6m
.

Proof. It is enough to put,

ϕx,y(t) = 1− ∥x∥
t+ ∥x∥

for all x ∈ X and t > 0 in Theorem 3.5.1. Then we can choose n < α < n6 and so we
get the desired result.

Corollary 2.4.3. Let X be a real linear space, (Y, µ, TM) a complete RN-space and
f : X −→ Y a mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, t > 0, and ε > 0. Then there exists a unique sextic mapping s : X −→ Y
satisfying (2.2.1) and

µf(x)−s(x)(t) >
2(n6 − α)t

2(n6 − α)t+ ε∥x0∥

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
m−→∞

f(nmx)

n6m
.

Proof. It is enough to put

ϕx,y(t) =
t

t+ ε∥x0∥
for all x ∈ X, and t > 0 in Theorem 3.5.1. Then we can choose n < α < n6 and so
we get the desired result.

Corollary 2.4.4. Let X be a real linear space, (Y, µ, TM) a complete RN-space and
f : X −→ Y a mapping satisfying

µDsf(x,y)(t) >
t

t+ θ(∥ x ∥p + ∥ y ∥p)
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for all x, y ∈ X, t > 0, θ > 0, and 0 < p < 6. Then there exists a unique sextic
mapping s : X −→ Y satisfying (2.2.1) and

µf(x)−s(x)(t) ≥
2(n6 − α)t

2(n6 − α)t+ θ ∥ x ∥p

for every x ∈ X and t > 0. Moreover, we have

s(x) = lim
m−→∞

f(nmx)

n6m
.

Proof. It is enough to put

ϕx,y(t) =
t

t+ θ(∥ x ∥p + ∥ y ∥p)

for all x, y ∈ X and t > 0 in Theorem 3.5.1. Then we can choose np < α < n6 and so
we get the desired result.

2.5 Fixed point method and additive-quadratic func-

tional equation

In this section, using the fixed point method, we prove the generalized stability of the

additive-quadratic functional equation (2.3.1) in complete RN-spaces.

Theorem 2.5.1. Let X be a real linear space and (Y, µ, TM) be a complete RN-space
and f : X −→ Y be an even mapping with f(0) = 0 for which there is ϕ : X2 −→ D+

(ϕ(x, y) is denoted by ϕx,y) such that

ϕ2x,2y(αt) ≥ ϕx,y(t), 0 < α < 4,

and

µDsf(x,y)(t) > ϕx,y(t), (2.5.1)

for all x, y ∈ X, and t > 0. Then there exists a unique quadratic mapping g : X −→ Y
such that

µf(x)−g(x)(t) > ϕx,0(2(4− α)t), (2.5.2)

for all x ∈ X and t > 0. Moreover, we have

g(x) = lim
m−→∞

f(2nx)

4n
.
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Proof. Let y = 0 in (4.3.1); we get

µ2f(2x)−8f(x)(t) ≥ ϕx,0(t), (2.5.3)

for all x ∈ X and t > 0 and hence

µ f(2x)
4

−f(x)
(t) ≥ ϕx,0(8t). (2.5.4)

Consider the set
E := {g : X → Y : g(0) = 0},

and the mapping dG defined on E × E by

dG(g, h) = inf{ϵ > 0 : µg(x)−h(x)(ϵt) ≥ ϕx,0(8t)},

for all x ∈ X, t > 0. Then (E, dG) is a complete generalized metric space (see the
proof of [44, Lemma 2.1]). Now, let us consider the linear mapping J : E → E defined
by

Jg(x) =
g(2x)

4
.

Now, we show that J is a strictly contractive self-mapping of E with the Lipschitz
constant k = α

4
. Indeed, let g, h ∈ E be the mappings such that dG(g, h) < ϵ. Then

we have
µg(x)−h(x)(ϵt) ≥ ϕx,0(8t)

for all x ∈ X and t > 0 and hence

µJg(x)−Jh(x)(
ϵαt

4
) = µ g(2x)

4
−h(2x)

4

(
ϵαt

4
)

= µg(2x)−h(2x)(αεt)

≥ ϕ2x,0(α8t),

for all x ∈ X and t > 0. Since

ϕ2x,2y(αt) ≥ ϕx,y(t), 0 < α < 4,

we have

µJg(x)−Jh(x)(
ϵαt

4
) ≥ ϕx,0(8t),

that is,

dG(g, h) < ϵ =⇒ dG(Jg, Jh) <
α

4
ϵ.

This means that
dG(Jg, Jh) <

α

4
dG(g, h),
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for all g, h ∈ E. Next, from

µ f(2x)
4

−f(x)
(t) ≥ ϕx,0(8t),

it follows that dG(f, Jf) ≤ 1. Using Theorem 1.5.2, we show the existence of a fixed
point of J , that is, the existence of a mapping g : X −→ Y such that g(2x) = 4g(x)
for all x ∈ X. Since, for all x ∈ X and t > 0,

dG(u, v) < ϵ =⇒ µu(x)−v(x)(t) ≥ ϕx,0(
8t

ϵ
),

it follows from dG(J
nf, g) −→ 0 that limm−→∞

f(2nx)
4n

= g(x) for all x ∈ X. Since
f : X −→ Y is even, g : X −→ Y is an even mapping.

Also from

dG(f, g) ≤
1

1− L
d(f, Jf),

for all g, h ∈ E, we have dG(f, g) ≤ 1
1−α

4
, and it immediately follows that

µg(x)−f(x)(
4

4− α
t) > ϕx,0(8t),

for all x ∈ X and t > 0. This means that

µg(x)−f(x)(t) > ϕx,0(2(4− α)t),

for all x ∈ X and t > 0. Finally, the uniqueness of g follows from the fact that g is
the unique fixed point of J such that there exists C ∈ (0,∞) satisfying

µg(x)−f(x)(Ct) > ϕx,0(8t),

for all x ∈ X and t > 0. This completes the proof.

In Theorem (4.3.1), if f is an odd mapping, then the following theorem can be

proved similarly.

Theorem 2.5.2. Let X be a real linear space and (Y, µ, TM) be a complete RN-space
and f : X −→ Y be an odd mapping with f(0) = 0 for which there is ϕ : X2 −→ D+

(ϕ(x, y) is denoted by ϕx,y) such that

ϕ2x,2y(αt) ≥ ϕx,y(t), 0 < α < 2,

and

µDsf(x,y)(t) > ϕx,y(t), (2.5.5)
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for all x, y ∈ X, and t > 0. Then there exists a unique an additive mapping g : X −→
Y such that

µf(x)−g(x)(t) > ϕx,0(2(2− α)t), (2.5.6)

for all x ∈ X and t > 0. Moreover, we have

g(x) = lim
m−→∞

f(2nx)

2n
.

Corollary 2.5.3. Let X be a real linear space, (Y, µ, TM) a complete RN-space, and
f : X −→ Y an even mapping satisfying

µDsf(x,y)(t) > 1− ∥x∥
t+ ∥x∥

, (2.5.7)

for all x ∈ X, t > 0. Then there exists a unique quadratic mapping s : X −→ Y
satisfying (2.2.1) and

µf(x)−s(x)(t) > 1− ∥x∥
2(4− α)t+ ∥x∥

,

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

4n
.

Proof. It is enough to put,

ϕx,y(t) = 1− ∥x∥
t+ ∥x∥

,

for all x ∈ X and t > 0 in Theorem 2.5.1. Then we can choose 2 ≤ α < 4 and so we
get the desired result.

Corollary 2.5.4. Let X be a real linear space, (Y, µ, TM) a complete RN-space and
f : X −→ Y an even mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, t > 0, and ε > 0. Then there exists a unique quadratic mapping s : X −→ Y
satisfying (2.3.1) and

µf(x)−s(x)(t) >
2(4− α)t

2(4− α)t+ ε∥x0∥
,

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

4n
.
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Proof. It is enough to put

ϕx,y(t) =
t

t+ ε∥x0∥
,

for all x ∈ X, and t > 0 in Theorem 2.5.1. Then we can choose 1 ≤ α < 4 and so we
get the desired result.

Corollary 2.5.5. Let X be a real linear space, (Y, µ, TM) a complete RN-space and
f : X −→ Y an even mapping satisfying

µDsf(x,y)(t) >
t

t+ θ(∥x∥p + ∥y∥p)
,

for all x, y ∈ X, t > 0, θ > 0, and p ≤ 1. Then there exists a unique quadrtic
mapping s : X −→ Y satisfying (2.3.1) and

µf(x)−s(x)(t) ≥
2(4− α)t

2(4− α)t+ θ∥x∥p
,

for every x ∈ X and t > 0. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

4n
.

Proof. It is enough to put

ϕx,y(t) =
t

t+ θ(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0 in Theorem 2.5.1. Then we can choose 2p ≤ α < 4 and so
we get the desired result.

Corollary 2.5.6. Let X be a real linear space and (Y, µ, TM) be a complete RN-space
and let z0 ≥ 0 and p be a real number with p < 1 and f : X −→ Y be an even mapping
satisfying

µDsf(x,y)(t) >
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)z0
,

for all x, y ∈ X and t > 0. Then there exists a unique quadratic mapping s : X −→ Y
satisfying (2.3.1) and

µf(x)−s(x)(t) ≥
2(4− α)t

2(4− α)t+ z0∥x∥p
,

for every x ∈ X and t > 0. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

4n
.
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Proof. It is enough to put,

ϕx,y(t) =
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)z0
,

for all x, y ∈ X and t > 0, in Theorem 2.5.1. Then we can choose 22p ≤ α < 4 and so
we get the desired result.

Similar to what we had for an even mapping, the following corollaries can be

proved.

Corollary 2.5.7. Let X be a real linear space, (Y, µ, TM) a complete RN-space, and
f : X −→ Y an odd mapping satisfying

µDsf(x,y)(t) > 1− ∥x∥
t+ ∥x∥

, (2.5.8)

for all x ∈ X, t > 0. Then there exists a unique additive mapping s : X −→ Y
satisfying (2.3.1) and

µf(x)−s(x)(t) > 1− ∥x∥
2(2− α)t+ ∥x∥

,

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
n−→∞

f(2nx)

2n
.

Proof. It is enough to put,

ϕx,y(t) = 1− ∥x∥
t+ ∥x∥

,

for all x ∈ X and t > 0 in Theorem 3.5.2. Then we can choose α = 2 and so we get
the desired result.

Corollary 2.5.8. Let X be a real linear space, (Y, µ, TM) a complete RN-space and
f : X −→ Y an odd mapping satisfying

µDsf(x,y)(t) >
t

t+ ε∥x0∥
,

x0 ∈ X, t > 0, and ε > 0. Then there exists a unique additive mapping s : X −→ Y
satisfying (2.3.1) and

µf(x)−s(x)(t) >
2(2− α)t

2(2− α)t+ ε∥x0∥
,

46



CHAPTER 2. STABILITY OF CERTAIN FUNCTIONAL EQUATIONS IN
RANDOM NORMED SPACES

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

s(x) = lim
m−→∞

f(2nx)

2n
.

Proof. It is enough to put

ϕx,y(t) =
t

t+ ε∥x0∥
,

for all x ∈ X, and t > 0 in Theorem 3.5.2. Then we can choose 1 ≤ α < 2 and so we
get the desired result.

Corollary 2.5.9. Let X be a real linear space, (Y, µ, TM) a complete RN-space and
f : X −→ Y an odd mapping satisfying

µDsf(x,y)(t) >
t

t+ θ(∥x∥p + ∥y∥p)
,

for all x, y ∈ X, t > 0, θ > 0, and p < 1. Then there exists a unique additive mapping
s : X −→ Y satisfying (2.3.1) and

µf(x)−s(x)(t) ≥
2(2− α)t

2(2− α)t+ θ∥x∥p
,

for every x ∈ X and t > 0. Moreover, we have

s(x) = lim
m−→∞

f(2nx)

2n
.

Proof. It is enough to put

ϕx,y(t) =
t

t+ θ(∥x∥p + ∥y∥p)
,

for all x, y ∈ X and t > 0 in Theorem 3.5.2. Then we can choose 2p ≤ α < 2 and so
we get the desired result.

Corollary 2.5.10. Let X be a real linear space and (Y, µ, TM) be a complete RN-
space and let z0 ≥ 0 and p be a real number with p ≤ 0 and f : X −→ Y be an odd
mapping satisfying

µDsf(x,y)(t) >
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)z0
,

for all x, y ∈ X and t > 0. Then there exists a unique additive mapping s : X −→ Y
satisfying (2.3.1) and

µf(x)−s(x)(t) ≥
2(2− α)t

2(2− α)t+ z0∥x∥p
,
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for every x ∈ X and t > 0. Moreover, we have

s(x) = lim
m−→∞

f(2nx)

2n
.

Proof. It is enough to put,

ϕx,y(t) =
t

t+ (∥x∥p + ∥y∥p + ∥x∥p∥y∥p)z0
,

for all x, y ∈ X and t > 0, in Theorem 3.5.2. Then we can choose 22p ≤ α < 2 and so
we get the desired result.
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In this chapter, we prove the stability of certain functional equations in intuition-

istic random normed spaces under arbitrary t-norms via direct method and under

min t-norm via fixed point method. It is necessary to mention the results of this

chapter, in Ref. [4] and Ref. [5], has been sent for publication.

3.1 Introduction

There are many interesting results concerning intuitionistic random normed spaces.

For example, in 2011, the stability problem for a cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x) (3.1.1)

was proved by Saadati, Vaezpour and Park [62] in intuitionistic random normed spaces

as follows:

Theorem 3.1.1. Let X be a real linear space and (Y, ρµ,ν , τ) be a complete IRN-space
and f : X −→ Y be a mapping with f(0) = 0 for which there are maps ξ, ζ : X2 −→
D+. ξ(x, y) is denoted by ξx,y, ζ(x, y) is denoted by ζx,y and (ξx,y(t), ζx,y(t)) is denoted
by Qξ,ζ(x, y, t) with the property

ρµ,ν(f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x), t) >L∗ Qξ,ζ(x, y, t).

If

τ∞i=1(Qξ,ζ(2
n+i−1x, 0, 23n+2i+1t) = 1L∗ ,

and

lim
n→∞

Qξ,ζ(2
nx, 2ny, 23nt) = 1L∗ ,

for all x, y ∈ X and t > 0, then there exists a unique cubic mapping C : X −→ Y
satisfying equation (3.1.1) and the inequality

ρµ,ν(f(x)− C(x), t) ≥L∗ τ∞i=1(2
i−1x, 0, 22i+1t),

for all x ∈ X and t > 0.
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In 2012, Choonkil Park, Madjid Eshaghi Gordji, at el., [50] investigated the Hyers-

Ulam stability of the additive-quadratic functional equation

n∑
i=1

f(xi −
1

n

n∑
j=1

xj) =
n∑

i=1

f(xi)− nf(
1

n

n∑
i=1

xi) (n ≥ 2)

in intuitionistic random normed spaces (see also,[54, 73]).

3.2 Stability of sextic functional equation via di-

rect method

In this section, using the direct method, we prove the generalized stability of the

sextic functional equation (2.2.1) in complete IRN-spaces. Also, we present corollary

and illustrative example under the t-representable norm M related to our results .

Theorem 3.2.1. Let X be a real liner space and (Y, ρµ,ν , τ) be a complete IRN-space
and f : X −→ Y be a mapping with f(0) = 0 for which there is a map ξ : X2 −→ D+

and a map ζ from X2 to the space of non-measure distribution functions. ξ(x, y) is
denoted by ξx,y, ζ(x, y) is denoted by ζx,y and (ξx,y(t), ζx,y(t)) denoted by Qξ,ζ(x, y, t)
with the property

ρµ,ν(Dsf(x, y), t) >L∗ Qξ,ζ(x, y, t), (3.2.1)

where

(Dsf(x, y), t) := (f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny)

− (n4 + n2)[f(x+ y) + f(x− y)]− 2(n6 − n4 − n2 + 1)[f(x) + f(y)], t),

for all x, y ∈ X and t > 0. If

lim
j−→∞

τ∞i=1(Qξ,ζ(n
i+j−1x, 0, 2n6j+5it) = 1L∗ , (3.2.2)

and

lim
m→∞

Qξ,ζ(n
mx, nmy, n6mt) = 1L∗ , (3.2.3)

for all x, y ∈ X and t > 0, then there exists a unique sextic mapping S : X −→ Y
satisfying equation (2.2.1) and the inequality

ρµ,ν(f(x)− S(x), t) ≥L∗ τ∞i=1(n
i−1x, 0, 2n5it), (3.2.4)

for all x ∈ X and t > 0.
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Proof. Letting y = 0 in (4.2.1) we get

ρµ,ν(f(nx)− n6f(x), t) ≥L∗ Qξ,ζ(x, 0, 2t), (3.2.5)

for all x ∈ X. Then we get

ρµ,ν(
f(nx)

n6
− f(x), t) ≥L∗ Qξ,ζ(x, 0, 2n

6t), (3.2.6)

therefore,

ρµ,ν(
f(nk+1x)

n6k+6
− f(nkx)

n6k
, t) ≥L∗ Qξ,ζ(n

kx, 0, 2n6k+6t), (3.2.7)

that is

ρµ,ν(
f(nk+1x)

n6k+6
− f(nkx)

n6k
,

t

nk+1
) ≥L∗ Qξ,ζ(n

kx, 0, 2n5(k+1)t), (3.2.8)

for every k ∈ N , t > 0, n positive integer, n > 1. As

1 >
1

n
+

1

n2
+

1

n3
+ ...+

1

nk
,

by the triangle inequality for x ∈ X, t > 0, n > 1 it follows:

ρµ,ν(
f(nmx)

n6m
− f(x), t) ≥L∗ ρµ,ν(

f(nmx)

n6m
− f(x),

m−1∑
k=0

1

nk+1
t)

≥L∗ τm−1
k=0

(
ρµ,ν(

f(nk+1x)

n6k+6
− f(nkx)

n6k
,

1

nk+1
t)

)
≥L∗ τm−1

k=0 (Qξ,ζ(n
kx, 0, 2n5k+5t))

= τmi=1

(
Qξ,ζ(n

i−1x, 0, 2n5it)
)
. (3.2.9)

In order to prove the convergence of the sequence {f(njx)
n6j }, we replace x with njx and

multiply the left hand of (3.3.9) by n6j

n6j ,

ρµ,ν

(
f(nm+jx)

n6m+6j
− f(njx)

n6j
, t

)
≥L∗ τmi=1

(
Qξ,ζ(n

j+i−1x, 0, 2n6j+5it)
)
. (3.2.10)

Since the right hand side of the inequality (3.3.10) tends to 1 as m and j tend to

infinity, the sequence {f(njx)
n6j } is a Cauchy sequence. Therefore, we may define

S(x) = lim
j−→∞

f(njx)

n6j
,

for all x ∈ X.
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Replacing x, y with nmx and nmy, respectively, in (4.2.1) then multiplying the
right hand side by n6m

n6m , it follows that:

ρµ,ν(
1

n6m
Dsf(n

mx, nmy), t) ≥L∗ Qξ,ζ(n
mx, nmy, n6mt),

for all x, y ∈ X, and positive integer n, n > 1. Taking the limit as m → ∞ we find
that S satisfies (2.2.1), that is, S is a sextic mapping. To prove (4.2.4) take the limit
as m→ ∞ in (3.3.9).

Finally, to prove the uniqueness of the sextic function S, let us assume that there
exists a sextic function r which satisfies (4.2.4) and equation (2.2.1). Therefore

ρµ,ν(r(x)− S(x), t) = ρµ,ν(r(x)−
f(njx)

n6j
+
f(njx)

n6j
− S(x), t)

≥L∗ τ(ρµ,ν(r(x)−
f(njx)

n6j
,
t

2
), ρµ,ν(

f(njx)

n6j
− S(x),

t

2
)).

Taking the limit as j → ∞, we find ρµ,ν(r(x)− S(x), t) = 1L∗ . Therefore r = S.

Corollary 3.2.2. Let (X, ρ′µ′,ν′ , τ) be an IRN- space and (Y, ρµ,ν , τ) be a complete
IRN-space. If f : X −→ Y be a mapping satisfying

ρµ,ν(Dsf(x, y), t) >L∗ ρ′µ′,ν′(x+ y, t), (3.2.11)

for all x, y ∈ X, t > 0 in which

lim
j−→∞

τ∞i=1(ρ
′
µ′,ν′ , (x, 0, 2n

4i+5j+1t)) = 1L∗ , (3.2.12)

for all x, y ∈ X and t > 0. Then there exists a unique sextic mapping S : X −→ Y
such that

ρµ,ν(f(x)− S(x), t) >L∗ τ∞i=1(ρ
′
µ′,ν′(x, 0, 2n

4i+1t)),

for every x ∈ X, and t > 0.

Proof. It is enough to put,

Qξ,ζ(x, y, t) = ρ′µ′,ν′(x+ y, t),

for all x, y ∈ X and t > 0, the corollary immediate from Theorem 3.2.1.

Example 3.2.1. Let (X, ∥.∥) be a Banach algebra space and (X, ρ′µ′,ν′ ,M) be an
IRN-space in which

ρ′µ′,ν′(x, t) = (
t

t+ |2(n2 + n4 − 2n6)|(∥x∥+ 1)
,

|2(n2 + n4 − 2n6)|(∥x∥+ 1)

t+ |2(n2 + n4 − 2n6)|(∥x∥+ 1)
),

53



CHAPTER 3. STABILITY OF CERTAIN FUNCTIONAL EQUATIONS IN
INTUITIONISTIC RANDOM NORMED SPACES

for all x, y ∈ X and t > 0 and let (Y, ρµ,ν ,M) be a complete IRN-space in which

ρµ,ν(x, t) = (
t

t+ ∥x∥
,

∥x∥
t+ ∥x∥

),

for all x, y ∈ X and t > 0. Define the mapping f : X −→ Y by f(x) = x6 + x0 for
all x ∈ X where x0 is a unit vector in X. A straightforward computation shows that

ρµ,ν(Dsf(x, y), t) ≥L∗ ρ′µ′,ν′(x+ y, t),

for all x, y ∈ X and t > 0. Also we have

lim
j−→∞

M∞
i=1(ρ

′
µ′,ν′(x, 0, 2n

4i+5j+1t)) = lim
j−→∞

lim
m−→∞

Mm
i=1(ρ

′
µ′,ν′(x, 0, 2n

4i+5j+1t))

= lim
j−→∞

lim
m−→∞

ρ′µ′,ν′(x, 0, 2n
5+5jt))

= lim
j−→∞

ρ′µ′,ν′(x, 0, 2n
5+5jt)) = 1L∗ ,

for all x ∈ X and t > 0. Therefore, there exists a unique sextic mapping S : X −→ Y
such that

ρµ,ν(f(x)− S(x), t) ≥L∗ ρ′µ′,ν′(x, 0, 2n
5t)

for all x ∈ X and t > 0.

3.3 Stability of mixed type functioal equation via

direct method

In this section, using the direct method, we prove the generalized stability of the

additive-quadratic functional equation (2.3.1) in complete IRN-spaces. Also, we

present an illustrative example.

Theorem 3.3.1. Let X be a real linear space and (Y, ρµ,ν , τ) be a complete IRN-
space and f : X −→ Y be an even mapping with f(0) = 0 for which there is a
map ξ : X2 −→ D+ and a map ζ from X2 to the space of non-measure distribution
functions. ξ(x, y) is denoted by ξx,y, ζ(x, y) is denoted by ζx,y and (ξx,y(t), ζx,y(t))
denoted by Qξ,ζ(x, y, t) with the property

ρµ,ν(Dsf(x, y), t) >L∗ Qξ,ζ(x, y, t), (3.3.1)

if

lim
j−→∞

τ∞i=1(Qξ,ζ(2
i+j−1x, 0, 22j+i+1t) = 1L∗ , (3.3.2)
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and

lim
m→∞

Qξ,ζ(2
mx, 2my, 22mt) = 1L∗ , (3.3.3)

for all x, y ∈ X and t > 0, then there exists a unique quadratic mapping S : X −→ Y

ρµ,ν(f(x)− S(x), t) ≥L∗ τ∞i=1(2
i−1x, 0, 2i+1t), (3.3.4)

for all x ∈ X and t > 0.

Proof. Letting y = 0 in (4.2.1) we get

ρµ,ν(2f(2x)− 8f(x), t) ≥L∗ Qξ,ζ(x, 0, t), (3.3.5)

for all x ∈ X. Then we get

ρµ,ν(
f(2x)

4
− f(x), t) ≥L∗ Qξ,ζ(x, 0, 8t), (3.3.6)

therefore,

ρµ,ν(
f(2k+1x)

22k+2
− f(2kx)

22k
, t) ≥L∗ Qξ,ζ(2

kx, 0, 22k+3t), (3.3.7)

that is

ρµ,ν(
f(2k+1x)

22k+2
− f(2kx)

22k
,

t

2k+1
) ≥L∗ Qξ,ζ(2

kx, 0, 2k+2t), (3.3.8)

for every k ∈ N , t > 0. As

1 >
1

2
+

1

22
+

1

23
+ ...+

1

2k
,

by the triangle inequality for x ∈ X, t > 0, it follows:

ρµ,ν(
f(2nx)

22n
− f(x), t) ≥L∗ ρµ,ν(

f(2nx)

22n
− f(x),

n−1∑
k=0

1

2k+1
t)

≥L∗ τn−1
k=0

(
ρµ,ν(

f(2k+1x)

22k+2
− f(2kx)

22k
,

1

2k+1
t)

)
≥L∗ τn−1

k=0 (Qξ,ζ(2
kx, 0, 2k+2t))

= τni=1

(
Qξ,ζ(2

i−1x, 0, 2i+1t)
)
. (3.3.9)

x ∈ X, t > 0. In order to prove the convergence of the sequence {f(2jx)
22j

}, we replace

x with 2jx and multiplying the left hand of (3.3.9) by 22j

22j
,

ρµ,ν

(
f(2n+jx)

22n+2j
− f(2jx)

22j
, t

)
≥L∗ τni=1

(
Qξ,ζ(2

j+i−1x, 0, 22j+i+1t)
)
. (3.3.10)
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Since the right hand side of the inequality (3.3.10) tends to 1 as i and j tend to

infinity, the sequence {f(2jx)
22j

} is a Cauchy sequence. Therefore, we may define

S(x) = lim
j−→∞

f(2jx)

22j
,

for all x ∈ X. Since f : X −→ Y is even, S : X −→ Y is an even mapping.
Replacing x, y with 2mx and 2my, respectiveiy, in (4.2.1) then multiplying the

right hand side by 22m

22m
, it follows that:it follows that:

ρµ,ν(
1

22m
Dsf(2

mx, 2my), t) ≥L∗ Qξ,ζ(2
mx, 2my, 22mt),

for all x, y ∈ X. Taking the limit as m → ∞ we find that S satisfies (2.3.1), that is,
S is a quadratic map. To prove (4.2.4) take the limit as n→ ∞ in (3.3.9).

Finally, to prove the uniqueness of the quadratic function S, let us assume that
there exists a quadratic function r which satisfies (4.2.4) and equation (2.3.1). There-
fore

ρµ,ν(r(x)− S(x), t) = ρµ,ν(r(x)−
f(2jx)

22j
+
f(2jx)

22j
− S(x), t)

≥L∗ τ(ρµ,ν(r(x)−
f(2jx)

22j
,
t

2
), ρµ,ν(

f(2jx)

22j
− S(x),

t

2
)).

Taking the limit as j → ∞, we find ρµ,ν(r(x)− s(x), t) = 1. Therefore r = s.

In Theorem (4.2.1), if f is an odd mapping, then the following theorem can be

proved similarly.

Theorem 3.3.2. Let X be a real linear space and (Y, ρµ,ν , τ) be a complete IRN-
space and f : X −→ Y be an odd mapping with f(0) = 0 for which there is a
map ξ : X2 −→ D+ and a map ζ from X2 to the space of non-measure distribution
functions. ξ(x, y) is denoted by ξx,y, ζ(x, y) is denoted by ζx,y and (ξx,y(t), ζx,y(t))
denoted by Qξ,ζ(x, y, t) with the property

ρµ,ν(Dsf(x, y), t) >L∗ Qξ,ζ(x, y, t), (3.3.11)

if

lim
j−→∞

τ∞i=1(Qξ,ζ(2
i+j−1x, 0, 2i+1t) = 1L∗ , (3.3.12)

and

lim
m→∞

Qξ,ζ(2
mx, 2my, 2mt) = 1L∗ , (3.3.13)

56



CHAPTER 3. STABILITY OF CERTAIN FUNCTIONAL EQUATIONS IN
INTUITIONISTIC RANDOM NORMED SPACES

for all x, y ∈ X and t > 0, then there exists a unique additive mapping S : X −→ Y

ρµ,ν(f(x)− S(x), t) ≥L∗ τ∞i=1(2
i−1x, 0, 2t), (3.3.14)

for all x ∈ X and t > 0.

Corollary 3.3.3. Let (X, ρ′µ′,ν′ , τ) be an IRN- space and (Y, ρµ,ν , τ) be a complete
IRN-space. If f : X −→ Y be an even mapping satisfying

ρµ,ν(Dsf(x, y), t) >L∗ ρ′µ′,ν′(x+ y, t), (3.3.15)

for all x, y ∈ X, t > 0 in which

lim
j−→∞

τ∞i=1(ρ
′
µ′,ν′ , (x, 0, 2

j+2t)) = 1L∗ , (3.3.16)

for all x, y ∈ X and t > 0. Then there exists a unique quadratic mapping S : X −→ Y
such that

ρµ,ν(f(x)− S(x), t) >L∗ τ∞i=1(ρ
′
µ′,ν′(x, 0, 4t)),

for every x ∈ X, and t > 0.

Proof. It is enough to put,

Qξ,ζ(x, y, t) = ρ′µ′,ν′(x+ y, t),

for all x, y ∈ X and t > 0, the corollary immediate from Theorem (4.2.1).

Corollary 3.3.4. Let (X, ρ′µ′,ν′ , τ) be an IRN- space and (Y, ρµ,ν , τ) be a complete
IRN-space. If f : X −→ Y be an odd mapping satisfying

ρµ,ν(Dsf(x, y), t) >L∗ ρ′µ′,ν′(x+ y, t), (3.3.17)

for all x, y ∈ X, t > 0 in which

lim
j−→∞

τ∞i=1(ρ
′
µ′,ν′ , (x, 0, 2

2−jt)) = 1L∗ , (3.3.18)

for all x, y ∈ X and t > 0. Then there exists a unique additive mapping S : X −→ Y
such that

ρµ,ν(f(x)− S(x), t) >L∗ τ∞i=1(ρ
′
µ′,ν′(x, 0, 2

2−it)),

for every x ∈ X, and t > 0.

Proof. It is enough to put,

Qξ,ζ(x, y, t) = ρ′µ′,ν′(x+ y, t),

for all x, y ∈ X and t > 0, the corollary immediate from Theorem (3.3.2).
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Example 3.3.1. Let (X, ∥.∥) be a Banach algebra space and (X, ρ′µ′,ν′ ,M) be an
IRN-space in which

ρ′µ′,ν′(x, t) = (
t

t+ 4(∥x∥+ 1)
,

4(∥x∥+ 1)

t+ 4(∥x∥+ 1)
),

for all x, y ∈ X and t > 0 and let (Y, ρµ,ν ,M) be a complete IRN-space in which

ρµ,ν(x, t) = (
t

t+ ∥x∥
,

∥x∥
t+ ∥x∥

),

for all x, y ∈ X and t > 0. Define the mapping f : X −→ Y by f(x) = x2 + x0 for
all x ∈ X where x0 is a unit vector in X. A straightforward computation shows that

ρµ,ν(Dsf(x, y), t) ≥L∗ ρ′µ′,ν′(x+ y, t),

for all x, y ∈ X and t > 0. Also we have

lim
j−→∞

M∞
i=1(ρ

′
µ′,ν′(x, 0, 2

j+2t)) = lim
j−→∞

lim
m−→∞

Mm
i=1(ρ

′
µ′,ν′(x, 0, 2

j+2t))

= lim
j−→∞

lim
m−→∞

ρ′µ′,ν′(x, 0, 2
j+2t))

= lim
j−→∞

ρ′µ′,ν′(x, 0, 2
j+2t)) = 1L∗ ,

for all x ∈ X and t > 0. Therefore, there exists a unique quadratic mapping S :
X −→ Y such that

ρµ,ν(f(x)− S(x), t) ≥L∗ ρ′µ′,ν′(x, 0, 4t)

for all x ∈ X and t > 0.

Stability of certain functioal equations via fixed point

method

In this section, using the fixed point method, we prove the generalized stability of

the sextic functional equation (2.2.1) and the additive-quadratic functional equation

(2.3.1) in IRN-spaces.
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3.4 Stability of sextic functioal equation via fixed

point method

In this section, using the fixed point method, we prove the generalized stability of

the sextic functional equation (2.2.1) in complete IRN-spaces. Also, we present some

corollaries related to our result.

Theorem 3.4.1. Let X be a real linear space and (Y, ρµ,ν ,M) be a complete IRN-space
and f : X −→ Y be a mapping with f(0) = 0 for which there is a map ξ : X2 −→ D+

and a map ζ from X2 to the space of non-measure distribution functions. ξ(x, y) is
denoted by ξx,y, ζ(x, y) is denoted by ζx,y and (ξx,y(t), ζx,y(t)) is denoted by Qξ,ζ(x, y, t)
with the property

Qξ,ζ(nx, ny, αt) ≥L∗ Qξ,ζ(x, y, t), 0 < α < n6

and

ρµ,ν(Dsf(x, y), t) >L∗ Qξ,ζ(x, y, t) (3.4.1)

for all x, y ∈ X , and t > 0. Where

(Dsf(x, y), t) := (f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny)

− (n4 + n2)[f(x+ y) + f(x− y)]− 2(n6 − n4 − n2 + 1)[f(x) + f(y)], t)

for all x, y ∈ X and t > 0. Then there exists a unique sextic mapping g : X −→ Y such
that

ρµ,ν(f(x)− g(x), t) >L∗ Qξ,ζ(x, 0, 2(n
6 − α)t) (3.4.2)

for all x ∈ X and t > 0. Moreover, we have

g(x) = lim
m−→∞

f(nmx)

n6m
.

Proof. Let y = 0 in (3.5.1) we get

ρµ,ν(2f(nx)− 2n6f(x), t) ≥L∗ Qξ,ζ(x, 0, t), (3.4.3)

for all x ∈ X and t > 0 and hence

ρµ,ν(
f(nx)

n6
− f(x), t) ≥L∗ Qξ,ζ(x, 0, 2n

6t). (3.4.4)
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Consider the set
E := {g : X → Y : g(0) = 0},

and the mapping dG defined on E × E by

dG(g, h) = inf
{
ϵ > 0 : ρµ,ν(g(x)− h(x), ϵt) ≥L∗ Qξ,ζ(x, 0, 2n

6t)
}
,

for all x ∈ X, t > 0. Then (E, dG) is a complete generalized metric space (see the
proof of [44, lemma 2.1]) . Now, let us consider the linear mapping J : E → E defined
by

Jg(x) =
g(nx)

n6
.

Now, we show that J is a strictly contractive self-mapping of E with the Lipschitz
costant k = α

n6 . Indeed, let g, h ∈ E be the mappings such that dG(g, h) < ϵ. Then
we have

ρµ,ν(g(x)− h(x), ϵt) ≥L∗ Qξ,ζ(x, 0, 2n
6t),

for all x ∈ X and t > 0 and hence

ρµ,ν(Jg(x)− Jh(x),
ϵαt

n6
) = ρµ,ν(

g(nx)

n6
− h(nx)

n6
,
ϵαt

n6
)

= ρµ,ν(g(nx)− h(nx), αεt)

≥L∗ Qξ,ζ(nx, 0, 2αn
6t),

for all x ∈ X and t > 0. Since

Qξ,ζ(nx, ny, αt) ≥L∗ Qξ,ζ(x, y, t), 0 < α < n6,

we have

ρµ,ν(Jg(x)− Jh(x),
ϵαt

n6
) ≥L∗ Qξ,ζ(x, 0, 2n

6t),

that is,

dG(g, h) < ϵ =⇒ dG(Jg, Jh) <
α

n6
ϵ.

This means that
dG(Jg, Jh) <

α

n6
dG(g, h),

for all g, h ∈ E. Next, from

ρµ,ν

(
f(nx)

n6
− f(x), t

)
≥L∗ Qξ,ζ(x, 0, 2n

6t),
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follows that dG(f, Jf) ≤ 1. Using the Theoreme (3.5.1), there exists a fixed point of
J , that is, there is a mapping g : X −→ Y such that g(nx) = n6g(x) for all x ∈ X.
Since, for all x ∈ X and t > 0,

dG(u, v) < ϵ =⇒ ρµ,ν(u(x)− v(x), t) ≥L∗ Qξ,ζ(x, 0,
2n6t

ϵ
).

It follows from dG(J
nf, g) −→ 0 that limm−→∞

f(nmx)
n6m = g(x) for all x ∈ X. Also from

dG(f, g) ≤
1

1− L
d(f, Jf),

for all g, h ∈ E. Then dG(f, g) ≤ 1
1− α

n6
. It immediately follows that

ρµ,ν

(
g(x)− f(x),

n6

n6 − α
t

)
>L∗ Qξ,ζ(x, 0, 2n

6t),

for all x ∈ X and t > 0. This means that

ρµ,ν(g(x)− f(x), t) >L∗ Qξ,ζ(x, 0, 2(n
6 − α)t),

for all x ∈ X and t > 0. Finally, the uniqueness of g follows from the fact that g is
the unique fixed point of J such that there exists C ∈ (0,∞) such that

ρµ,ν(g(x)− f(x), Ct) >L∗ Qξ,ζ(x, 0, 2n
6t),

for all x ∈ X and t > 0. This completes the proof.

Corollary 3.4.2. Let (X, ρ′µ′,ν′ ,M) be an IRN-space and (Y, ρµ,ν ,M) be a complete
IRN-space and f : X −→ Y be a mapping satisfying

ρµ,ν(Dsf(x, y), t) >L∗

(
t

t+ ∥x+ y∥
,

∥x+ y∥
t+ ∥x+ y∥

)
, (3.4.5)

for all x, y ∈ X, t > 0. Then there exists a unique sextic mapping S : X −→
Y satisfying (2.3.1) and

ρµ,ν(f(x)− s(x), t) >L∗

(
2(n6 − α)t

2(n6 − α)t+ ∥x∥
,

∥x∥
2(n6 − α)t+ ∥x∥

)
,

for every x ∈ X, t > 0, and n positive integer. Moreover, we have

S(x) = lim
m−→∞

f(nmx)

n6m
.

Proof. It is enough to put,

Qξ,ζ(x, y, t) =

(
t

t+ ∥x+ y∥
,

∥x+ y∥
t+ ∥x+ y∥

)
,

for all x ∈ X, and t > 0 in Theorem (3.5.1). Then we can choose n < α < n6 and so
we get the desired result.
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3.5 Stability of mixed type functional equation via

fixed point method

In this section, using the fixed point method, we prove the generalized stability of

the mixed type functional equation (2.3.1) in complete IRN-spaces. We recall a

fundamental result in fixed point theory.

Theorem 3.5.1. Let X be a real linear space and (Y, ρµ,ν ,M) be a complete IRN-
space and f : X −→ Y be an even mapping with f(0) = 0 for which there is a
map ξ : X2 −→ D+ and a map ζ from X2 to the space of non-measure distribution
functions. ξ(x, y) is denoted by ξx,y, ζ(x, y) is denoted by ζx,y and (ξx,y(t), ζx,y(t)) is
denoted by Qξ,ζ(x, y, t) with the property

Qξ,ζ(2x, 2y, αt) ≥L∗ Qξ,ζ(x, y, t), 0 < α < 4

and

ρµ,ν(Dsf(x, y), t) >L∗ Qξ,ζ(x, y, t) (3.5.1)

for all x, y ∈ X , and t > 0. Then there exists a unique quadratic mapping g : X −→ Y
such that

ρµ,ν(f(x)− g(x), t) >L∗ Qξ,ζ(x, 0, 2(4− α)t) (3.5.2)

for all x ∈ X and t > 0. Moreover, we have

g(x) = lim
n−→∞

f(2nx)

4n
.

Proof. Let y = 0 in (3.5.1); we get

ρµ,ν(2f(2x)− 8f(x), t) ≥L∗ Qξ,ζ(x, 0, t), (3.5.3)

for all x ∈ X and t > 0 and hence

ρµ,ν(
f(2x)

4
− f(x), t) ≥L∗ Qξ,ζ(x, 0, 8t). (3.5.4)

Consider the set
E := {g : X → Y : g(0) = 0},

and the mapping dG defined on E × E by

dG(g, h) = inf {ϵ > 0 : ρµ,ν(g(x)− h(x), ϵt) ≥L∗ Qξ,ζ(x, 0, 8t)} ,
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for all x ∈ X, t > 0. Then (E, dG) is a complete generalized metric space (see the
proof of [44, lemma 2.1]). Now, let us consider the linear mapping J : E → E defined
by

Jg(x) =
g(2x)

4
.

Now, we show that J is a strictly contractive self-mapping of E with the Lipschitz
costant k = α

4
. Indeed, let g, h ∈ E be the mappings such that dG(g, h) < ϵ. Then

we have
ρµ,ν(g(x)− h(x), ϵt) ≥L∗ Qξ,ζ(x, 0, 8t),

for all x ∈ X and t > 0 and hence

ρµ,ν(Jg(x)− Jh(x),
ϵαt

4
) = ρµ,ν(

g(2x)

4
− h(2x)

4
,
ϵαt

4
)

= ρµ,ν(g(2x)− h(2x), αεt)

≥L∗ Qξ,ζ(2x, 0, α8t),

for all x ∈ X and t > 0. Since

Qξ,ζ(2x, 2y, αt) ≥L∗ Qξ,ζ(x, y, t), 0 < α < 4,

we have

ρµ,ν(Jg(x)− Jh(x),
ϵαt

4
) ≥L∗ Qξ,ζ(x, 0, 8t),

that is,

dG(g, h) < ϵ =⇒ dG(Jg, Jh) <
α

4
ϵ.

This means that
dG(Jg, Jh) <

α

4
dG(g, h),

for all g, h ∈ E. Next, from

ρµ,ν

(
f(2x)

4
− f(x), t

)
≥L∗ Qξ,ζ(x, 0, 8t),

follows that dG(f, Jf) ≤ 1. Using the Theorem (1.5.2), there exists a fixed point of
J , that is, there is a mapping g : X −→ Y such that g(2x) = 4g(x) for all x ∈ X.
Since, for all x ∈ X and t > 0,

dG(u, v) < ϵ =⇒ ρµ,ν(u(x)− v(x), t) ≥L∗ Qξ,ζ(x, 0,
8t

ϵ
).

It follows from dG(J
nf, g) −→ 0 that limm−→∞

f(2nx)
4n

= g(x) for all x ∈ X. Since
f : X −→ Y is even, g : X −→ Y is an even mapping. Also from

dG(f, g) ≤
1

1− L
d(f, Jf),
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for all g, h ∈ E. Then dG(f, g) ≤ 1
1−α

4
. It immediately follows that

ρµ,ν

(
g(x)− f(x),

4

4− α
t

)
>L∗ Qξ,ζ(x, 0, 8t),

for all x ∈ X and t > 0. This means that

ρµ,ν(g(x)− f(x), t) >L∗ Qξ,ζ(x, 0, 2(4− α)t),

for all x ∈ X and t > 0. Finally, the uniqueness of g follows from the fact that g is
the unique fixed point of J such that there exists C ∈ (0,∞) such that

ρµ,ν(g(x)− f(x), Ct) >L∗ Qξ,ζ(x, 0, 8t),

for all x ∈ X and t > 0. This completes the proof.

In Theorem (3.5.1), if f is an odd mapping, then the following theorem can be

proved similarly.

Theorem 3.5.2. Let X be a real linear space and (Y, ρµ,ν ,M) be a complete IRN-
space and f : X −→ Y be an odd mapping with f(0) = 0 for which there is a
map ξ : X2 −→ D+ and a map ζ from X2 to the space of non-measure distribution
functions. ξ(x, y) is denoted by ξx,y, ζ(x, y) is denoted by ζx,y and (ξx,y(t), ζx,y(t)) is
denoted by Qξ,ζ(x, y, t) with the property

Qξ,ζ(2x, 2y, αt) ≥L∗ Qξ,ζ(x, y, t), 0 < α < 2

and

ρµ,ν(Dsf(x, y), t) >L∗ Qξ,ζ(x, y, t) (3.5.5)

for all x, y ∈ X , and t > 0. Then there exists a unique additive mapping g : X −→ Y
such that

ρµ,ν(f(x)− g(x), t) >L∗ Qξ,ζ(x, 0, 2(2− α)t) (3.5.6)

for all x ∈ X and t > 0. Moreover, we have

g(x) = lim
n−→∞

f(2nx)

2n
.
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Corollary 3.5.3. Let (X, ρ′µ′,ν′ ,M) be an IRN-space and (Y, ρµ,ν ,M) be a complete
IRN-space and f : X −→ Y be an even mapping satisfying

ρµ,ν(Dsf(x, y), t) >L∗

(
t

t+ ∥x+ y∥
,

∥x+ y∥
t+ ∥x+ y∥

)
, (3.5.7)

for all x, y ∈ X, t > 0. Then there exists a unique quadratic mapping S : X −→
Y satisfying (2.3.1) and

ρµ,ν(f(x)− s(x), t) >L∗

(
2(4− α)t

2(4− α)t+ ∥x∥
,

∥x∥
2(4− α)t+ ∥x∥

)
,

for every x ∈ X, t > 0. Moreover, we have

S(x) = lim
m−→∞

f(2nx)

4n
.

Proof. It is enough to put,

Qξ,ζ(x, y, t) =

(
t

t+ ∥x+ y∥
,

∥x+ y∥
t+ ∥x+ y∥

)
,

for all x ∈ X, and t > 0 in Theorem (3.5.1). Then we can choose 2 ≤ α < 4 and so
we get the desired result.
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In this chapter, we prove the stability of the sextic functional equation 2.2.1 and

the additive-quadratic functional equation 2.3.1 in non-Archimedean random normed

spaces via direct method under arbitrary t-norms. It is necessary to mention that the

results of this chapter in Ref. [4] and Ref. [5] has been sent for publication.

4.1 Introduction

Hyers-Ulam stability has been proved for several functional equations in non-Archimedean

random normed spaces. See for example [18, chapter 6] and ([65, 62]). In 2011, J. M.

Rassias et al. [54] proved the following theorem for quartic functional equation

16f(x+ 4y) + f(4x− y) = 306[9f(x+
y

3
) + f(x+ 2y)]

+ 136f(x− y)− 1394f(x+ y) + 425f(y)− 1530f(x), (4.1.1)

in non-Archimeadean randon normed spaces as follows:

Theorem 4.1.1. Let K be a non-Archimedean field, X be a vector space over K and
(Y, µ, T ) be a non-Archimedean random Banach space over K. Let f : X → Y be
a ψ-approximately quartic function. If for some α ∈ R with α > 0 and for some
positive integer k, k > 3 with |4k| < α.

ψ(4−kx, 4−ky, t) ≥ ψ(x, y, αt), x ∈ X, t > 0,

and

lim
n→∞

T∞
j=nM(x,

αjt

|4|kj
) = 1,

for all x ∈ X and t > 0, then there exists a unique quartic mapping Q : X → Y such
that:

µf(x)−Q(x)(t) ≥ T∞
i=1M(x,

αi+1t

|4|ki
), (4.1.2)

for all x ∈ X and t > 0, where

M(x, t) := T (ψ(x, 0, t), ψ(4x, 0, t), · · · , ψ(4k−1x, 0, t)),

for all x ∈ X and t > 0.
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Yeol Je Cho and Reza Saadati [21] in 2011, proved the generalized Hyers-Ulam

stability of the following additive-cubic-quartic functional equation

11f(x+ 2y) + 11f(x− 2y) = 44f(x+ y) + 44f(x− y) + 12f(3y)

− 48f(2y) + 60f(y)− 66f(x)

in various complete lattictic random normed spaces as followes:

Theorem 4.1.2. Let K be a non-Archimedean field, X be a vector space over K and
(Y, µ, T )be a non-Archimedean complete LRN-space over KLet f : X −→ Y be an
odd and ψ-approximately mixed ACQ mapping. If, for some α ∈ R, α > 0, and some
integer k, k > 3 with |2k| < α

ψ(2−kx,2−k)(t) ≥ ψ(x,y)(αt), x ∈ X, t > 0,

and

lim
n→∞

T∞
j=nM(x,

αjt

|2|kj
) = 1L,

then there exists a unique cubic mapping C : X −→ Y such that

µf(x)−C(x)(t) ≥L T
∞
i=1M(x,

αi+1t

|2|ki
),

where

M(x, t) := T (ψx,0(t), ψ2x,0(t), · · · , ψ2k−1x,0(t)),

for all x ∈ X and t > 0.

4.2 Sextic functional equation in non-Archimedean

random normed spaces.

Let K be a non-Archimedean field, X be a vector space over K and (Y, µ, T ) be

a non-Archimedean random Banach space over K. We investigate the stability of

(2.2.1), where f is a mapping from X to Y and f(0) = 0. It is well known that a
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function f satisfies the functional equation (2.2.1) if and only if it is sextic. Next we

define a random approximately sextic mapping. Let ψ be a distribution function on

X ×X × [0,∞) such that ψ(x, y, .) is nondecreasing and

ψ(cx, cy, t) ≥ ψ(x, x,
t

|c|
) ∀x ∈ X, c ̸= 0

.

Definition 4.2.1. A mapping f : X → Y is said to be ψ-approximately sextic if

µDsf(x,y)(t) ≥ ψ(x, y, t), ∀x, y ∈ X, t > 0, (4.2.1)

where

Dsf(x, y) := f(nx+ y) + f(nx− y) + f(x+ ny) + f(x− ny)

− (n4 + n2)[f(x+ y) + f(x− y)]− 2(n6 − n4 − n2 + 1)[f(x) + f(y)],

for all x, y ∈ X and t > 0. In this section, we assume that n ̸= 0 ( i.e. the
characteristic of K is not 0).

Theorem 4.2.1. Let f : X → Y be a ψ-approximately sextic function. If, for some
α ∈ R with α > 0 and for some positive integer k with |nk| < α, n ≥ 2, n ∈ N .

ψ(n−kx, n−ky, t) ≥ ψ(x, x, αt), (4.2.2)

and

lim
m→∞

T∞
j=mM

(
x,

αjt

|n|kj

)
= 1, (4.2.3)

for all x ∈ X and t > 0, then there exists a unique sextic mapping Q : X → Y such
that:

µf(x)−Q(x)(t) ≥ T∞
i=1M

(
x,
αi+1t

|n|ki

)
, (4.2.4)

for all x ∈ X and t > 0, where

M(x, t) := T
(
ψ(x, 0, t), ψ(nx, 0, t), · · · , ψ(nk−1x, 0, t)

)
,

for all x ∈ X and t > 0.
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Proof. First we show, by induction on j, that, for all x ∈ X, t > 0 and j ≥ 1

µf(njx)−n6jf(x)(t) ≥Mj(x, t) = T
(
ψ(x, 0, t), ψ(2x, 0, t), · · · , ψ(nj−1x, 0, t)

)
, (4.2.5)

putting y = 0 in (4.2.1) we have

µ2f(nx)−2n6f(x)(t) ≥ ψ(x, 0, t),

then

µf(nx)−n6f(x)(t) ≥ ψ(x, 0, 2t) ≥ ψ(x, 0, t) ∀x ∈ X, t > 0.

This prove (4.2.5) for j = 1. Assume that (4.2.5) hold for some j > 1. Replacing y
by 0 and x by njx in (4.2.1) we get

µf(nj+1x)−n6f(njx)(t) ≥ ψ(njx, 0, t), ∀x ∈ X, t > 0. (4.2.6)

Since |n6| ≤ 1 for n ≥ 2, it follows that

µf(nj+1x)−n6(j+1)f(x)(t) ≥ T
(
µf(nj+1x)−n6f(njx)(t), µn6f(njx)−n6(j+1)f(x)(t)

)
= T

(
µf(nj+1x)−n6f(njx)(t), µf(njx)−n6jf(x)(

t

|n6|
)

)
≥ T

(
µf(nj+1x)−n6f(njx)(t), µf(njx)−n6jf(x)(t)

)
≥ T

(
ψ(njx, 0, t),Mj(x, t)

)
=Mj+1(x, t), ∀x ∈ X, t > 0.

So
µf(njx)−n6jf(x)(t) ≥M(x, t),

holds for all j ≥ 1, in particular, we have

µf(nkx)−n6kf(x)(t) ≥M(x, t), ∀x ∈ X, t > 0. (4.2.7)

Replacing x by n−(km+k)x in (4.2.7) and using the inequality (4.2.2), we have

µ
f

( x

nkm

)
−n6kf

( x

nk+km

)(t) ≥M
( x

nk+km
, t
)
≥M

(
x, αm+1t

)
,

for all x ∈ X, t > 0 and m ≥ 0. Then we have

µ
(n6k)mf

( x

nkm

)
−n6k(n6k)

m
f

( x

nk(m+1)

)(t) ≥M

(
x,
αm+1t

|n6k|m

)
≥M

(
x,
αm+1t

|nk|m

)
,
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for all x ∈ X, t > 0 and m ≥ 0. So

µ
(n6k)mf

( x

nkm

)
−n6k(m+1)f

( x

nk(m+1)

)(t) ≥M

(
x,
αm+1t

|nk|m

)
,

for all x ∈ X and t > 0.

µ
(n6k)mf

( x

nkm

)
−n6k(m+p)f

( x

nk(m+p)

)(t) ≥ T
m+(p−1)
j=m

µ
(n6k)jf

( x

nkj

)
−n6k(j+1)f

( x

nk(j+1)

)(t)


≥ T
m+(p−1)
j=m M

(
x,
αj+1

|nk|j
t

)
,

for all x ∈ X, t > 0. Since limm→∞ T∞
j=mM

(
x,
αj+1

|nk|j
t

)
= 1, for all x ∈ X, t > 0,

it follows that {(n6k)mf

(
x

(nk)m

)
} is a Cauchy sequence in the non-Archimedean

random Banach space (Y, µ, T ). Hence, we can define a mapping Q : X → Y such
that

lim
m→∞

µ
(n6k)mf

( x

(nk)m

)
−Q(x)

(t) = 1,

for all x ∈ X, t > 0. It follows that for all m ≥ 1, x ∈ X and t > 0.

µ
f(x)−(n6k)mf

( x

(nk)m

)(t) = µ∑m−1
i=0 (n6k)if

( x

(nk)i

)
−(n6k)i+1f

( x

(nk)i+1

)(t)
≥ Tm−1

i=0 (µ
(n6k)if

( x

(nk)i

)
−(n6k)i+1f

( x

(nk)i+1

)(t))

≥ Tm−1
i=0

(
M

(
x,
αi+1

|nk|i
t

))
,

and so

µf(x)−Q(x)(t) ≥ T

µ
f(x)−(n6k)mf

( x

(nk)m

)(t), µ
(n6k)mf(

x

(nk)m
)−Q(x)

(t)


≥ T

Tm−1
i=0 M

(
x,
αi+1

|nk|i
t

)
, µ

(n6k)mf

( x

(nk)m

)
−Q(x)

(t)

 ,
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taking m→ ∞ we have

µf(x)−Q(x)(t) ≥ T∞
i=1M

(
x,
αi+1

|nk|i
t

)
,

which prove (4.2.4). Since T is continuous, from a well-known result in probabilistic
metric space (see e.g., [64, Chapter 12]) it follows that

limm→∞ µDQf(x,y)(t) =

µQ(nx+y)+Q(nx−y)+Q(x+ny)+Q(x−ny)−(n4+n2)[Q(x+y)+Q(x−y)]−2(n6−n4−n2+1)[Q(x)+Q(y)](t),

for all x, y ∈ X, t > 0, where

DQf(x, y) =(n6k)mf(
nx+ y

nkm
) + (n6k)mf(

nx− y

nkm
)+

(n6k)mf(
x+ ny

nkm
) + (n6k)mf(

x− ny

nkm
)

+ (n4 + n2)(n6k)m[f(
x+ y

nkm
) + (f(

x− y

nkm
)]

− 2(n6 − n4 − n2 + 1)(n6k)m[f(
x

nkm
) + f(

y

nkm
)].

On the other hand, replacing x, y by n−kmx, n−kmy in (4.2.1) and using (4.2.2) we
get

µDQf(x,y)(t) ≥ ψ(n−kmx, n−kmy,
t

|n6k|m
)

≥ ψ(n−kmx, n−kmy,
t

|nk|m
)

≥ ψ(x, y,
αmt

|nk|m
),

for all x, y ∈ X, t > 0. Since limm→∞ ψ(x, y, αmt
|nk|m ) = 1, we show that Q is a sextic

mapping. Finally if Q
′
: X → Y is a nother sextic mapping such that

µQ
′
(x)−f(x)(t) ≥M(x, t), ∀x ∈ X, t > 0,

then, for all m ∈ N , x ∈ X and t > 0,

µQ(x)−Q
′
(x)(t) ≥ T (µQ(x)−(n6k)mf( x

|nk|m
), µ(n6k)mf( x

|nk|m
)−Q

′
(x)(t)),

Therefor, we conclude that Q = Q
′
this completes the proof.

72



CHAPTER 4. STABILITY OF CERTAIN FUNCTIONAL EQUATIONS IN
NON-ARCHIMEDAN RANDOM NORMED SPACES

Corollary 4.2.2. Let K be a non-Archimedean field, X be a vector space over K and
(Y, µ, T ) be non-Archimedean random Banach space over K under the t-norm T ∈ H.
Let f : X → Y be a ψ-approximately sextic mapping. If, for some α ∈ R with α > 0,
and some positive integer k with |nk| < α, n ≥ 2.

ψ(n−kx, n−ky, t) ≥ ψ(x, y, αt),

for all x ∈ X and t > 0. Then there exists a unique sextic mapping Q : X → Y such
that

µf(x)−Q(x)(t) ≥ T∞
i=1M(x,

αi+1

|nk|i
),

for all x ∈ X and t > 0, where

M(x, t) := T (ψ(x, 0, t), ψ(nx, 0, t), · · · , ψ(nk−1x, 0, t)),

for all x ∈ X and t > 0.

Proof. Since

lim
j→∞

M(x,
αjt

|nk|j
) = 1,

for all x ∈ X, t > 0 and T is of Hadz̆ić type, it follows that

lim
m→∞

T∞
j=mM(x,

αjt

|nk|j
) = 1,

for all x ∈ X and t > 0. Now, if we can apply Theorem 4.2.1, then we can get the
conclusion.

Example 4.2.1. Let (X,µ, TM) be a non-Archimedean random normed space in which

µx(t) =
t

t+ ∥x∥

for all x ∈ X and t > 0 and (Y, µ, TM) be a complete non-Archimedean random
normed space. Define

ψ(x, y, t) =
t

1 + t
.

It is easy to see that (4.2.2) holds for α = 1. Also, since M(x, t) =
t

1 + t
, we have

lim
m→∞

T∞
M,j=m(x,

αjt

|n|kj
) = lim

m→∞
( lim
i→∞

T i
M,j=mM(x,

t

|n|kj
))

= lim
m→∞

lim
i→∞

(
t

t+ |n|km
) = 1,

for all x ∈ X and t > 0.
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Let f : X → Y be a ψ-approximately sextic mapping. Thus all the conditions of

Theorem (4.2.1) hold and so there exists a unique sextic mapping Q : X → Y such

that

µf(x)−Q(x)(t) ≥
t

t+ |nk|
.

4.3 Mixed type functional equation in non-

Archimedean random normed spaces.

In this section we investigate the stability of the additive-quadratic functional equa-

tion (2.3.1), where f is a mapping from X to Y and f(0) = 0. since f is a sum of

an even function and an odd function, therefore f satisfies the functional equation

(2.3.1) if and only if it is additive-quadratic. Next we define a random approximately

additive-quadratic mapping. Let ψ be a distribution function on X×X× [0,∞) such

that ψ(x, y, .) is nondecreasing and

ψ(cx, cy, t) ≥ ψ(x, x,
t

|c|
) ∀x ∈ X, c ̸= 0

.

Definition 4.3.1. A mapping f : X → Y is said to be ψ-approximately additive-
quadratic if

µDsf(x,y)(t) ≥ ψ(x, y, t), ∀x, y ∈ X, t > 0, (4.3.1)

where

Dsf(x, y) : = f(2x+ y) + f(2x− y)− 2[f(x+ y) + f(x− y)]

− 2[f(x) + f(−x)] + [f(y) + f(−y)],

for all x, y ∈ X and t > 0.
In this section, we assume that 2 ̸= 0 ( i.e. the characteristic of K is not 2).
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Theorem 4.3.1. Let f : X → Y be an even and ψ-approximately additive-quadratic
function. If, for some α ∈ R with α > 0 and for some positive integer k with |2k| < α.

ψ(2−kx, 2−ky, t) ≥ ψ(x, x, αt), (4.3.2)

and

lim
n→∞

T∞
j=nM

(
x,

αjt

|2|kj

)
= 1, (4.3.3)

for all x ∈ X and t > 0, then there exists a unique quadratic mapping Q : X → Y
such that:

µf(x)−Q(x)(t) ≥ T∞
i=1M

(
x,
αi+1t

|2|ki

)
, (4.3.4)

for all x ∈ X and t > 0, where

M(x, t) := T
(
ψ(x, 0, t), ψ(2x, 0, t), · · · , ψ(2k−1x, 0, t)

)
,

for all x ∈ X and t > 0.

Proof. The proof is similar to prove of Theorem (4.2.1)

In Theorem (4.3.1), if f is an odd mapping, then the following theorem can be

proved similarly.

Theorem 4.3.2. Let f : X → Y be an odd and ψ-approximately additive-quadratic
function. If, for some α ∈ R with α > 0 and for some positive integer k with |2k| < α.

ψ(2−kx, 2−ky, t) ≥ ψ(x, x, αt),

and

lim
n→∞

T∞
j=nM

(
x,

αjt

|2|kj

)
= 1,

for all x ∈ X and t > 0, then there exists a unique additive mapping Q : X → Y such
that:

µf(x)−Q(x)(t) ≥ T∞
i=1M

(
x,
αi+1t

|2|ki

)
,

for all x ∈ X and t > 0, where

M(x, t) := T
(
ψ(x, 0, t), ψ(2x, 0, t), · · · , ψ(2k−1x, 0, t)

)
,

for all x ∈ X and t > 0.
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Corollary 4.3.3. Let K be a non-Archimedean field, X be a vector space over K and
(Y, µ, T ) be non-Archimedean random Banach space over K under the t-norm T ∈ H.
Let f : X → Y be an even and ψ-approximately additive-quadratic mapping. If, for
some α ∈ R with α > 0, and some positive integer k with |2k| < α.

ψ(2−kx, 2−ky, t) ≥ ψ(x, y, αt),

for all x ∈ X and t > 0. Then there exists a unique quadratic mapping Q : X → Y
such that

µf(x)−Q(x)(t) ≥ T∞
i=1M(x,

αi+1

|2k|i
),

for all x ∈ X and t > 0, where

M(x, t) := T (ψ(x, 0, t), ψ(2x, 0, t), · · · , ψ(2k−1x, 0, t)),

for all x ∈ X and t > 0.

Proof. Since

lim
j→∞

M(x,
αjt

|2k|j
) = 1,

for all x ∈ X, t > 0 and T is of Hadz̆ić type, it follows that

lim
n→∞

T∞
j=nM(x,

αjt

|2k|j
) = 1,

for all x ∈ X and t > 0. Now, if we can apply Theorem (4.2.1), then we can get the
conclusion.

Example 4.3.1. Let (X,µ, TM) be a non-Archimedean random normed space in which

µx(t) =
t

t+ ∥x∥

for all x ∈ X and t > 0 and (Y, µ, TM) be a complete non-Archimedean random
normed space. Define

ψ(x, y, t) =
t

1 + t
.

It is easy to see that 4.3.2 holds for α = 1. Also, since M(x, t) =
t

1 + t
, we have

lim
n→∞

T∞
M,j=n(x,

αjt

|2|kj
) = lim

n→∞
( lim
i→∞

T i
M,j=nM(x,

t

|2|kj
))

= lim
n→∞

lim
i→∞

(
t

t+ |2|kn
) = 1,

for all x ∈ X and t > 0.
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Let f : X → Y be an even and ψ-approximately additive-quadratic mapping.

Thus all the conditions of Theorem (4.3.1) hold and so there exists a unique quadratic

mapping Q : X → Y such that

µf(x)−Q(x)(t) ≥
t

t+ |2k|
.
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Conclusion

In this thesis we conclude that it is possible to prove stability of this sextic function

f(nx+ y) + f(nx− y) + f(x+ ny)+f(x− ny) = (n4 + n2)[f(x+ y) + f(x− y)]

+ 2(n6 − n4 − n2 + 1)[f(x) + f(y)],

and this additive-quadratic functional equation

f(2x+ y) + f(2x− y) = 2[f(x+ y) + f(x− y)] + 2[f(x) + f(−x)]− [f(y) + f(−y)],

in random normed spaces and various random normed spaces by direct method and

fixed point method.

In Chapter 2, we prove stability of a sextic functional eqution and an additive-

quadratic funcional equation above in random normed spaces via direct method under

arbitrary t-norms and via fixed point method undrt min t-norm. In Chapter 3,

we prove stability of the same sextic functional eqution and an additive-quadratic

funcional equations in intuitionistic random normed spaces via direct and fixed point

methods. In chapter 4, we prove stability of the same functional equtions in non-

Archimedean random normed spaces via direct method.

78



ACRONYMS

Acronyms

AQCQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . additive-quadratic-cubic-quartic

AQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . additive-quadratic

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hadz̆ić-type

IRN-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . intuitionistic random normed space

RN-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random normed space

△+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . space of all distribution functions

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . involutive negation

τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . binary operation on △+

t-conorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . triangular conorm

t-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . triangular norm

TL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Lukasiewicz t-norm

TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . minimum t-norm

(X,µ, T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random normed space
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Symbols

△+, 5

D+, 5

H, 3

(r, t)-topology, 6

R-bounded, 7

t-conorm, 1

t-norm, 1

L∗, 8

TD, 2

TL, 2

TM , 2

TP , 2

SD, 2

SL, 2

SM , 2

SP , 2

A

Additive-quadratic, 22

89



INDEX

C
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Compact, 7

Continuous t-norm, 3

Continuous t-representable, 8

Contractive mapping, 13

D

Direct method, 17

Distribution function, 5

E

Equicontinuous, 3

F

Fixed point method, 30, 31

G

Generalized metric, 13

H

Hadz̆ić-type, 3

Hausdorff space, 7

I

Intuitionistic random norm, 8
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O

Open ball, 6

Open set, 6

R

Random normed space, 5

RN-space, 5

S
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[32] O. Hadz̆ić, E. Pap, Fixed point theory in PM spaces, Kluwer Academic Publish-

ers, Dordrecht (2001).
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