حت شترل

Investigation on an Intermittent Absorption Refrigeration prototype powered by Solar Irradiation

Prof Haroun A.K. Shahad

Babylon University

Email:hakshahad@yahoo.com

Received 22 September 2015

(10) D

Dhafer A. Hamzah
Al-Qadyisiah University

Email: thaaferawee@yahoo.com

Accepted 12 October 2015

ABSTRACT

In this study, a design and fabrication of intermittent solar absorption refrigeration unit was performed at Hillah city in Iraq(32.4°, 44.4°). The absorption solar unit consists of parabolic trough concentrator (PTC) was used as solar rays mirror reflector with aperture area of 2 m², carbon steel pipe inside a vacuum glass envelop with a diameter of 1.5 in as tubular receiver, condenser, storage tank, evaporator. The aqua ammonia solution(NH₄OH)is used as working fluid with different concentration (25%, 30%, 35%, 40%). The validity and visibility of the unit were evaluated by measurements of pressures and temperatures at different parts of the unit during a year from May month 2014 to July month 2015. The maximum pressure and temperature is found to be 12 bar and 120°C respectively. The coefficient of performance was in the range of 0.01-0.09.

Key words: Solar, Refrigeration, Absorption

الخلاصة

في هذه الدراسة ,تم انجاز تصميم وبناء منظومة تبريد امتصاصية تعاقبية في مدينة الحلة في العراق 44.4°) (32.4° الوحدة الشمسية الامتصاصية تتكون من مركز على شكل حوض قطع مكافئ يستخدم كمرأة عاكسة للاشعة الشمسية بمساحة فتحة 2 م², انبوب من الحديد الكربوني داخل غلاف زجاجي مفرغ من الهواء بقطر 1.5 انج يعمل كمستلم انبوبي. يستخدم محلول هيدروكسيد الامونيوم كمائع تشغيل بتركيز مختلف (25,30%,35%). تحقيق ووضوح الوحدة قيم من خلال قياسات للضغوط ودرجات الحرارة خلال سنة من شهر ايار 2014 الى شهر تموز 2015 . اقصى ضغط ودرجة حرارة وصل ال 16 بار و 150 درجة سيليليزية. معامل الاداء كان يتراوح من 0.01 الى 0.09.

Nomenclature

A Aream ²	m Masskg
Cp heat capacitykJ/kg.K	PTSC Parabolic trough solar concentrator
Coefficient of performance	Q _R Heat received from solar radiationMJ
CPC Compound parabolic concentrator	Qev Cooling capacityMJ
G Solar radiation	t Times