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Abstrak 

Kaedah analisis diskriminan linear (RLDA) teguh menjadi pilihan yang lebih baik 

untuk masalah pengklasifikasi berbanding dengan analisis diskriminan linear (LDA) 

klasik disebabkan kemampuan kaedah tersebut dalam mengatasi isu titik terpencil. 

LDA klasik bergantung kepada penganggar lokasi dan skala yang biasa iaitu min 

sampel dan kovarians matriks. Sensitiviti penganggar ini ke arah data terpencil akan 

menjejaskan proses pengelasan. Untuk mengurangkan isu ini, penganggar teguh 

lokasi dan kovarians dicadangkan. Sehubungan itu, dalam kajian ini, dua RLDA 

untuk pengelasan dua kumpulan telah diubah suai menggunakan dua penganggar 

lokasi yang amat teguh yang dinamakan Penganggar-M satu langkah terubahsuai 

(MOM) dan Penganggar-M satu langkah terubahsuai terwinsor (WMOM). Satu 

penganggar skala yang amat teguh, Qn, disepadukan dalam kriteria pemangkasan 

MOM dan WMOM, menghasilkan dua RLDA yang baharu yang masing-masing 

dikenali sebagai RLDAMQ dan RLDAWMQ. Dalam pengiraan RLDA yang baharu, min 

biasa digantikan dengan MOM-Qn dan WMOM-Qn. Prestasi kaedah RLDA baharu 

diuji ke atas data simulasi begitu juga data sebenar, dan seterusnya dibandingkan 

dengan LDA klasik. Bagi data simulasi, beberapa pemboleh ubah telah dimanipulasi 

untuk mewujudkan pelbagai keadaan yang sering berlaku dalam kehidupan sebenar. 

Pembolehubah tersebut ialah kehomogenan kovarians (sama dan tidak sama), saiz 

sampel (seimbang dan tidak seimbang), dimensi pembolehubah, dan peratus 

pencemaran. Secara umumnya, keputusan menunjukkan bahawa prestasi RLDA 

baharu adalah lebih baik daripada LDA klasik dari segi purata ralat kesilapan 

pengelasan, walaupun RLDA yang baharu mempunyai kelemahan iaitu memerlukan 

lebih banyak masa pengiraan. RLDAMQ memberi hasil yang terbaik pada saiz sampel 

seimbang manakala RLDAWMQ lebih baik dari yang lainnya pada keadaan saiz sampel 

tidak seimbang. Apabila data kewangan yang sebenar dipertimbangkan, RLDAMQ 

menunjukkan keupayaan dalam menangani data terpencil dengan ralat kesilapan 

pengelasan yang paling kecil. Sebagai penutup, kajian ini telah mencapai objektif 

utama iaitu untuk memperkenalkan RLDA baharu untuk mengklasifikasi data multi 

pembolehubah dua kumpulan dengan kehadiran titik terpencil. 

 

Kata kunci: Ralat kesilapan pengelasan, Penganggar-M satu langkah terubahsuai, 

Data terpencil, Analisis diskriminan linear teguh, Terwinsor. 
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Abstract 

Robust linear discriminant analysis (RLDA) methods are becoming the better choice 

for classification problems as compared to the classical linear discriminant analysis 

(LDA) due to their ability in circumventing outliers issue. Classical LDA relies on the 

usual location and scale estimators which are the sample mean and covariance matrix. 

The sensitivity of these estimators towards outliers will jeopardize the classification 

process. To alleviate the issue, robust estimators of location and covariance are 

proposed. Thus, in this study, two RLDA for two groups classification were modified 

using two highly robust location estimators namely Modified One-Step M-estimator 

(MOM) and Winsorized Modified One-Step M-estimator (WMOM). Integrated with a 

highly robust scale estimator, Qn, in the trimming criteria of MOM and WMOM, two 

new RLDA were developed known as RLDAMQ and RLDAWMQ respectively. In the 

computation of the new RLDA, the usual mean is replaced by MOM-Qn and 

WMOM-Qn accordingly. The performance of the new RLDA were tested on 

simulated as well as real data and then compared against the classical LDA. For 

simulated data, several variables were manipulated to create various conditions that 

always occur in real life. The variables were homogeneity of covariance (equal and 

unequal), samples (balanced and unbalanced), dimension of variables, and the 

percentage of contamination. In general, the results show that the performance of the  

new RLDA are more favorable than the classical LDA in terms of average 

misclassification error for contaminated data, although the new RLDA have the 

shortcoming of requiring more computational time. RLDAMQ works best under 

balanced sample sizes while RLDAWMQ surpasses the others under unbalanced sample 

sizes. When real financial data were considered, RLDAMQ shows capability in 

handling outliers with lowest misclassification error. As a conclusion, this research 

has achieved its primary objective which is to develop new RLDA for two groups 

classification of multivariate data in the presence of outliers. 

 

Keywords: Misclassification Error, Modified One-Step M-Estimator, Outliers, 

Robust linear discriminant analysis, Winsorized. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview 

Statistical classification techniques are basically of two types; cluster analysis and 

discriminant analysis. In cluster analysis, the rule to classify and the independent 

variables that describe the classification of the object are known but the category of 

the object is not known. Whereas, in discriminant analysis the object groups and 

several training examples of objects that have been grouped are known and the model 

of classification is also given. Discriminant analysis is one of the methods that give 

more information to the structure of multivariate data; which are data arising from variables 

greater than one (Fidler & Leonardis, 2003). The construction of a discriminant 

procedure comes from a training sample used for classifying every member of the 

sample. One of the primary objectives of discriminant analysis is to make inference 

about the unknown class membership of a new observation.  

As stated in Chen and Muirhead (1994), distributional assumptions on the observation 

which involves the measurement of groups separately and the examination of the 

properties of the intended algorithms are the major root of statistical considerations in 

discriminant analysis. These rationales form the two stages of separation and 

allocation of the discriminant analysis. The separation stage is aimed to obtain 

functions known as discriminant functions which can conveniently make a separation 

of the groups, while the allocation stage involves assigning an unclassified object to 

one of the given groups using discriminant functions. On the other hand, the most 

crucial stage is the separation stage where the outcomes on the discriminant analysis 

are determined (Yan & Dai, 2011). 
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The main application of discriminant analysis is for the classification of objects, 

which may include but not limited to classification of things, people, customers, 

amongst others, into certain subsets of a given population. These subsets may be 

groups of two or more based on certain features of the population, such as, gender, 

income, height, etc. Generally, an object is assigned into subgroups based on the 

observed properties of the object. Hence, discriminant analysis can be said to predict 

the membership in a set or population based on the values observed on a number of 

continuous variables. This analysis specifically predicts a classification of dependent 

variables, with respect to given continuous independent responses. Therefore, it can 

be said that the discriminant analysis data consists of sample observations with given 

group membership alongside their continuous variables values.  

For instance, considering an attempt to make a classification of a set of graduated 

students into two groups: students that graduated in five years or less and students 

who did not. The continuous variables could be chosen as undergraduate grade point 

average and examining the prediction model can give insights on each variable 

individually and in combination predicted the non-completion or completion of the 

program. Likewise, the classification can be made of loan applicants into risk 

categories: bad, moderate and good. Also, the continuous variables here can be 

income, age, years in current job and debt burden for the prediction of the credit risk 

category of each individual. Similarly, a predictive model can be developed for the 

classification of an individual into a certain risk category using discriminant analysis. 

There are certain assumptions associated with discriminant analysis, one of these 

assumptions includes being highly sensitive to outliers and the number of predictor 

variables must be less than the size of the smallest group. Other major assumptions 

include multivariate normality, constant variance and homogeneous covariance 
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matrices, independent variables should be correlated to the dependent variable only 

and not itself, linear relation between independent variables and all cases must be 

independent (Sajtos & Mitev, 2007). Interesting application areas of discriminant 

analysis is seen to be found in almost all scientific and traditional fields, ranging from 

health to social sciences, economy to industry, amongst many others (Cacoullos, 

2014). It likewise has been introduced in recent interdisciplinary areas like data 

mining and pattern recognition (McLachlan, 2004). Certain features of a discriminant 

analysis platform includes the choice of fitting methods which ranges from linear, 

quadratic, regularized and wide linear. This births the following common discriminant 

analysis methods; Linear Discriminant Analysis (LDA), Quadratic Discriminant 

Analysis (QDA) and Logistic Regression (LR). 

Under LDA we assume that the density for a specific variable X, given every class k is 

following a Gaussian distribution. In LDA, you simply assume for different k that the 

covariance matrix is identical. By making this assumption, the classifier becomes 

linear. QDA is not really that much different from LDA except that you assume that 

the covariance matrix can be different for each class and so, we will estimate the 

covariance matrix separately for each class. The only difference of LDA from QDA is 

that we do not assume that the covariance matrix is identical for different classes. On 

the other hand, logistic regression for classification is a discriminative modeling 

approach, where we estimate the posterior probabilities of classes 

given X directly without assuming the marginal distribution on X. Recall that the 

model of LDA satisfies the assumption of the linear logistic model. Therefore, the 

difference between logistic regression and LDA is that the linear logistic model only 

specifies the conditional distribution of the variable while the LDA model specifies its 

joint distribution. 
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The focus of this study however is on the implementation of LDA. Certain advantages 

attuned to LDA for data classification includes the ability to easily handle cases such 

as class frequencies within the dataset of an unequal where their performances are 

based on randomly generated data (Balakrishnama & Ganapathiraju, 1998). Similarly, 

when using LDA the limitation of all classes of the dataset having equal variance can 

be easily bypassed in a case where the confidence interval for the classes are defined 

differently (Khan Mohammadi, Garmarudi & De la Guardia, 2013). 

Also, in a situation where the distribution of the samples are not known for certain, it 

is more advisable to use the easy to implement, straightforward LDA approach, since 

the adoption of the other discriminant analysis methods (QDA, RDA, LR) does not 

guarantee the best results from the dataset (Martínez & Kak, 2001). This is evident in 

the wide adoption of LDA in fields ranging from engineering (Jin, Zhao, Chow & 

Pecht, 2014), action and image recognition (Yan, Ricci, Subramanian, Liu & Sebe, 

2014), applied statistics (Estoup, Lombaert, Marin, Guillemaud, Pudlo, Robert & 

Cornuet, 2012) amongst many others. 

 

1.2 Linear Discriminant Analysis (LDA) Method 

The LDA has been the mostly adopted technique of dimensionality reduction with the 

main aim of projecting a dataset on a lower-dimensionality space with a reasonable 

class separation to avoid overfitting and also reduce the cost of computation 

(Raschka, 2014). The LDA as introduced by Fisher (1936) is a very imperative and 

archetypal technique in discriminant analysis as it has good use in practical 

applications. Other discriminant analysis methods which can be used to generate 

discriminant functions include support vector, flexible discriminant, support vector 

machine (Santos, Guyomarch, & Bruzek, 2014; Arjmandi & Pooyan, 2012). 
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Originally, LDA was described for a two-class problem but was later generalized by 

Rao (1948) to multi-class linear discriminant analysis suitable for adoption in a multi-

group setting or for the analysis of multivariate data. As aforementioned, LDA 

performs dimensionality reduction whereas time preservation on the class information 

is likewise possible. Hence, for the initial description of LDA for two classes, it is 

assumed that the N-dimensional set samples is given as
      1 2

,  ,  ..., ;  1,2iN
x x x i  , 

whereas 1N  belong to class say 1  and 2N  to 2  which can obtain a scalar y  by 

introducing x  samples in the line. However, in its multi-class modification, Fisher 

(1936) generalizes for problems within the multi-class which are the type of problems 

under consideration in this study. Now, instead of a single projection y , we now aim 

to obtain say  1k   projections  1 2 1,  ,  ..., ky y y 
 for k  classes using  1k   projection 

vectors denoted iw  (where 1,2, , 1i k  ) that can be rewritten by columns into a 

projection matrix  1 2 1| | ... | kW w w w   such that 1 1

Ty w x  which implies that 

Ty W x . Details on the derivation for the Fisher’s LDA will be discussed in the 

following chapter. 

Since, the major goal of LDA is for the detection of the group of a test object within 

the class or the group with its closest mean. Thus, if population is of multivariate 

normal and the different groups have same covariance then LDA will perform better 

(Pohar, Blas & Turk, 2004). The fundamental concept of LDA is for the classification 

of an object or population to one or more classes or subgroups with respect to a 

measurement vector (discriminator) (Alrawasdeh, Sabri & Ismail, 2012). A 

combination of the available data sets, which are samples of objects, may be made for 

the enhancement of the understanding of the groups’ differences.  
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In a practical environment, LDA parameters are unknown and there is a need to 

estimate these parameters from the sample data. Conventionally, the rules of 

discriminant analysis are most times based on the covariance matrix and the empirical 

mean of the sample data. However, discriminant analysis has a high level of 

vulnerability to outliers which is seen to be present in many real world multivariate 

data sets (Sajtos & Mitev, 2007). This is likewise the case when considering LDA, 

which due to the constraint that the LDA parameters are highly affected by outlying 

observations gives room for misclassification of new observations (Kim, Magnami & 

Boyd, 2006; Pires & Branco, 2010; Jin & An, 2011).  

Other limitations of LDA includes not being able to produce more than 1k   

projections, that is, if the classification error estimates state that additional 

characterizes are required, there is a need to adopt another method to provide these 

characterizes (Li & Yuan, 2005). Also, if the distributions are significantly non-

Gaussian, none of the complex structures of the data which may be needed for 

classification will be preserved by the LDA projections (Yu, 2011). LDA will also not 

perform well if the discriminatory information is within the variance of the data and 

not the mean. These setbacks make part of the reasons why researchers ventured into 

introduction of robust estimators which will most importantly handle the presence of 

outliers (Cheng, Li, Lai, Song & Yu, 2016). 

The major advantage for the introduction of the robust methods is due to the fact that 

most of the practical real world application data sets are made up a large number of 

variables and observations. In the process of treating these real-life data, certain 

irregularities termed as outliers are observed. The concept for robustifying LDA 

initially involved the replacement of the classical mean vectors and covariance 
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matrices by its robust counterparts. This approach was called the plug-in method 

(Zollanvari & Dougherty, 2015).  

There are numerous alternative estimators available to replace the classical sample 

mean vector and covariance matrix estimators. Some are more computationally 

extensive then others, and differences with regard to various theoretical properties 

may be exhibited as well. However, the simplest way to create a resistant multivariate 

estimator is to address each coordinate individually. Following the lead of univariate 

location estimation, the sample mean is replaced by the more resistant median for 

each of the variables. The dispersion matrix estimator becomes a covariance 

calculation that is centered by this coordinate-wise median. This coordinate-wise 

approach is adopted with a number of location statistics, such as the M-estimator, the 

Modified one-step M-estimator (MOM) and its winsorized counterpart as adopted in 

this research for example.  

A wide range of robust estimators exist and have been adopted for handling the 

outliers in the data that the conventional LDA approach cannot handle (Filzmoser & 

Todorov, 2013; Todorov & Pires, 2007), ranging from the M-estimators, minimum 

volume ellipsoid (MVE), minimum covariant determinant (MCD) and S-estimators as 

introduced by Campbell (1980), Rousseeuw (1984, 1985) and Davies (1987) 

respectively. However, some other important robust location estimators were 

highlighted in the work of Haddad (2013) which effectively take into consideration 

the possible shapes of the data distribution. These includes the trimmed mean suitable 

for adoption to datasets with symmetrical distribution  (Pei, 2002) and the Hodges-

Lehmann location estimator (Brown & Kildea, 1978), a median based estimator that 

does not implement trimming to deal with outliers. 
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Past literatures have displayed the effective adoption of these robust estimators; the 

trimmed mean and Hodges-Lehmann (Abu-Shawiesh & Abdullah, 2001; Alfaro & 

Ortega, 2008). Although the latter (Hodges-Lehmann) is quite effective but only in 

cases where the distribution is just slightly heavier tailed because in situations where 

the distribution is heavily tailed, the performance is not as impressive. In same vein, 

the trimmed mean has high dependence on the percentage choice of omitted objects in 

the computation (Alfaro & Ortega, 2008) whereas it is important to ensure that 

trimming is performed in such a way that there is no loss of information (Othman, 

Keselman, Padmanabhan, Wilcox & Fradette, 2004) and this led to the introduction of 

the Modified One-Step M-Estimator (MOM) by Wilcox and Keselman (2003). The 

MOM estimator is an estimator that is suitable for adoption with datasets having 

asymmetrical distributions. The MOM estimator is a robust estimator with high 

breakdown point which performs trimming (deleting proportion of extreme values) 

with respect to the distribution as it empirically investigates the need to trim an 

observation or not, as well as the amount of trimming required. 

These characteristics inform the use of MOM. However, since the focus of this work 

is to obtain more accurate analysis, the MOM estimator is winsorized hence also 

utilizing the Winsorized Modified One-Step M-Estimator (WMOM) (Ali, Yahaya and 

Omar, 2013; Haddad, Yahaya and Alfaro, 2012). Certain modifications will be made 

when adopting both the MOM and WMOM, which includes introducing the robust 

scale estimator ( nQ ) and the winsorized covariance matrix. 

When performing any statistical analysis, it is very insightful to adopt diagnostic 

procedures in assessing how efficient the analysis is and in this work the verification 

procedure will involve analyzing the misclassification error using cross-validation 
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approach (Klaus, 2013). A certain rule will be stated to define the acceptable 

misclassification error and this analysis will be the yardstick in determining the 

improvement ratio of these newly adopted concepts in comparison to other existing 

results in literature. 

However, this research intends to introduce new approaches for robustifying linear 

discriminant analysis with real life application data considered from previously 

existing literature. Comparison between the robust approaches and the classical LDA 

are made.  

 

1.3 Problem Statement 

LDA is one of the conventional approaches adopted in discriminant analysis and the 

procedures in these traditional approaches have been seen to suffer from a major lack 

of robustness, as the presence of outliers gives room for less accurate computations 

(Ayanendranath, Smarajit & Sumitra, 2004; Cheng et al., 2016). Due to the constraint 

that LDA parameters are highly affected by outliers which gives room for 

misclassification of new observations (Kim, Magnami & Boyd, 2006; Jin & An, 

2011; Okwonu & Othman, 2013), obtaining robust alternatives to the discriminant 

rules has been put in place. This involves replacing usual estimates of parameters by 

robust ones (Ali & Yahaya, 2013; Yahaya, Ali & Omar, 2011). 

The distribution mean which involves measuring the location and the variance-

covariance which is about the shape measurement are the two statistics commonly 

implemented for data analysis when outliers are present (Ben-Gal, 2005; Rousseeuw 

and Leory, 1987). Also, the introduction of the multidimensional distribution 

parameters of the robust estimators will improve detection procedures in presence of 
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outliers’ performances. Earlier studies (Tiku & Balakrishnan, 1984; Campbell, 1980; 

Randles, Brofitt, Ramberg & Hogg, 1978; Ahmed & Lachenbruch, 1977) considered 

the use of robust estimator, but of low breakdown point estimators. The results of 

these estimators however were not encouraging and within a close interval of time, 

research started springing up to handle this drawback by adopting equivariant 

estimators with high breakdown point and this approach gave more encouraging 

results (Ali, Yahaya & Omar, 2015; Nkiruka, Onyeagu & Okeke, 2015; Lim, Yahaya, 

Idris, Ali & Omar, 2014; Croux & Dehon, 2001). Among the introduced concepts in 

robust LDA is the MOM and its winsorized counterpart known as WMOM (Yahaya, 

2005). These two estimators are going to be the focus of this study with comparison 

being made to the classical form of analyzing linear discriminant models.  

A well-adapted approach for handling outliers is the robust concept known as 

trimming. There are two type of trimming approaches namely symmetrical and 

asymmetrical trimming. The former approach is to trim symmetrically both left and 

right tail of the data based on the predetermined amount. On the other hand, the latter 

approach trimmed data based on the distribution of the data (Xao, Yahaya, Abdullah 

& Yusof, 2014). The amount of trimming is based on either predetermined or 

empirically determined. However, the predetermined trimming will be unnecessary 

when the data is normal, trimming based on the former approach will trim the data 

regardless of the shape, not in the case of the latter. One estimator using the latter 

approach is MOM. MOM is a location estimator which is winsorized for obtaining 

better results and hence the newly introduced WMOM (Haddad, Yahaya & Alfaro, 

2012) which goes a step further from the MOM by performing a replacement of the 

largest and smallest values of the continuity of the consistent data after trimming has 

taken place using the MOM criteria (Haddad, 2013). Yahaya, Lim, Ali and Omar 
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(2016a, 2016b) adopted these concepts of trimming and winsorizing to deal with 

outliers where simulated and real financial data were used to test the performance of 

their proposed methods. In the separate woks, the authors estimated the covariance 

matrix for the robust estimators using a product of the conventional spearman 

correlation coefficient and the rescaled median absolute deviation to form a new 

robust discriminant rule. These new discriminant rules (Yahaya et al., 2016a; 2016b) 

performed better when the performance (in terms of misclassification error) was 

compared with the conventional LDA and existing modified robust LDA models in 

literature. However, it is important to also consider other approaches of developing 

new robust discriminant rules with better accuracy than previously existing robust 

models in literature. Therefore, in a nutshell this study will be implementing the 

coordinate-wise robust estimators in linear discriminant analysis by introducing high 

accuracy scale estimators with efficiency measured by analyzing the misclassification 

error using cross-validation approach. 

 

1.4 Objectives of the Study 

1. To develop modified LDA models using two estimators, that is, the Modified 

one-step M-estimator (MOM) and Winsorized Modified One-Step M-

Estimator (WMOM) as the robust location and nQ  as the scale measure 

respectively. 

2. To compare the performance of the proposed robust LDA with the classical 

LDA based on the average misclassification error and the computational time 

via simulation. 

3. To apply the proposed robust LDA on real financial data. 



12 
 

1.5 Significance of the Study 

This study is aimed at adopting two newly introduced location estimators for 

robustifying LDA referred to as the MOM and its winsorized counterpart WMOM. 

These estimators were chosen due to ability to perform trimming so well and thereby 

reducing the volume of information or data that goes to waste. Therefore, more 

encouraging results are expected to be obtained in comparison to the classical 

approaches and also other estimators adopted for robust LDA in previous literature. 

The study contribution focuses on knowledge development in statistical classification 

techniques especially within LDA.  LDA is extensively used in engineering, action 

and image recognition, applied statistics amongst many other vast research areas. 

However, when working with large number of quality characteristics the presence of 

outliers is unavoidable, and this situation will cause the result to be misrepresented.  

This problem can be rectified when robust LDA based on two robust estimators are 

considered, that is, MOM and WMOM. The advantage of using the proposed robust 

LDA is because there would be no restrictions by the normality assumption which is 

the conventional requirement of the traditional LDA. This implies that the original 

data can be worked with without bothering about the shape of the distributions.  

 

1.6 Scope of the Study 

This study considers robustifying LDA only. Likewise, just two robust estimators are 

considered, which are, MOM and WMOM. Two robust scale estimators are integrated 

in the modifications which are the robust nQ  estimator and the winsorized covariance 

matrix. The application of the LDA approach uses Fisher techniques in comparison to 
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the newly constructed robust estimators. The application problem is limited to real 

financial data from just one selected field of study. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Discriminant Analysis 

Discriminant analysis is used in multivariate analysis as a statistical tool for 

separating unique sets of observations or objects with respect to multivariate data 

(Härdle & Simar, 2012). This analysis is mainly used when assigning a data unit into 

a specific category or population group as a result of specific features or 

measurements. One of the traditional techniques proposed for discriminant analysis 

was done by Fisher (1936) which can be used to analyze group differences in 

multivariate study (Harlow 2014; Press, 2012; Betz, 1987). Basically, the analysis is 

used for explanatory purposes where there are need to identify, describe and 

comprehend unique differences among group members. It can also identify the set of 

continuous function that will be best characterized or capture group differences. 

Likewise, it is used to define group differences dimensionality which is similar to the 

definition of continuous variables dimensionality in factor analysis. Most importantly, 

it provides a comprehensive description of group differences of results obtained from 

variance multivariate analysis (Stevens 2012; Borgen & Seling, 1978). These 

aforementioned benefits of discriminate analysis proved it as an imperative tool for 

predictive analysis. 

The predictive nature of discriminate analysis has made it as a useful tool for objects 

classification and categorization. This permits classification and categorization of 

group membership in form of predictor scores combination or best linearity outcome 

(Lee & Choi, 2013). There is similarity between multiple regression and discriminant 

analysis where both are used for continuous variable prediction in order to 
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comprehend better differences in group members. However, multiple regressions 

differs to discriminant analysis in terms that multiple regression function on 

continuous criterion of variables while discriminant analysis function on categorized 

criterion with respect to group membership. In other words, multiple-regression is 

suitable when there is a continuous dependent variable whereas discriminant analysis 

is suitable for categorized dependent variable with more than two levels (Cohen, 

Cohen, West & Aiken, 2013). 

In summary, it can be inferred that discriminant analysis has lots of applications to 

both applied and theoretical cases. The analysis can be used for behavioural 

dynamism and comprehension of changes dues to their group differences and nature.  

This analysis is based on an equation known as discriminant function for membership 

prediction as shown in studies such as Morrison (1976), Ender (2014) and Guh, Shiue 

and Yu (2014). These studies were all based on Fisher (1936) discriminant function 

that can distinguish two multivariate normal features with the aid of variance matrix. 

It can also be expended to new samples in order to identify high-risk members with a 

category or class (Damico, Nettleton, Damico & Nelson, 2014). An example of this is 

the prediction of dropout within an education intervention of those that will relapse 

during smoking cessation intervention (Kao, Lee & Tai, 2015).   

 

2.1.1 Discriminant Function 

From the above section, it has been established that discriminant analysis is used for 

predictive features and it produces linear functions which enable researchers to 

identify and comprehend members differences within their groups (Cohen et al., 

2013). The generalized expression for linear equation is given as Y Xb    where 

  is the error term, while the linear multiple regression is: 
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1 1 2 2
ˆ

p pY b X b X b X a                                (2.1) 

In the above equation, 1b through pb  are known as the weights value of variable X , 

while a  is the constant (as expressed in the Y  intercept within the regression line) 

where Y  is the prediction continuous variable. For the prediction of Y, the least 

squared errors are used which is based on the selections of weights chosen to 

minimize the squared errors in the prediction for the variable of Y  and the other 

variable of Y . In the same manner, the linear equation which is the fundamental part 

of discriminant analysis known as the discriminant function is given as: 

1 1 2 2 p pD b X b X b X a                     (2.2) 

This is the derivation of linear equation which is based on discriminant analysis where 

D the predictable is categorized variable and it defines other group membership. Ds

can also be known as the group centroids which are formed based on each group 

maximize weight means using the discriminant analysis. In other word, this is the 

weights selected to handle the maximize ratio of the sum of squares within groups to 

the sum of the squares (Uray, 2008). In practice, it is found that similar variable have 

smaller weights whereas different variables have greater weights. It is important to 

observe that this technique focus more on group differences than group similarities.  

Thus, it can be seen that a discriminant analysis produces a discriminant function 

which is applied to variables and the resultant weights pinpoint the important of each 

variable to its group differences and its contribution within the group.  Likewise, the 

method depicts the significant function of a variable in a group and to each member’s 

in the group (Vapnik, 2013). For explanatory purpose, associated error term and 

significant function are used which enhance group differences nature. On the other 
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hand, calculation and comparison on each individual group centroids are done to 

determine the group member probabilities for predictive purposes (McGarigal, 

Cushman & Stafford, 2013). 

As multiple regression equation is used for the calculation of prediction of score 

based on criterion on each subject, discriminant function is also used to compute 

discriminant score for individual members. Furthermore, the general express of linear 

equation (Y Xb   ) and it can be seen that each variable are multiplied with 

resultant discriminant weight on each scores. In addition, it can be seen that raw score 

multiplication with unstandardized weights will generate discriminant score as of the 

original variable. Similarly, a standardized weights multiplication with standard score 

will generate standard score unit discriminant (Harlow, 2014). Based on this fact, the 

calculation of discriminant score standardization can be obtained for the thi  individual 

as 

1 1 2 2i i i p piD b X b X b X a                     (2.3) 

For better comprehension of the fundamental of centroid, assume that the 

dissemination of members’ discriminant scores of a group is taken to be the set of 

continuous scores then there will be certain distribution with mean of standard 

deviation. This mean is referred as the group centroid and it is determined by 

introducing the weights’ discriminant of the group means on each variable. Similarly, 

the discriminant function produces the maximize difference between the group 

centroids. Thus, minimize intersection between the scores groups’ distributions. This 

pictures the important of the need to implement discriminant scores and centroids in 

the prediction of group membership and the major issue here is the enhancement of 

classification and categorization. 
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2.2 Linear Discriminant Analysis (LDA) 

The previous section has introduced the fundamental concept, benefits and application 

of discriminant analysis. It has pointed to Fisher LDA as one of the classical approach 

used in discriminant analysis (Fisher, 1936). Thus, these sections deeper present the 

method of LDA with theoretical and application implications.  

 

2.2.1 Fisher LDA 

Basically in discriminant analysis the criteria for class separation are expressed in 

respect to within-class and between-class scatter matrices which is in the form of a 

covariance matrix and are invariant under coordinate shifts. 

For a defined dataset 𝑥 ∈ R𝑚×𝑛  describing n  samples 1, , nx x  of c  classes

1, , cC C . Then, each sample 𝑥𝑖 ∈ 𝑅𝑚  has an assigned class label  1, , c     

describing to which class it belongs. All those expressions are combined in the class 

label list 1 ∈ 𝑅𝑛 . If the classes are well separated clusters in the original m space 

having the same prior probabilities. Further assume that the classes are normally 

distributed  ,i iN   , such that each class can be represented by its mean vector 

and its var-covariance (Uray, 2008). Let in  represent the samples number in class iC , 

that is i in C  such that 
1

c

i

i

n n


 . Then, the class means are given as  

 |i iE x                     (2.4) 

and the expected the mixture distribution of the vector (the grand mean) is given as 

   
1

c

i i

i

E x P  


                   (2.5) 
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The between-class scatter matrix is the expected vectors’ scatter which within the 

mixture mean 

   
1

c
T

b i i i

i

S P     


                   (2.6) 

The within-class scatter matrix shows the scatter of samples around their respective 

class expected vectors: 

      
1 1

|
c c

T

w i i i i i i

i i

S P E x x P    
 

    
                 (2.7) 

Thus, Fisher Discriminant Analysis is meant to minimize the distance within the 

classes and also maximize the distance between the classes simultaneously (Uray, 

2008). That is, the Fisher Criterion describes the class separated by 

 1

w bJ tr S S                    (2.8) 

where J  is invariant under any non-singular transformation. For this reason it is 

possible to simplify the task by optimizing J  in a much lower-dimensional space. 

The linear transformation from a mdimensional space X  to a n dimensional space 

Y  with n m  is generally described as 

TY W X                    (2.9) 

where the projection W  is a m n  matrix with linearly independent columns. The 

scatter matrices in the projected space can be calculated as 

T

w wS W S W                             (2.10)  

and 
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T

b bS W S W .                                       (2.11)

      

2.2.2 Limitations of LDA 

Previous section has given better understanding and comprehension into LDA 

concepts and application. This section will examine issues and drawbacks associated 

with LDA. The section will further describe problem and efforts made by previous 

studies on it.  

 

2.2.2.1 Small Sample Size Problem (SSS) 

In the usage of LDA, singularity is usually defines scatter matrix within-class wS  and 

the needs for this is due to the measurement of the sample space which is typically 

higher than the sample values of the training set. To resolve this concern within SSS, 

Belhumeur, Hespanha and Kriegman (1997) and Swets and Weng (1996) employed 

the use of PCA as dimension reduction for the calculation of LDA. This was done to 

reduce the dimensional measurement of the space feature to n c  that wS  will not be 

singular afterward. Subsequently, LDA is implemented in the reduction of the space 

to obtain the intended discriminative information resulting in total dimensionality 

reduction to 1c . This can be seen in Belhumeur et al. (1997) study where the 

resultant face images and Eigen images are known as the Fisher faces. 

Furthermore, Yang and Yang (2003) proposed that the derivation of null space of wS

without reduction or attenuation in optimization of information discrimination can be 

achieved by optimizing the discriminant vectors which will resolve the concern. This 

study gave the idea of LDA in the null space of wS  where the first computation of the 
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null space of wS  is achieved and the second bS  is estimated. The eigenvectors 

analogous to the largest eigenvalues of the estimated between-class scatter matrix are 

chosen as final transformation. The introduction of Direct LDA (D-LDA) approach by 

Yu and Yang (2001) is meant to resolve this concern. This concept made use of 

discarding the null space of bS  whereas the important null space of wS is retained. 

This is done by inversely replacing the diagonalized orders of wS and bS . The 

calculation of the Fisher criterion can be achieve directly. In addition, the introduced 

D-LDA is equivalent to subspace-based LDA and aid the resolution of the issue in 

SSS. Nevertheless, Gao and Davis (2006) argued that D-LDA is just a distinctive case 

of LDA and subspace-based LDA equivalence cannot be assured most especially for 

classes that are not well separated. 

Additionally, Cevikalp, Neamtu and Barkana (2005) proposed Discriminative 

Common Vectors to resolve this issue of SSS for LDA. It made use of optimal 

projection vectors in the null space of wS
 
to overcome computational difficulties 

issues. This is achieved by removing the difference between the samples in each class 

in order to extracting common properties of classes within the training set. However, 

this approach demands the need for dimension of the sample space must be larger 

than the rank of wS  which is usually a big issue in SSS. This implies that for a good 

result the null space must be big which means the bigger the null space the better the 

results. Based on this, it can be concludes that success of this approach largely 

depends on the size of the null space of wS . Similarly Uray (2008) developed 

Regularized LDA (RLDA) approach to resolve this issue. The approach made use of a 

diagonal matrix kI  (where I is the identity matrix and 0k  ) as an addition to the 
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class of scatter matrix. It defines wS  as a positive which is expressed as wS kI  and 

is always non-singular. Therefore, any small perturbation to the scatter matrix within-

class will not change or affect the resultant matrix projection. Moreover, the unique 

advantage of this approach is based on its simplicity and ability to still keep full 

discriminative information. 

 

2.2.2.2 Overfitting or Underfitting 

Another important issue in LDA has to do with its fixed values of freedom degrees 

(fixed number of free parameters). The main issue is that model parameters do not 

always generalize accurately while new data cannot be used to describe it properly. 

This issue can be viewed in two dimensions namely overfitting and underfitting.  

The issue of overfitting usually occurs in three different cases. First, when the 

statistical model has too many parameters which imply that the given degrees of 

freedom within the parameter selection exceed the information given by the available 

data. Secondly, when there is not enough training data and the model is based on 

specific features which are not represented within test data. Thirdly, training data is 

highly correlated and multicollinearity in nature. In those three cases, the eigenvalues 

are closely together for the eigenvectors to have a small eigenvalues which can be 

unstable in nature. On the other hand, underfitting is usually occur when statistical 

model has few parameters. This implies that the information given by the data cannot 

be described based on the degree of freedom of parameter selection. Thus, the 

linearity is not achievable with this class boundaries cases and it calls for a robust 

classifier to make it more achievable in nature.   
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There are many studies in the vast literature that implement similar approach in their 

problem solving applications such as Yang et al., (2004). They implemented Kernel 

LDA approach based on Kernel Principal Component Analysis (KPCA). This 

approach utilizes kernel functions to derive high-order correlation randomly among 

the input variants (Lu et al, 2004; Lu et al., 2003) to overcome the issues of linearity 

within LDA in multi-class cases. This was achieved by inventing the KFD (KPCA 

plus LDA) algorithm within LDA in multi-class cases. Furthermore, the concept of 

Complete Kernel Fisher Discriminant (CKFD) was introduced based on the fusion of 

regular and irregular discriminative information where regular discriminant 

information is denoted with range space of wS . According to Yang et al (2005) this is 

known as the irregular discriminant information which is wS  of the null space.  

Likewise, Kim and Kittler (2005) developed a Locally Linear Discriminant Analysis 

(LLDA) which can handle linearity issues within LDA. This is to ensure that global 

non-linear structures are localized linearly and local structures can also be linearly 

aligned. It implies that locally linear functions can be transformed to a cluster with 

small possibility within a maximal class object differences in a single class objects 

that is multimodally distributed. LLDA maximizes the separation of classes locally 

for the promotion of consistency between the multiple local representations of single 

class objects. LLDA has a high computational efficiency and overfitting reduction 

which is the major advantage it has over KFD whereas both can achieve similar 

results.  
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2.2.2.3 Distribution Assumption 

The LDA solution is only optimized statistically if the distribution of the various class 

samples is Gaussian with same covariance matrices but different means. However, the 

introduction of distribution assumption can make a huge difference. For instance 

assumption based on small approximation of training samples number can cause 

inaccuracy in the result. This approximation can be in three different forms which 

include the true covariance, the sample mean and the true mean by the sample 

covariance. This will introduce outlying data with negative influence error into the 

model. 

Based on the data structure, it is possible to achieve mixed model using only one 

transformation matrix over the whole data. For the creation of mixture model, set of 

classes will be partitioned into several clusters. Calculation is based on each cluster to 

get an appropriate transformation matrix. In LDA, the mixture model is introduced 

with the PCA mixture model with each class with K  mixture components (Kim et al., 

2001; 2003). The concept is to express the n-dimensional data with the combination 

of densities partitioned cluster components whereby Gaussian function modelled the 

density conditional function. The result produces mixture of each component cluster 

mean with the transformation matrix and diagonal matrix eigenvalues components of 

covariance matrix. The outcomes give individual scatter matrices for each component 

which made it possible to determine label classes for each component whereas the 

Fisher criterion will be maximized for each cluster independently. This will make it 

possible to project onto each LDA space and assigned these components to the nearest 

classes (Kim et al., 2003). 

In another study by Torre and Black (2001), Multimodal Oriented Discriminant 

Analysis (MODA) was proposed as an extension of LDA to handle multimodal 
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Gaussian distributions of classes of different covariances. Probabilistic interpretation 

was used for this case of optimal discriminant analysis which has different 

multimodal and covariances distributions. This is obtained by maximizing the classes 

of the linear transformation which defines the difference between two Gaussian 

distributions the Kullback-Leiber (KL) divergence employed (Fukunaga, 2013). 

Afterward, the training data is clustered in each class with aids of multi-way 

normalized cuts (Yu and Shi, 2003). Thus, MODA can be projected to maximize the 

KL divergence between different classes’ clusters and not between same classes’ 

clusters. 

However, Loog, Duin and Haeb-Umbach (2001) pointed the issue of distribution 

assumption as a limitation of LDA. This established the unsuitability of Fisher 

criterion within multi-class cases and can be expressed based on the scatter matrix 

between-class in terms of class mean differences in decomposition as given by c

class Fisher criterion into  
1

1
2

c c   two-class Fisher criteria. From this expression, it 

can be seen that classes lying far from others are overemphasized which create 

overlapping issues with other classes. Therefore, a weighting scheme based on the 

Mahalanobis distance among different classes is required whereby the distribution of 

the classes depends on the Bayes error rate among the different classes. It implies that 

the Bayes error among different two classes largely depend on the Mahalanobis 

distance. Although, the outlier classes can be considered accurate based on the 

weights however, due to various estimation involved the outcome is not guaranteed to 

be optimal. Many studies have proposed verification method to establish optimal 

results by adopting weighting function from dissimilar classes (Tang et al., 2005; Li et 
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al., 2006) adopted the idea of weighting class pairs, at which the weighting function 

relates to the dissimilarity between two classes. 

 

2.3 Multivariate Outliers 

To give a specific definition to outliers is dependent on certain hidden assumptions 

with regard to the feature of the data and the method applied for detection, although 

some definitions have been generalized to encompass a number of methods with 

variations in data (Ben-Gal, 2005). Certain definitions given in literature includes 

defining an outlier as an observation with large deviation from other observations in 

the data making it suspicious that such observation was generated by a different 

mechanism (Hawkins, 1980). Another definition is by Barnett and Lewis (1994) 

indicating that an outlier which is also referred as outlying observation is the member 

that appears to be differ significantly among other sample members within a group 

which is similar to the definition in Johnson (1992) defining an outlier as a form of 

observation within a data is appearing inconsistent in comparison to the rest of that 

data set. However, in recent literature Ali (2013) described an outlier generally as a 

point(s) that differs surprisingly from the remaining data set. One of the problems 

caused by the presence of outliers in data sets is non-normality and the number of 

outliers in a sample data will simultaneously increase with an increase in the 

dimensions of the data. 

The detection of outliers is obtainable when multivariate analysis is conducted and the 

interactions within the different variables are compared in the data class because 

outliers cannot be detected easily when the data dimensions is multivariate (Ali, 2013; 

Ben-Gal, 2005). Datasets having clustered or multiple outliers are subjected to the 
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effects of swamping and masking. Acuna and Rodriguez, (2004) gives an insightful, 

non-rigorous, easy to comprehend mathematical definitions of these effects as 

described in the figure below. 

 

Figure 2.1: Masking and Swamping Effects on Outliers (Acuna & Rodriguez, 2004) 

 

When considering masking effect, what happens is that an outlier masks another 

outlier, if the later outlier is being considered as an outlier on its own, but in the 

absence of the earlier outlier. Therefore, after the earlier outlier is deleted, then there 

is emergence another outlier which is the later one instance. Masking is said to have 

occurred when the mean and covariance estimates are skewed by a group of outliers 

towards itself. This make the distance from the mean to the outlying position so small 

it becomes almost impossible to find the outliers.  

For swamping effect on the other hand, the concept follows that an outlier swamps 

another outlier, in the case where the later outlier can only be regarded as an outlier 
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when the earlier outlier is present. This implies that, upon deletion of the earlier 

outlier, the later one become a non-outlying observation. The case of swamping 

comes into existence when a group or cluster of outliers skew the mean and 

covariance estimates to itself while simultaneously skewing away from other non-

outlying observations, where the distance between these occurrences to the mean is 

huge, creating seemingly outliers which gives an incorrect declaration to the outliers 

(Ali, 2013; Ben-Gal, 2005; Iglewics and Martinez, 1982). 

There can be a resolution of the problems associated to masking and swamping by the 

use of robust estimates of location and scatter which are less prone to outliers. Some 

of these resolutions were proposed far back in literature by Beckman and Cook (1983) 

and Rousseeuw and Leroy (1987) on the use of robust estimates. It was mentioned in 

their individual works that robust estimation is one of the best approaches in handling 

outliers as the use of these robust estimates most of the times triggers an improvement 

in the performance of the process of detecting the outliers in the system (Ali, 2013). 

Thus, adopting robust estimation is encouraged and hence it is necessary to develop 

robust estimates to avoid these errors form having negative impact of the model or 

analysis. 

 

2.4 Misclassification Error 

In discussing unconditional misclassification error, which is independent of data, on a 

population sample commonly referred to as misclassification frequency in literature 

(Shao, Wang, Deng & Wang, 2011; Dabney & Storey, 2007). Assuming a d-

dimensional data x with class k, group-specific centroids k and a common covariance 

matrix  . Consider 
 k

x  as vector sample taken from the distribution of the 
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multivariate normal  ,kN    associated with class k. Thus, the conventional 

algorithm which is assigned to the highest score yielding class as defined by (Klaus, 

2013): 

   1 11
2

logT T

k k k k kd x x                      (2.12) 

Using the scalar product of 

        ,
log

T
k pool

k k kx x                              (2.13) 

where  x  is a Mahalanobis transformed variable and  ,k pool
 is the corresponding 

weight variable defined in Klaus (2013). A misclassification on the population level 

of 
 k

x in (2.13) occurs if between any two classes k and l, 
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which is equivalent to the condition 
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            (2.15) 

P and V are resultants from the decomposition of the covariance matrix  , where V 

contains the variances   2 2

1 , , dV diag     and P is the correlation matrix 

 .ijP  As 𝑥(𝑘)~𝑁(𝜇𝑘 ,∑) holds for all  1, ,k K  , then unconditional (which is 

expected) probability of misclassifying a sample taken as class k into a wrong class 

j k  can be deduced from the above formula as: 



30 
 

 

   

   

, ,

, ,

2log

| min

2

T
k l k l k

l

Tl k
k l k l

P j k k


 



 


  
         

     
 

        
 

           (2.16) 

This translates into a misclassification error (total probability error) given to be 
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Observe that the final equation obtained is the outcome of adopting an expectation 

operator two times. The first application is with respect to the model parameters 
 ,k l

  

and the other application is with respect to the transformed data

        1 1
2 2

2
k lk k k

k lx x P V x
 

 
 

   . The first application obtained the 

population version of the intended statistical model and the second outcome will be an 

unconditional (notwithstanding the dependent on the data) error rate (Klaus, 2013). 

 

2.5 Trimming 

Consider a set of observations  1 2, , , nx x x  arranged from the smallest to the biggest 

where the trimmed mean is represented as %k .Let 
tx  denote the average of the 

remaining values after removing the smallest and largest %k  observations from the 

original set. The variance of the trimmed mean is defined by 
 

2

2
1 2

ws

n  
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2

ws  is 
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the winsorized variance, n is referred as the untrimmed sample size while    is given 

as trimming proportion whereas the trimmed standard deviation is given as 

 1 2

ws

n  
 (Haddad, 2013). 

To obtain the best amount of trimming is dependent on specific conditions relative to 

the data although Wilcox (2003) recommended an amount of 20%. Bearing in mind 

that when the sample size is smaller, the trimming would be less (say, 10%) (Bennett, 

2009). 

When adopting the usage of the trimmed means, removal of the outlying observations 

on the predetermined amount simultaneously reduces that effect of the tails of the 

distribution where the predetermined method for trimming is used by the common 

trimmed mean. Adopting this approach, about 10% to 20% can be trim on both 

observation tail sides. When considering a normal distribution or a distributed light-

tailed however, it may be more suitable to not trim at all and if there is need to trim, 

just a few observations should be trimmed (Yahaya, Lim, Ali & Omar, 2016a).  

A large number of researchers have discussed about the trimming method that 

adopted the concept of just the predetermined amount of symmetric trimming as seen 

in the works of Keselman et al., (2002) and Wilcox (2003). In a case where there exist 

skewed distributions, then there should be a difference on the amount of trimming per 

tails, which implies that there should be more trimming on the skewed tail. Although, 

in a situation where predetermined symmetric trimming is adopted, then irrespective 

of the shape of the tails, symmetrical trimming is conducted. 

Keselman et al., (2008) adopted asymmetric trimming with particular case of 

application to hinge estimators as initially introduced by Reed and Stark (1996). This 
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asymmetric trimming was adopted for determining the right amount to be trimmed 

from each tail of a distribution. Bearing in mind that the method in Keselman et al., 

(2008) still used predetermined trimming percentages. From the results obtained, the 

breakdown point of trimmed mean is same to the percentage of trimming and this 

implies that the trimmed mean is not suitable for handling large data of extreme value. 

Hence the trimmed mean is not so robust. In comparison of trimmed means with the 

means of the actual data, it was observed that the power of the trimmed mean 

procedure increased drastically (Wilcox et al., 2002).  

 

2.6 Robust LDA 

As discussed in previous sections, the major aim of LDA is the prediction of variables 

within group members. Rousseeuw (1985) and Hastie et al. (1995) mentioned that 

LDA is based on assigning an unidentified prediction within a group with minimum 

classification error rate obtained. This implies that LDA will only perform optimally 

if the equality of variance covariance matrices and normality assumptions are not 

violated (Kim, Magnani & Boyd, 2006). Additionally, studies have proved that 

classical LDA relies on sample covariance matrix and mean that are sensitive to 

outliers (Hubert & Van Driessen, 2004; Hubert, Rousseeuw & Van, 2008; Croux, 

Filzmoser, & Joossens, 2008; Ella, Van & Williem, 2009). It also shown that 

misclassification is gotten due to susceptibility of the classical sample covariance 

matrix and sample mean to outlying observations (Jin & An, 2011). 

Robustness of an approach or method is basically determined by its property of 

sensitive to outliers.  This is defined by the common measure for robustness which the 

breakdown point is defining the amount of noise an estimator can handle (Joossens, 
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2006). The estimator breakdown point is the portion of the dataset which is totally 

polluted without disturbing the estimator. The measurement of robustness which lies 

between 0% and 50% is given as the breakdown point. Therefore, it can be concluded 

that the higher the breakdown point the more robust is the method.  

There are many studies in the vast literature that examined the issue of robustness of 

LDA. These approaches have been implemented to use estimators such as studies by 

Campbell (1980), Maronna (1976), Davies (1987), Lopuhaa (1989), and Rousseeuw 

and Van Drissen (1999). Robust multivariate estimators have been used by inserting it 

into classical estimators to produce robust multivariate approach that is more useful 

for outlier diagnostics rather than high breakdown robust approaches. Thus, 

robustness classical method involves the detection of outliers and deletion of breakout 

from the datasets. Past literatures like Fung (1995, 1996) have proposed approaches to 

analyze outliers when considering discriminant analysis. The concept follows a 

removal of the outliers from the dataset and then adopting the conventional 

discriminant analysis with respect to the observations left making the classical method 

a robust one. It is worth taking note of that in the detection of these observations, the 

use of robust estimators is important in order to bypass the masking effect. This 

affirms the well known fact that analysis based on non-robust estimates not in all 

cases recognizes the presence of all outliers (Joossens, 2006). 

One key importance in adopting robust estimators is for the identification data 

deviation or detection of the presence of outliers. Outliers are seen to influence or 

affect the results obtained from classical discriminant analysis due to the fact that the 

discriminant rules rely solely on estimates of parameters of the population. Generally, 

the estimated means is shifted by the outliers which simultaneously and blow up the 

dispersion matrices. In comparison to conventional classical statistical estimation 



34 
 

approaches, robust estimation gives more vivid distinctions between a good data and 

an outlier. This is because conventional statistical approaches faintly display the 

presence of outliers in the dataset (Hampel, 2001). As aforementioned, robust 

estimators can be applied in two major ways, where the first involves removing the 

outliers while the second approach directly substitutes the robust estimators (Beckman 

& Cook, 1983). The former approach is used in this research. In the review in the 

following subsection, a number of robust estimators are discussed from the wide 

range of robust estimators of multivariate data in literature available (Maronna & 

Zamar, 2012; Maronna et al., 2006). 

 

2.6.1 Robust Estimators 

Robust estimators were suggested in early literatures by Huber (1964) because the 

normality assumption needed to be satisfied in conventional estimation methods, most 

time does not hold. Later on, Hampel (1985) highlighted that the main objective of 

applying robust estimation is to observe the divergence in the data or outliers. This is 

because, in comparison to conventional approaches, robust estimates distinguish more 

vividly between a useable data and one affected by outliers unlike classical 

approaches where the difference cannot be spotted most times (Yahaya, Lim, Ali & 

Omar, 2016b). There are two approaches to adopting robust estimation methods. The 

initial concept follows identifying and removing the outliers, then classical estimation 

approaches is used on the useable data left, while in the second concept, the robust 

estimators are applied directly instead of classical estimation methods (Beckman & 

Cook, 1983). It is worth noting that in finding and selecting robust estimators, there 

are certain properties these estimators are expected to possess and this is discussed in 

the following subsection. 
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2.6.2 Properties of Robust Estimators 

To determine how good or useful a robust estimator for multivariate data is, four main 

properties can be implemented to assess the estimator robustness which includes the 

affine equivariance, statistical and computational efficiency of the estimator and the 

breakdown point (BP) (Jensen et al., 2007). The BP as presented way back in 

literature (Hampel, 1974; 1971) is the quantity for analyzing how robust an estimator 

is in the presence of outliers. The BP of an estimator is the smallest fraction of the 

observations that have to be replaced to make the estimator unbounded (Rousseeuw, 

1991). In this definition, one can choose which observations are replaced, as well as 

the magnitude of the outliers in the least favourable way. Another definition in Ali 

(2013) described the BP as the least ratio part of outliers which can result an estimator 

to take on arbitrary higher ration values. A higher BP implies a more robust estimator 

which simultaneously has less chances of being affected by the masking effect. A 

number of authors have stated that in practical and real life applications, if the BP is 

higher than or equals 20%, then it is not acceptable (Zuo, 2006).  

The second measure that can be used to assess a robust estimator is the affine 

equivariance. This property is a very desirable and important property when 

considering statistical estimations. This is due to the fact that when an estimator, be it 

robust or not, is affine equivariant, a change in the scale of measurement or its affine 

transformations is not expected to have an effect on the properties of the estimator.  

The third measure is in relation with the statistical efficiency of the estimator. The 

focus of this property has to do with how efficient the estimator adopts the usable data 

made available, as efficiency is a very significant quality to be considered for any 

mathematical or statistical procedure (Zuo, 2006). In the work by Huber (1964), the 

issues surrounding robustness and efficiency of statistical approach was taken into 
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consideration with focus on the widely known minimax approach which follows the 

concept of minimizing worst-case asymptotic variance. Generally, robust estimators 

are not the most efficient estimators and a good example is the univariate median. 

Although this estimator has the best BP and is also the most robust affine equivariant 

location estimator with the least maximum bias at symmetric distributions (Huber 

1964). It is weakly efficient with respect to its mean for normal or other light-tailed 

models irrespective of its outstanding robust properties.  

The last measure or property a robust estimator is expected to possess is in terms of its 

computational efficiency as this translates to easier and faster computations. Just like 

the measurement of data in either megabytes or gigabytes is a normal norm, certain 

real life or practical applications expected the detection of outliers to occur within few 

seconds of minutes. This becomes a major issue for consideration when robust 

estimators are considered for large multivariate data. Data of this class are seen to 

arise in areas including quality control, healthcare, information, machinery, financial 

and agriculture because all these industries mentioned deal with products translating 

into multi-dimensional data. Therefore, when robust estimators are applied, the 

computational efficiency becomes low with large datasets as the computational 

burden (in terms of time and cost) is very high. Pena and Prieto (2001) suggested the 

development of special methods to deal with these special cases is suitable. Therefore, 

for large datasets, achieving computational efficiency may be a bit difficult. It still 

remains very germane in effectiveness to the detection of outliers (Angiulli and 

Pizzuti, 2005). 
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2.6.3 Types of Robust Estimators 

There are in existence a large number of location and scale robust estimators for 

multivariate data. A number of these estimators follow the concept of the robust scale 

of Mahalanobis distance, and such estimators include the M-estimator (Campbell, 

1980), MCD (minimum covariance determinant), MVE (minimum volume ellipsoid) 

estimators (Rousseeuw 1984, 1985), S and T estimators (Davies, 1987; Lopuhaä & 

Rousseeuw, 1991). Some other robust estimators follow the concept of projections, 

such as the Stahel-Donoho estimate (SDE), Kurtosis1 (Pena & Prieto, 2001) and P 

estimates (Maronna, Stahel, & Yohai, 1992). Large attention and focus has been 

placed on the MVE and MCD estimators introduced by Rousseeuw (1984; 1985). 

 

2.6.3.1 Modified One-Step M-Estimator (MOM) 

One of the latest additions to the family of robust statistics is a measure of central 

tendency modified from the one-step M-estimator referred to as modified one-step M-

estimator (MOM).  The MOM estimators like trimmed means can be used for equality 

of measurement of the typical scores across treatment groups.  Besides the drawback 

of lower BP for trimmed means, another concern is the amount of trimming is usually 

fixed prior to data analysis.  One approach to this problem is to ponder on the degree 

of the trimming as a function of the observations, and one-step M-estimators represent 

this approach.  On the other hand, the one-step M-estimator empirically determines 

whether an observation should be trimmed, or the possibility of no trimming  as well 

as different amount of trimming in the left versus the right (Wilcox & Keselman, 

2003). 
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MOM is just the average of the values left after all extreme values (if any) are 

discarded.   This estimator is derived from the one-step M-estimator (Staudte & 

Sheather, 1990) after some modification.  Mathematically, Wilcox and Keselman 

(2003) defined the MOM estimator as 
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where 
 i j

Y  is the thi  order observations in 
thj  characteristic variable, 

1i  is the number of 
 i j

Y  that satisfies the criteria 
    *ˆ scale estimatorji j

Y M K   , 

2i  is the number of
 i j

Y  that satisfies the criteria 
    *ˆ scale estimatorji j

Y M K  ,  

jn  is the size of the data set for each variable, 

ˆ
jM  is the median of the data in each 

thj variable, 

and the scale estimator is the median absolute deviation  𝑀𝐴𝐷𝑛 . The constant

2.24K  is motivated to give a good efficiency for the robust scale estimators 

 𝑀𝐴𝐷𝑛  when the sample is taken from a normal distribution (Othman et al.,2004).  

 

2.6.3.2 Winsorized Modified One-Step M-Estimator (WMOM) 

In WMOM, the trimmed observations are replaced by the highest and the lowest 

values of the remaining data. The WMOM is one of the central tendency 

measurements. It is the arithmetic mean, which is resulted by replacing outliers from 

each end of the data with the next largest and smallest values of the continuity of the 
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consistent data after performing the trimming by using the MOM criteria (Ahmad 

Mahir & Al-Khazaleh, 2009). According to Wilcox (2003), the mean is one of the 

most popular location estimators. Nevertheless, there is a problem concerns with this 

measurement in the tail of the distribution that may affects its value. This problem 

becomes clearer through the unbounded influence function of the BP of zero, where 

the influence function measures how the estimator reacts to the small proportion of 

outliers and the lack of robustness against outliers Hampel (1974).  

To solve this problem, more attention should be given to the value of means whenever 

they are nearer to the center. Therefore, the advantage of using the robust measures of 

the center, winsorized MOM is that it can be used instead of the usual mean, which is 

thought to be another easier solution for tackling the sensitivity of the mean. As 

winsorized mean is known to be less sensitive than the mean but still give a 

reasonable estimate of central measure (Wilcox & Keselman, 2003), thus, it is 

assumed that winsorized MOM should also perform better than the usual mean. 

The construction of the Winsorized sample is proceeding as follow (Wilcox, 1997). 

For each random variable  1 , , ,  1, ,j j mjX x x j p   , the winsorized sample is obtained 

from 
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where  

1i : number of the smallest outliers data. 

2i : number of the largest outliers data.  
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Therefore, the estimated winsorized MOM for l-th variable as follows (Haddad, 

2013): 

1

1 jm

ij ij

kj

w w
m 

 
  

 
                            (2.23) 

 

2.7 Scale Estimators 

There are fewer studies in literature that considers robust scale estimators in 

comparison to studies that have considered robust location estimators. Irrespective of 

this, scale estimators are still very relevant in statistical applications as these scale 

estimators can be used in descriptive statistics for data analysis, in comparison for 

variations in datasets, construction of confidence intervals, standardization of 

observations, formulation of concepts for outlier detection, as objective functions in 

regression, as auxiliary estimates for location M-estimators amongst many others 

(Rousseeuw & Croux, 1992). It is very essential that in adopting the scale estimator to 

these application areas, there is no breakdown of the estimator either in tending to 

zero (imploding) or in growing so large (exploding). Normally, the expected BP is 

about 50%, which means that there may be replacement of almost half of the data 

before the estimate becomes non-useable. This is not like the sample standard 

deviation where the presence of just one outlier can be very problematic. 

Similarly, Yahaya et al., (2004) study suggested four scale estimators which include

nQ , nS , nT and the most implemented robust scale estimator in the vast literature, 

nMAD . The rationale for this is because of its high BP. Likewise, it has high bounded 

stimulus function which is capable of sustaining the robustness. For the following 

sections reviewing these notable scale estimators, let  1 2, , , nX x x x   this can be a 
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random sample while the sample median can be represented with i imed x . The 

following subsection will further discuss about the nQ  scale estimator which is the 

chosen estimator integrated with the robust estimator. 

 

2.7.1 Qn 

Rousseeuw and Croux (1993) and Croux and Rousseeuw (1992) proposed two 

measures of scale as which is a form of alternatives for median absolute deviation and 

Gini’s mean difference known as the nS  and nQ  estimators. However, the focus of 

interest is the nQ  estimator. This estimator has been identified to have a BP of about 

50% and a smooth bounded influence function. For a model distribution F  which has 

a density f which is the influence function for nQ  and represented with 
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The nQ -estimator also possesses large gross-error sensitivity in comparison to other 

estimators. It is not dependent upon a measure of location and calculates the distance 

of each shot length from every other shot length, hence being appropriate for 

asymmetric distributions. Properties of the nQ  estimator include it having an explicit 

and simple formula, which is equally appropriate for distributions of asymmetric. 

Considering the case of a normal distribution, the nQ -estimator asymptotic variance 

efficiency is seen to be higher than other estimators, therefore making it more 

efficient. This is seen in the simulation study by Rousseeuw (1991). The square of the 

nQ -estimator, that is,  
2

nQ  can be used as an estimate of 2 . Even though both nQ  
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and  
2

nQ  are biased estimators of   and 2  respectively, they are efficient 

estimators of their respective targets. 

The estimator nQ  for a random sample 1 2, , , nX X X with model distribution F is 

defined as: 
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 which is roughly half the number of 

observations. Here the symbol  .  represents the combination and the symbol  .  is 

used to take only the integer part of a fraction. The nQ estimator is the g-th order 

statistic of the 
2

n 
 
 

 inter point distances and the value 2.2219 is chosen to make nQ
 
a 

consistent estimator of scale for normal data (Abu-Shawiesh, Banik & Kibria, 2011). 

 

2.8 Variance Estimators 

Statistical analysis main purpose is to extract information from the data and identity 

various data properties within the data. Generally statistical analysis is based on 

information which is a function of data and it is analyzed using statistical principle 

and tool. Examples of such principles are the likelihood principle, robustness, 

sufficiency and the substitution principle. One of the key concepts in statistical 

analysis is sample which depicts an estimate of a defined population. In a data 

collection, sampling distribution is used as a random quantity with probability 

distribution.  
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There is need for sampling distribution knowledge which is linked with the nature of 

analysis. These are needed to prevent again estimation problem which arises from 

inaccurate estimator and creates huge estimation errors. The basic knowledge of 

accuracy understanding and measures such as bias, variance, and mean squared error 

of the estimator is needed. These accuracy understanding and measures are based on 

estimator's sampling distribution. An accuracy measure is normally used for selection 

of best estimator from a class of suitable estimators. The sampling distribution of a 

statistic and its features usually depend on the fundamental population. Most times, 

these estimation or approximation from given data have huge problems. The selection 

of estimator is based on the nature of the data and not on other factors. Popularly, 

there is a traditional approach used for estimating or approximating the sampling 

distribution of a statistic and its characteristics. Nevertheless, there are many 

identified limitations with this traditional approach. Thus the following sub-sections 

will discuss in details these approaches.  

 

2.8.1 The Traditional Approach 

Statistical analysis is used for data approximation or estimation to identify facts and 

information. The accuracy of these facts and information is measured by the given 

statistic (estimator), such as the variance, the bias and the mean squared error. For 

traditional approach, theoretical formula is derived based on a postulated model and 

this is used to run an empirical analysis where the accuracy depends on the 

established formula. This can be best picture in an example such as a variance. If 

1 2, , , nX X X  denote the data set of n  distributed identically and independently 
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(i.i.d.) observations from an unknown distribution F  and let  1, ,n n nT T X X   be a 

given statistic. 

Then the variance of nT  is 
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             (2.29) 

where  1, ,i nx x x   and  1, ,i ny y y  . When nT  is simple, this can be obtain as an 

explicit expression of  var nT  as unknown function of some quantities and then 

estimate  var nT  by substituting the unknown quantities with their estimates. For 

example, if 2

n nT X , then 
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where  1E X  and  1

k

k E X   is the k th central moment of 1X . We can 

then estimate  2var nX by substituting  , and k with their estimators 
nX  and 
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However, there are not many statistics as simple as the sample mean. For most 

statistics, the expression          
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    is too 

complicated to be useful in obtaining estimators of  var nT , and it is very hard or 

impossible to obtain an exact and explicit formula for  var nT . Thus, in the 



45 
 

traditional approach, we try to simplify the problem by considering approximations or 

asymptotic expansions of  var nT . 

However, there were some limitations identified with this traditional approach which 

include (Shao & Tu, 2012): 

1. There is need for large sample size n  in order to achieve a higher level of 

accurate variance (or accuracy measure) estimators. This fact is because of 

approximated formula usage. 

2. Wrong in postulated model and theoretical formula can result in wrong in 

obtained estimator or results. 

3. Wrong in derivations of suitable theoretical formula which might be due to 

unknowledgeable experiences in mathematical symbol and theoretical 

statistics. 

4. Difficult in empirical processes expression which usually affect the result 

of the approach.  

5. Wrong expression of model function parameters.  

6. Complicated and misused of model parameters. 

 

2.8.2 Cross-Validation (CV) 

The cross-validation (CV) approach is very close with the jackknife for the case of 

selection of explanatory variables. These can be used to make futuristic predictions 

based on Cox's regression, linear, generalized linear and nonlinear models. Allen 

(1974) and Stone (1974) were one of the first researcher to introduced this approach 

which was a modified version of Jackknife and uses the concept of deleting one line 

within the approach to reach a better outcome. The approach is basically used in 
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selection of bandwidth in nonparametric density estimation and nonparametric 

regression. For a better definition of this approach, Let 
,

ˆ
i be the Least Square 

Estimation (LSE) of  under model  after removing the pair  ',i iy x , that is, 

1

'

,
ˆ ,  1, ,i j j j j

j i j i

x x x y i n   



 

 
  
 
                (2.34) 

Since jy  and 
,

ˆ
i  are independent,  mse   can be estimated by 

   
2

'

,

1

1 ˆ
CV

n

j i i

i

mse y x
n

 


                (2.35) 

where MSE denotes the mean squared error. 

CV is advantageous over other approaches of estimating misclassification error such 

as the apparent error rate, data-splitting or bootstrap methods. Although, the apparent 

error rate (AER) will be adopted in comparison to CV when considering real data 

analysis. AER provides estimates of misclassification error which can be significantly 

biased towards zero although the bias decreases as the training sample increases. CV 

method on the other hand selects a model by minimizing  CV
mse  . An essential 

asymptotic requirement for any given model selection procedure is its consistency in 

the sense that  0
ˆlim 1

n
P  


   (wherê  is the model selected by using the given 

procedure), and   CV
mse   has been found to be an almost unbiased estimator of

 mse  . This provides a good justification for the application of this method. 
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2.9 Summary 

This chapter has given an introduction to Robust LDA by taking a foundational 

review of Discriminant Analysis and the introduction of LDA. The reason why it is 

necessary to robustify LDA was justified as certain major drawbacks and limitations 

of the LDA approach was discussed. Furthermore, a review of common Robust 

Estimators and Variance Estimators were given and their advantages and drawbacks 

were also highlighted. The next chapter will introduce the methodology of this study 

by considering the specific robust and the variance estimators adopted in this study, 

which is the CV approach implemented on the MOM and WMOM. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

 

In this chapter, the steps involved in achieving the research objectives as 

aforementioned in Chapter One are discussed. The segmenting of this chapter is in the 

following sections; the first section gives the general view of the research design 

followed by the research framework. The framework gives the procedure for 

actualization of the research objectives and certain important preliminaries are also 

stated. The following sections now give detailed description of the robust estimators 

together with the evaluation approach for the robust estimator which in this case is the 

cross-validation technique. Finally, a summary of this chapter is given at the end. 

 

3.1 Research Design 

The approach for the evaluation of these robust estimators adopted involves 

computing the misclassification error of each technique using CV procedure. As a 

result of the shortcomings of LDA, where less accurate computations are obtained 

because of the presence of outliers detected, which simultaneously results in 

misclassification of new observations. There is expedient need to implement robust 

alternatives in discriminant analysis. Hence, the new Robust LDA techniques 

introduced in this research, that is, RLDAMQ (MOM robust estimator with Qn) and 

RLDAWMQ (WMOM robust estimator with Qn), will be adopted to certain simulation 

scenarios and evaluated in comparison to each other. In the utilization of each 

technique, focus is placed on a multivariate discriminant analysis problem, where 

 1 2, , , pX X X X   is a vector for independent variables of p  dimensions. 
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It is expected that at the end of this study, researchers will have a better understanding 

on which robust estimator is suitable in certain real life scenarios modeled via 

simulation and consideration of real financial data. 

 

3.2 Research Framework 

In this section, a description on the research flow is followed. This is shown 

graphically by designing a flowchart for easier understanding and comprehension. 

The initial part of this research involves considering the modification of the robust 

estimators and then simulation analysis is considered for certain variable conditions. 

In addition, real financial data is also considered with comparison made amongst the 

linear models. Finally, comparison is made based on the average misclassification 

error using CV. Figure 3.1 presents the research flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.1 The Research Flowchart 
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From the flowchart above, it can be clearly observed how the research objectives of 

this study will be achieved. The modified linear discriminant models is adopted in 

comparison to the classical LDA model to know which approach is best suitable in 

detection of outliers. The misclassification error is computed and then comparison is 

made with simulations on financial data adapted from real life with MATLAB 

(2017a, 64-bits) which runs on a 2.00GHz laptop with 3.00GB RAM. 

Before delving into a detailed description and process of implementation of the robust 

estimators and their corresponding evaluation estimators, it is worthwhile to 

understand certain preliminaries associated with the area of study.  

 

3.2.1 Generation of Data 

This study will be adopting simulation with real life scenarios considered in 

previously existing studies. This is for justification on a standard basis for comparison 

of the robust techniques considered in this study in comparison to works by other 

researchers. However, the data considered is expected to have certain properties as 

listed below. 

 

3.2.2 Properties of Data 

The following properties are essential to be noted for the analysis data: 

1. Sample size: It is a grounded rule that the sample size of the smallest group 

should be larger than the number of variables under consideration (Austin & 

Steyerberg, 2015). 
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2. Sample division: The usual norm is to consider a random division of the 

observation set into smaller subsets, where the initial set is considered the 

training set, which is to approximate the model, while the other set is for 

estimation of test set which is implemented to estimate the results’ reliability 

(Feng, Xu & Mannor, 2015). 

3. Outliers: Conventionally, in discriminant analysis it is a requirement that the 

analysis data should follow an independent random sample pattern, that is, 

outliers should not be present. However, since the focus in this research is on 

robust discriminant analysis techniques, the presence of outliers is suitably 

handled. 

 

3.2.3 Assumptions of the Discriminant Model 

It is worth taking note that the discriminant model follows certain unique assumptions 

as discussed below (Poulsen & French, 2003): 

1. Normal distribution: It is presumed that the analysis data considered is from a 

multivariate normal distribution. However, if the normality assumption is 

violated, the outcome is not considered fatal for the data at all times; rather it 

is assumed that the resultant significance tests may still have a level of 

reliability. 

2. Correlation between mean and variance: The consistency in the validity of 

significance tests is not guaranteed when there is a large variability in the data 

group having extraordinary means on certain variables. Hence, the need for a 

correlation between the variance/standard deviations with the mean is of 

paramount importance. 
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3. Homogeneity of variances or covariances: The assumption in this case follows 

the case that when the variables are written in matrix form, the resultant 

matrices are homogeneous across groups through variance or covariance of the 

variables. Although too much focus is not needed to be placed on minor 

deviations, it is still a better approach to evaluate the within groups variances 

and correlation matrices before the end conclusions of any study is accepted. 

4. Matrices ill-conditioning: The process of computation involved in 

discriminant analysis requires matrix inversion of the variance or covariance 

matrix in the model. A situation where a variable cannot be inverted or where 

there is redundancy of a variable with other variables, the case is described as 

ill-conditioned. Hence, this assumption is very important to assure the 

existence of solution. 

5. Low multicollinearity of the variables: This assumption is important because 

in a case where the contrary exists, that is when there is high multicollinearity 

between two variables or more, the resulting coefficients will be predict group 

membership properly. 

Certain verification approaches can be used to confirm if these assumptions hold, 

amongst which includes normality test and equality test of covariance matrices. 

To investigate the misclassification error in the analysis data, certain techniques were 

adopted. The sections discussed subsequently gives the detailed steps involved in each 

technique, starting from the conventional approach to the utilization of the robust 

estimators as shown in Figure 3.1.  
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3.3 Linear Discriminant Analysis (LDA) 

The derivation of the LDA formula as described by Teknomo (2015) is given before 

the iterative algorithm is discussed. Now, considering g  groups, the conventional 

Bayes’ rule minimizes the total error of classification by assigning the object x to 

group i  which has the largest conditional probability where    | |   P i x P j x j i   . 

Since  |P i x  (that is, the probability of class given the measurement) cannot be 

computed directly from the measurement,  |P x i  (the probability of measurement 

given the class) is initially computed. Then Bayes theorem which states 

 
   

   

|
|

|
j

P x i P i
P i x

P x j P j





                 (3.1) 

is adopted. The object x is assigned to group i  if 

   

   

   

   

| |
  

| |
k k

P x i P i P x j P j
j i

P x k P k P x j P j
 

  
 

               (3.2) 

Since both denominators are same, the expression can be rewritten to state that the 

object x is assigned to group i  if        | |   P x i P i P x j P j j i   . 

In a case where there are many groups and many dimensions of measurement with 

each dimension having many values, calculating the conditional probability  |P x i  

requires a lot of data. Hence, it is reasonable to assume that the data follows certain 

theoretical distribution such as the data following from a multivariate normal 

distribution with formula given as 
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1 1
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             (3.3) 
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where i  and iC  are the vector mean and covariance matrix of group i  respectively. 

Substituting (3.3) into (3.1), the object x  can be assigned to group i  if 
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             (3.4) 

Since the factor of  
1

22  is same for both sides, it can be cancelled out to give 
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1 1

2 2

1 1
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2 2
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                                          (3.5) 

Taking the logarithm of both sides, 
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             (3.6) 

which is same as 
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             (3.7) 

 Now if all the covariance matrices are equal; 
i jC C C  , then further simplification 

can be made to give 
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1
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ln 2ln ,  
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 .             (3.8) 
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Rewriting    1T

i ix C x    as 1 1 12T T T

i i ixC x C x C      . Therefore the 

inequality in (3.8) becomes 

    

    

1 1 1

1 1 1

ln 2ln 2

ln 2ln 2 ,  

T T T

i i i

T T T

j j j

C P i xC x C x C

C P j xC x C x C i j

  

  

  

  

   

     
.                        (3.9) 

Eliminating the first and third terms of both sides in (3.9) as they do not have an effect 

on the group decision gives, 

     1 1 1 12ln 2 2ln 2 ,  T T T T

i i i j j jP i C x C P j C x C i j                 (3.10)  

Thus,      1 1 1 11 1
ln ln ,  

2 2

T T T T

i i i j j jP i C x C P j C x C i j               and 

suppose   1 11
ln

2

T T

i i k i if C x C P i      , where k is the number of groups. 

Object with measurement x  can be assigned to group i  if   i jf f i j   . This 

follows from the assumptions that the discriminant analysis follows a multivariate 

normal distribution with same covariance matrix. Given below is the iterative 

algorithm of LDA. 

Consider ix  independent variables features of a multivariate data of g  groups having 

corresponding dependent variables y . 

Step 1: Compute i  and  ; the characteristic mean in the group i  is given as the 

average of ix  and the global mean vector respectively. 
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Step 2: Obtain the covariance matrix iC  of group i  defined as 
 0 0

T

i i

i

i

x x
C

n
 , where 0

ix  

is the corrected mean data which is the characteristic for i , ix  group which can be the 

global minus mean vector  . 

Step 3: Compute the pooled within the group covariance matrix 

   
1

1
, ,

g

i i

i

C r s n C r s
n 

   for every matrix in entry  ,r s . 

Step 4: Determine the inverse of the matrix pooled covariance 1C  and the prior 

probability vector P  assumed to be equal to the total sample of each group divided by 

the total samples. 

Step 5: Assign object x  to group i  that has maximum if , where

 1 11
ln

2

T T

i i i i i if C x C p      . 

 

3.4 Modified One-Step M-Estimator with Qn (MOM-Qn) 

This approach involves combining the MOM statistic with the highly robust nQ  scale 

estimator.  MOM as obtained from the conventional one-step M-estimator (Haddad, 

2013; Staudte and Sheather, 1990) but with certain modifications is simply the 

average of the values remaining after the removal of all extreme values (if there is 

existence of any). The robust nQ  scale estimator on the other hand as proposed by 

Rousseeuw and Croux (1993) is a well suitable estimator with the advantage of high 

efficiency. The algorithm to combine these two techniques is described iteratively 

below. 
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Step 1: Trim the data to be analyzed using the default scale estimator nMAD  for 

determining the extreme values in MOM criterions. Let 
jM̂  be the median for group j,  

0.6745

j

nj

MAD
MAD  ; 

1 2
ˆ ˆ ˆ, , ,j j j j j nj jMAD Median Y M Y M Y M    . 

Step 2: Compute ˆ
j  following equation (2.21). 

Step 3: Calculate nQ
 
from equation (2.28). 

Step 4: Replace the default scale estimator nMAD  in Step 2 with the nQ   estimator to 

obtain 1i  as the number of observations 
ijY such that    ˆ 2.24ij j njY M Q    and 2i  

is the number of observations    ˆ 2.24ij j njY M Q  .  

Step 5: Compute ˆ
j  based on the nQ  estimator in Step 4. 

 

3.5 Winsorized Modified One-Step M-Estimator with Qn (WMOM-Qn) 

This approach involves the WMOM statistic. To improve performance of the 

conventional MOM estimator, the estimator is winsorized and this new estimator is 

merged with the advantageous robust nQ  scale estimator and its counterpart 

winsorized covariance matrix. The conventional algorithm of WMOM automatically 

adopts using its winsorized covariance matrix, however a step further is taken to 

investigate the behaviour when merged with highly advantageous nQ  scale estimator. 

Given below is the general approach of the WMOM algorithm and also insight is 

given on how to merge this estimator with the  nQ  scale estimator.  
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Step 1: Eliminate the outliers from the analysis data and after that, the data is 

winsorized 

Step 2: Compute the winsorized MOM for j-th variable and the winsorized 

covariance matrix between iw  and 
jw  variables respectively and represented with: 

1

1 jm

j ij

ij

w w
m 

   

and the vector of winsorized MOM estimator is obtained from 

1

p

w

w

w

 
 

  
 
 

  and   *

1

1
,

1

m

WMADn i j ki kj i j

k

S w w w w m w w
m 

 
    

  

Step 3: Replace the standard mean vector in Step 2 then inverse the matrix covariance 

with the winsorized  nWMADMOM X . Thus, the inverse of the matrix winsorized 

covariance 1

nWMADS   from Step 2 which is given as MADn is the default scale estimator 

for the criterion on trimming.  

However, Yahaya et al. (2006) pinpointed that highly robust scale estimators such as 

the nQ  scale estimator could improve the results and for this reason, there is a 

replacement of the conventional MADn with this robust scale estimators in the 

trimming criterion. This approach follows the same algorithm for the first three steps 

but with an extra Step 4 as described below. 

Step 4: Replace the default scale estimator nMAD
 
in Step 3 with the nQ  estimator in 

equation (2.28). 
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3.6 Cross Validation (CV) 

The CV is a computer intensive technique and the main objective of the CV approach 

is the selection of the more suitable model or technique by minimizing the MSE 

(Bengio & Grandvalet, 2004). Considering the k  fold CV which is the most common 

approach, the concept is simplified and explained iteratively in the steps below.  

Step 1:  Compute i ; the mean of characteristics in the group i  

Step 2: Obtain the covariance matrix iC  of group i  defined as 
 

2
0

i

i

i

x
C

n
 , where 0

ix  is 

the corrected data mean which is the characteristics for group i , ix  the global minus 

mean vector i  

Step 3: Obtain the MSE for each group i  from 
  21i i

i

i

n C
MSE

n


  

Step 4: Evaluate the error from the cross validation formula; iMSE
CV

k

  

 

3.7 Variables Manipulated 

The performance of the robust estimators computed in terms of misclassification error 

was investigated on a number of simulation settings. To obtain these simulation 

conditions, five variables were manipulated which include: dimension of variable  p

, percentage of contamination   , sample size of the training data  1 2,n n , shift in 

location of the population    and shift in shape of the population   . These 

manipulations are important to show the advantages and disadvantages of the robust 

estimators. The choice of variables to be manipulated follows from prior adoption in 
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previous studies, such as Haddad (2013) and Lim et al., (2016) amongst others. Table 

3.1 gives a summary of the simulation scenarios. 

 

Table  3.1 

Simulation Conditions 

Variable Descriptions 

 

Dimension of variable  p  2, 6, 10 

Percentage of contamination    10, 20, 40 

Sample size of the training data  1 2,n n  Balanced:         (20,20), (50,50), (100,100) 

Unbalanced:     (50,20), (100,50), (100,20) 

Shift in location of the population    0, 3, 5 

Shift in shape of the population    9, 25, 100 

 

 

3.7.1 Dimension of Variable (p) and Sample Size (n) 

Variation was introduced in the dimension of variable to show that the research can 

handle multivariate data. As highlighted in Table 3.1, p takes the values 2, 6 and 10. 

Likewise, manipulations were also made in the sample sizes to show its relationship 

to the variable dimension. The group sample sizes were set to be balanced and 

unbalanced to check the effect on the misclassification error per variable dimension. 

Alfaro and Ortega (2008; 2009), Rousseeuw and Zomeren (1990) and Jensen et al., 

(2007) reported that if n is fixed and p is increased, then the effect will cause the 

misclassification error to decrease. Misclassification errors are more serious in 

unbalanced sample sizes than in balanced. Hence, the motivation to examine the 

robustness of the estimators for both balanced and unbalanced sample sizes to 

investigate the variation in results obtained.  
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This concept of considering different dimension of variables with respect to varying 

sample sizes is discussed in works of Jensen et al., (2007), Alfaro and Ortega (2009), 

Chenouri et al., (2009), Yusof, Othman and Yahaya (2010), Yusof, Abdullah, Yahaya 

and Othman (2011), Li, Shao and Deng (2015) amongst others. These authors chose n 

values ranging from 25 to 1000. To check the performance of the robust estimators in 

this research, the values of p are set as 2, 6, and 10 with  1 2,n n  taking values as 

highlighted in Table 3.1. 

 

3.7.2 Percentage of Contamination (ε), Shifts in Location (μ) and Population ( ) 

To further check whether the robust estimators can adequately handle the presence of 

outliers, we shifted the mean (centrality) to a certain values for both location and 

population denoted by   and  respectively. The larger the shift, the more extreme is 

the values of the outliers. In this study, we used 3 levels of shifts in location (μ), that 

is 0 representing no outliers, 3 for moderate outlier values and 5 for extreme outlier 

values. Likewise, the shifts in population take values (9, 25, 100) with the percentage 

of contamination chosen at 10%, 20% and 40%. These variables were manipulated in 

line with works of Lim et al., (2016), Alfaro and Ortega (2009), Mohammadi et al., 

(2011). Although a number of their works chose the percentage to be between 10% 

and 20%.  

Note that this research considers both balanced and unbalanced sample sizes which 

give rise to two data structures, which are the cases of equal and unequal covariance 

matrices. Therefore for both balanced and unbalanced data, analysis will be made 

based on the nature of the covariance matrices.  
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Considering the first case of equal covariance matrices, each group ,  1,2j j   has a 

separate mean 
j  but the same covariance matrix 

pI . Therefore, the data was 

contaminated for the equal covariance matrices as follows 

     1 : 1 , ,p j p p j pN I N I                       (3.9a) 

and 

     2 : 1 , ,p j p p j pN I N I         .             (3.9b) 

On the other hand, for the unequal covariance matrices, each group ,  1,2j j   also 

has a separate mean 
j  but in this case, each group has their covariance matrix 

computed as 
pjI . This leads to the expression of data contamination for the unequal 

covariance matrix condition given as 

     1 1 1: 1 0, 0 ,p p p pn N I n N I                  (3.10a) 

     2 2 2: 1 1,2 1 ,p p p pn N I n N I       .            (3.10b) 
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CHAPTER FOUR 

RESULT AND ANALYSIS 

 

4.1 Introduction 

This chapter investigates misclassification error for each of the considered 

approaches: Classical Approach (CA), RLDA with MOM-Qn (RLDAMQ) and RLDA 

with WMOM-Qn (RLDAWMQ). This analysis starts by first considering the simulation 

data by comparing which linear discriminant model has better outlier detection ability 

when the sample sizes are balanced or unbalanced for both cases of equal and unequal 

covariance matrices respectively. For this cause, the mean misclassification is 

considered for multivariate variable dimensions (2, 6, 10) with the sample size of the 

training data  1 2,n n  taking values as highlighted in Table 3.1. A step further is taken 

in the analysis phase to investigate the computational rigor involved in adopting these 

linear discriminant models by calculating the computational time. In addition, analysis 

is also made on certain real financial data and the results from the analysis conducted 

are also reported. 

 

4.2 Misclassification Error Analysis with Simulation Study 

This section shows the misclassification error of the linear discriminant model using 

simulation analysis when considering variable dimensions 2, 6 and 10 for balanced 

and unbalanced sample sizes. This section is divided into two parts; the first part 

shows the average misclassification error when the covariance matrices are equal for 

all variable dimensions while the second part gives the results for the unequal 

covariance matrices. 
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A testing sample of size 2000 from each population was generated and the 

misclassification error was computed by obtaining the proportion of misclassified 

testing sample observations in each population. It is known that as the size of the 

testing sample size increases, the accuracy and the running time will also be 

increased. However, a size of 2000 was chosen because if the testing sample size is 

increased beyond 2000, there is only a small amount of additional accuracy achieved 

(Hintze, 2008). Therefore, to avoid unrequired increase in running time, the size is 

chosen as 2000 which has also been adopted in similar studies as Lim et al., (2016) 

and Yahaya et al. (2016a). Thus, after choosing the testing sample size, the simulation 

process was repeated 2000 times and the mean misclassification error was recorded. 

Furthermore, the computation of each linear discriminant model was documented as 

same number of simulation trials.  

  

4.2.1 Equal Covariance Matrices 

The combination of the various variable settings as highlighted in Table 3.1 gave rise 

to 54 uncontaminated, 324 location contamination, 486 shape contamination and 972 

location and shape contamination. This produces a total of 1836 different data 

conditions. The following subsections will highlight the results obtained for both the 

balanced and unbalanced sample sizes per variable dimension. 

 

4.2.1.1 Balanced Sample Sizes 

The first set of results discussed is the balanced sample sizes; 

       1 2, 20,20 , 50,50 , 100,100n n     . The results are considered for variable 
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dimension 2,6,10p   with focus on the average misclassification error of each linear 

discriminant model. 

For the case where the variable dimension is two, the mean misclassification error 

analysis for CA, RLDAMQ and RLDAWMQ are shown for the balanced sample sizes 

 1 2,n n . 
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Table  4.1 

Mean Misclassification Error for Linear Discriminant Models with Balanced Sample 

Sizes, Equal Covariance Matrices and 𝑝 = 2 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.2511 0.2530 0.2518 0.2442 0.2449 0.2445 0.2420 0.2424 0.2421 

 

10 3 - 0.3389 0.2867 0.3057 0.2960 0.2583 0.2746 0.2741 0.2496 0.2603 
10 5 - 0.4987 0.2723 0.2997 0.4986 0.2519 0.2757 0.5010 0.2462 0.2668 
10 0 9 0.3178 0.2549 0.2566 0.2759 0.2455 0.2465 0.2587 0.2427 0.2433 
10 0 25 0.4205 0.2542 0.2564 0.3863 0.2452 0.2466 0.3447 0.2426 0.2434 
10 0 100 0.4903 0.2538 0.2561 0.4842 0.2451 0.2466 0.4800 0.2425 0.2435 
10 3 9 0.3884 0.2556 0.2597 0.3610 0.2456 0.2482 0.3270 0.2428 0.2445 
10 3 25 0.4527 0.2544 0.2573 0.4441 0.2453 0.2471 0.4234 0.2426 0.2437 
10 3 100 0.4937 0.2538 0.2564 0.4916 0.2451 0.2467 0.4929 0.2425 0.2435 

10 5 9 0.4548 0.2570 0.2632 0.4732 0.2461 0.2500 0.4804 0.2430 0.2457 
10 5 25 0.4755 0.2545 0.2581 0.4870 0.2452 0.2475 0.4917 0.2426 0.2440 
10 5 100 0.4961 0.2537 0.2565 0.4963 0.2452 0.2468 0.5012 0.2425 0.2436 

 
20 3 - 0.5770 0.4745 0.5379 0.6202 0.4009 0.5733 0.6542 0.3480 0.6045 
20 5 - 0.6530 0.3925 0.5396 0.6911 0.2998 0.5827 0.7124 0.2710 0.6376 
20 0 9 0.3624 0.2608 0.2687 0.3055 0.2470 0.2516 0.2745 0.2433 0.2463 
20 0 25 0.4637 0.2576 0.2654 0.4277 0.2461 0.2511 0.3929 0.2429 0.2468 
20 0 100 0.4995 0.2556 0.2619 0.4911 0.2457 0.2502 0.4896 0.2427 0.2462 

20 3 9 0.5083 0.2624 0.2849 0.5334 0.2479 0.2613 0.5678 0.2437 0.2529 
20 3 25 0.5041 0.2574 0.2690 0.5062 0.2463 0.2536 0.5237 0.2430 0.2480 
20 3 100 0.5027 0.2557 0.2624 0.4993 0.2456 0.2503 0.5042 0.2428 0.2463 
20 5 9 0.6039 0.2662 0.3039 0.6795 0.2492 0.2807 0.7158 0.2445 0.2671 
20 5 25 0.5310 0.2578 0.2719 0.5590 0.2465 0.2556 0.6061 0.2431 0.2494 
20 5 100 0.5053 0.2552 0.2625 0.5048 0.2456 0.2504 0.5144 0.2428 0.2464 

 
40 3 - 0.7061 0.7080 0.7050 0.7328 0.7319 0.7319 0.7442 0.7430 0.7436 

40 5 - 0.6955 0.6894 0.6857 0.7252 0.7013 0.7177 0.7389 0.7134 0.7332 
40 0 9 0.4100 0.3059 0.3432 0.3491 0.2613 0.2883 0.3063 0.2496 0.2639 
40 0 25 0.4804 0.3075 0.3687 0.4571 0.2593 0.3272 0.4346 0.2487 0.2959 
40 0 100 0.4975 0.2801 0.3227 0.4965 0.2514 0.3132 0.4940 0.2452 0.3092 
40 3 9 0.6106 0.3547 0.4844 0.6767 0.2804 0.5185 0.7162 0.2579 0.5479 
40 3 25 0.5174 0.3101 0.3969 0.5499 0.2606 0.3757 0.5867 0.2490 0.3566 
40 3 100 0.5005 0.2792 0.3247 0.5035 0.2518 0.3178 0.5076 0.2454 0.3130 
40 5 9 0.6693 0.3967 0.5791 0.7172 0.3079 0.6661 0.7372 0.2727 0.7192 

40 5 25 0.5446 0.3129 0.4203 0.5992 0.2620 0.4185 0.6453 0.2497 0.4264 
40 5 100 0.5023 0.2811 0.3289 0.5080 0.2523 0.3235 0.5159 0.2454 0.3258 

Performance 2.9% 91.2% 5.9% 2.9% 97.1% 2.9% 2.9% 97.1% 0% 

 

Recall that there are five simulated variables (see Table 3.1) which includes 

dimension of variable  p , percentage of contamination   , sample size of the 

training data  1 2,n n , shift in location of the population    and shift in shape of the 

population   . Therefore, for every p  (such as 2p   in Table 4.1), discussions will 

be made with respect to the other four variables.  
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Firstly, considering the percentage of contamination   , Table 3.1 states that the 

percentage will vary from 10% to 20% and then 40%. It is observed that as   

increases, the mean misclassification error also increases at constant   and  . 

Although certain exemptions were noticed for CA at    1 2, 20,20n n   where the 

mean misclassification error of    , , 20,0,100     which is 0.4995 is greater than 

the mean misclassification error of    , , 40,0,100     which is 0.4975. Similarly, 

when   increases from 20% to 40% for    , 3,100    and    , 5,100   , 

likewise anomality is observed with CA as 0.5027 0.5005  and 0.5053 0.5023  

respectively. However, as  1 2,n n  increased to  50,50  and  100,100 , stability is 

observed as all mean misclassification error increased with increasing  . This implies 

that CA’s ability to correctly detect outliers is weak for small sample sizes. 

Secondly, considering  1 2,n n  it cannot be generally concluded that as the sample 

size increases, the mean misclassification error reduces or increases. Therefore, in this 

case, the discussion considers the linear discriminant model with the highest 

performance percentage as the sample size increases. From the performance row, CA 

maintains a performance percentage of 2.9% at all sample sizes and this is the point 

where CA obtains the least mean misclassification error when the data is clean (no 

contamination) with 0,  0,  0     . For the RLDAWMQ on the other hand, a 

depreciating performance percentage is observed from 5.9% to 2.9% and then 0%. 

This implies that for small sample sizes of simulation data with equal covariance 

matrix and balanced sample sizes, RLDAWMQ shows minimal high performance but as 

the sample size increases, its performance tends to zero. This leaves the RLDAMQ as 

the estimator with highest percentage performance as the sample size increases. 
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Thirdly, considering the shift in location of the population   , one notable behavior 

as  increased from 3 to 5 at 0   is the decrease in the mean misclassification 

error. Although, this observation was not consistent at 10% and 20% contamination, it 

was consistent as 40% contamination. This implies that when there is no shift in the 

shape of the population at increasing percentage of contamination, linear discriminant 

models have better accuracy in detecting of outliers. In addition, the behavior of the 

RLDAMQ as an accurate model at this level of variable manipulations is observed in 

the minimal and convergent results obtained even as   increased. Some of these 

convergence is observed at    , , 10,0,100    ,    , , 10,3,100     of 

   1 2, 20,20n n   and    , , 10, ,25     of    1 2, 100,100n n  .    

Finally, considering the shift in shape of the population   , the general behavior for 

all the linear discriminant models is sharp reduction as soon as   goes from 0 to 9 

before its gradual descent to convergence at 25,100  . This pattern is seen for the 

RLDAMQ at    1 2, 100,100n n   and 40% of contamination where there is a sharp 

reduction from 0.7430 and 0.7134 to 0.2579 and 0.2727 for   equals 3 and 5 

respectively. 

A general overview of the results obtained in Table 4.1 shows CA obtaining the least 

mean misclassification error at no contamination. This is in line with the theory that 

the classical LDA approach will perform optimally when the assumptions of the LDA 

are fulfilled. Although, RLDAMQ and RLDAWMQ also gave favourable results as the 

difference between the mean misclassification error of the robust estimators and the 

classical approach is within the range 4 33 10 ,1.9 10      which shows convergence 

in results. However, as soon as there is a little contamination in the data, say 10% 
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contamination 10  , the mean misclassification error for CA is seen to increase from 

a prior mean of 0.2511 to 0.3389, 0.2442 to 0.2960, and 0.2420 to 0.2741 for 

   1 2, 20,20n n  ,  50,50  and  100,100  respectively. This shows CA cannot 

handle the presence of outliers in data as a more increase is observed as the 

percentage of contamination increased to 20% and then 40% (Lim et al., 2016). 

Likewise, the RLDAWMQ robust model had an increased mean misclassification error 

value but the RLDAMQ approach maintained a controlled increase, thus being the best 

approach at the 10% and 20% levels of contamination.  

The best mean misclassification error is seen to fluctuate between RLDAMQ and 

RLDAWMQ when there was only a shift in location of the population such as the tie in 

value of 0.7319 at 40% percent contamination with moderate outlier value of 3   

when    1 2, 50,50n n  . However, as the sample size of the training sample increased 

to (100, 100), RLDAMQ showed a consistent control of a least mean misclassification 

error. Hence making this robust model the best at p=2. Although, higher variable 

dimensions are also considered to investigate the general behavior of the linear 

discriminant models.  

Therefore, for the case where the variable dimension is p=6 and p=10, the mean 

misclassification error analysis for CA, RLDAMQ and RLDAWMQ are shown for the 

balanced sample sizes  1 2,n n  in Tables 4.2 and 4.3 respectively. 
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Table  4.2 

Mean of Misclassification Error for Linear Discriminant Models with Balanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 6 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.1409 0.1442 0.1417 0.1214 0.1226 0.1218 0.1157 0.1163 0.1159 

 

10 3 - 0.3915 0.2728 0.3249 0.3286 0.1937 0.2654 0.2740 0.1574 0.2195 
10 5 - 0.4998 0.2438 0.2970 0.5004 0.1697 0.2616 0.4991 0.1418 0.2395 
10 0 9 0.2108 0.1484 0.1490 0.1812 0.1247 0.1269 0.1505 0.1172 0.1190 
10 0 25 0.2543 0.1481 0.1491 0.2696 0.1246 0.1273 0.2252 0.1172 0.1193 
10 0 100 0.2725 0.1476 0.1486 0.4413 0.1245 0.1273 0.4310 0.1171 0.1194 
10 3 9 0.2679 0.1541 0.1611 0.2757 0.1271 0.1354 0.2414 0.1184 0.1239 
10 3 25 0.2655 0.1485 0.1517 0.3288 0.1250 0.1295 0.3142 0.1173 0.1205 
10 3 100 0.2733 0.1476 0.1493 0.4572 0.1245 0.1278 0.4562 0.1172 0.1197 

10 5 9 0.3253 0.1625 0.1743 0.3809 0.1306 0.1453 0.4000 0.1202 0.1312 
10 5 25 0.2783 0.1497 0.1534 0.3812 0.1255 0.1314 0.4072 0.1175 0.1217 
10 5 100 0.2742 0.1477 0.1497 0.4675 0.1246 0.1281 0.4736 0.1172 0.1198 

 
20 3 - 0.5365 0.4698 0.5085 0.5611 0.4313 0.5322 0.5866 0.3913 0.5504 
20 5 - 0.5668 0.4141 0.4491 0.6101 0.3300 0.4906 0.6526 0.2670 0.5397 
20 0 9 0.2514 0.1567 0.1638 0.1980 0.1277 0.1354 0.1587 0.1185 0.1233 
20 0 25 0.3613 0.1541 0.1605 0.3534 0.1270 0.1351 0.2921 0.1181 0.1240 
20 0 100 0.4694 0.1524 0.1586 0.4871 0.1262 0.1327 0.4684 0.1179 0.1231 

20 3 9 0.3933 0.1693 0.1934 0.4948 0.1338 0.1637 0.5381 0.1214 0.1435 
20 3 25 0.4204 0.1553 0.1660 0.4977 0.1277 0.1403 0.5044 0.1185 0.1279 
20 3 100 0.4780 0.1526 0.1581 0.5036 0.1265 0.1340 0.4960 0.1180 0.1237 
20 5 9 0.4956 0.1882 0.2279 0.6776 0.1433 0.2067 0.7669 0.1265 0.1838 
20 5 25 0.4625 0.1572 0.1712 0.5911 0.1287 0.1453 0.6490 0.1190 0.1315 
20 5 100 0.4846 0.1524 0.1586 0.5146 0.1266 0.1346 0.5147 0.1180 0.1242 

 
40 3 - 0.6433 0.6476 0.6404 0.7165 0.7153 0.7129 0.7677 0.7635 0.7644 

40 5 - 0.6137 0.5988 0.5940 0.6793 0.6243 0.6553 0.7300 0.6573 0.7035 
40 0 9 0.3240 0.2062 0.2315 0.2487 0.1475 0.1781 0.1893 0.1275 0.1443 
40 0 25 0.4563 0.2087 0.2424 0.4247 0.1458 0.2142 0.3682 0.1266 0.1762 
40 0 100 0.4991 0.1827 0.2059 0.4949 0.1364 0.1922 0.4853 0.1223 0.1871 
40 3 9 0.6382 0.2749 0.3990 0.7623 0.1898 0.4842 0.8194 0.1497 0.5321 
40 3 25 0.5355 0.2175 0.2762 0.5995 0.1501 0.2726 0.6495 0.1288 0.2485 
40 3 100 0.5035 0.1834 0.2090 0.5101 0.1364 0.1969 0.5128 0.1224 0.1943 
40 5 9 0.7232 0.3428 0.5134 0.8173 0.2541 0.6878 0.8526 0.1953 0.7845 

40 5 25 0.5805 0.2289 0.3000 0.6701 0.1556 0.3324 0.7379 0.1315 0.3441 
40 5 100 0.5070 0.1844 0.2112 0.5195 0.1363 0.2007 0.5306 0.1226 0.1995 

Performance 2.9% 91.2% 5.9% 2.9% 94.2% 2.9% 2.9% 97.1% 0% 
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Table  4.3 

Mean of Misclassification Error for Linear Discriminant Models with Balanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 10 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.0980 0.1013 0.0992 0.0707 0.0718 0.0711 0.0635 0.0640 0.0636 

 

10 3 - 0.4202 0.3058 0.3534 0.3629 0.1984 0.2946 0.3102 0.1386 0.2391 
10 5 - 0.4996 0.2734 0.3133 0.5003 0.1628 0.2513 0.4995 0.1142 0.2595 
10 0 9 0.1421 0.1056 0.1053 0.1426 0.0742 0.0765 0.1078 0.0650 0.0671 
10 0 25 0.1521 0.1053 0.1051 0.2256 0.0742 0.0770 0.1745 0.0651 0.0676 
10 0 100 0.1540 0.1048 0.1047 0.3263 0.0742 0.0770 0.3968 0.0651 0.0678 
10 3 9 0.1979 0.1165 0.1229 0.2392 0.0786 0.0889 0.2223 0.0674 0.0756 
10 3 25 0.1616 0.1067 0.1090 0.2563 0.0747 0.0794 0.2549 0.0654 0.0693 
10 3 100 0.1547 0.1049 0.1054 0.3348 0.0742 0.0775 0.4292 0.0651 0.0681 

10 5 9 0.2581 0.1320 0.1444 0.3294 0.0860 0.1065 0.3637 0.0711 0.0887 
10 5 25 0.1747 0.1091 0.1125 0.2869 0.0756 0.0823 0.3404 0.0658 0.0712 
10 5 100 0.1558 0.1050 0.1060 0.3412 0.0742 0.0779 0.4520 0.0651 0.0683 

 
20 3 - 0.5237 0.4689 0.4979 0.5436 0.4436 0.5206 0.5616 0.4121 0.5340 
20 5 - 0.5432 0.4235 0.4128 0.5787 0.3610 0.2822 0.6115 0.2960 0.5044 
20 0 9 0.1977 0.1157 0.1205 0.1470 0.0771 0.0844 0.1083 0.0666 0.0720 
20 0 25 0.2575 0.1136 0.1171 0.2858 0.0767 0.0840 0.2469 0.0665 0.0726 
20 0 100 0.2864 0.1123 0.1139 0.4678 0.0763 0.0822 0.4671 0.0664 0.0716 

20 3 9 0.3049 0.1396 0.1574 0.4063 0.0882 0.1214 0.4972 0.0726 0.1016 
20 3 25 0.2798 0.1167 0.1236 0.4314 0.0781 0.0905 0.4937 0.0671 0.0776 
20 3 100 0.2879 0.1124 0.1150 0.4884 0.0764 0.0834 0.5017 0.0664 0.0722 
20 5 9 0.3826 0.1738 0.2039 0.5863 0.1069 0.1789 0.7423 0.0828 0.1620 
20 5 25 0.3030 0.1213 0.1309 0.5366 0.0801 0.0975 0.6630 0.0685 0.0838 
20 5 100 0.2897 0.1122 0.1157 0.5027 0.0766 0.0841 0.5242 0.0665 0.0728 
            

40 3 - 0.6018 0.6046 0.5995 0.6742 0.6705 0.6703 0.7323 0.7270 0.7281 

40 5 - 0.5769 0.5482 0.5571 0.6354 0.5765 0.6118 0.6864 0.6070 0.6575 
40 0 9 0.2639 0.1611 0.1746 0.1886 0.0940 0.1197 0.1346 0.0741 0.0900 
40 0 25 0.4187 0.1674 0.1795 0.3927 0.0927 0.1432 0.3367 0.0739 0.1180 
40 0 100 0.4956 0.1434 0.1509 0.4915 0.0851 0.1257 0.4865 0.0703 0.1205 
40 3 9 0.5762 0.2454 0.3202 0.7777 0.1509 0.4159 0.8609 0.1069 0.5053 
40 3 25 0.5214 0.1781 0.2038 0.6076 0.0994 0.1961 0.6915 0.0768 0.1876 
40 3 100 0.5050 0.1439 0.1549 0.5087 0.0855 0.1308 0.5222 0.0704 0.1282 
40 5 9 0.6744 0.3242 0.4236 0.8497 0.2393 0.6307 0.8995 0.1776 0.7829 

40 5 25 0.5792 0.1923 0.2251 0.6973 0.1078 0.2513 0.7897 0.0809 0.2890 
40 5 100 0.5116 0.1457 0.1562 0.5208 0.0859 0.1350 0.5448 0.0703 0.1320 

Performance 2.9% 82.4% 14.7% 2.9% 91.2% 5.9% 2.9% 97.1% 0% 

 

From Tables 4.2 and 4.3, CA still maintains the position of the linear model with the 

least mean values for the misclassification error when 0,  0,  0      with the 

robust models following closely. Likewise, just as in the case of p=2, as soon as the 

percentage of contamination was introduced with moderate and extreme outlier value 

 3,5  , the best mean values moved to the robust models. 
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However, considering the other variables, a consistent behavior is now observed with 

respect to the percentage of contamination   . There is a consistent increase in the 

mean misclassification error as   increases at constant   and   as no exemptions 

were noticed. This implies that the accurate behavior of linear discriminant models 

with respect to contamination is better observed at high dimension of variables. In 

addition, highlighting the model with the highest performance percentage as the 

sample size increases, RLDAMQ remains the estimator with highest percentage 

performance as the sample size increases. Furthermore, the notable behavior with the 

shift in location of the population   increasing from 3 to 5 at 0   causing a 

decrease in the mean misclassification error is still consistent with robust estimators. 

Whereas, CA is observed to display fluctuations in following the other robust linear 

models. This inconsistent behavior still follows CA even when considering the shift in 

shape of the population   . The robust models are consistent with the pattern of 

sharp reduction as   goes from 0 to 9 before its gradual descent to convergence at 

25,100   while CA is inconsistent. 

Generally, it is observed that the misclassification error is inversely proportional to 

the dimension of the variables, that is, as p increases, mean misclassification error 

reduces, except when there is no shift in shape of the population  0  . For instance, 

when considering the increase from p=2 to p=6, the mean misclassification error 

reduces to about half of its initial value and further decrease was also observed when 

p increased to 10.This same pattern is not observed for the classical model which did 

not display such convergence with respect to the increase in the dimension of the 

variables.  
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As a result of these values observed in Tables 4.2 and 4.3, RLDAMQ remains the best 

model even when the dimension of the variable is increased. Although, CA and 

RLDAWMQ also performed well in certain conditions such as 

40,  3 and 5,  0      for p=6, however the values are not significant. In 

addition, from the performance percentages, RLDAWMQ has an increased performance 

rate of 5.9% to 14.7% when the dimension of variables was increased to p=10 

although still lagging way behind RLDAMQ. Therefore, the RLDAMQ model 

performed most favorably especially in the case when the sample sizes of the training 

data were increased which is a difficult scenario for detecting outliers. Therefore, the 

RLDAMQ performs better than the classical model and its winsorized counterpart 

when adopted to data with balanced sample sizes and equal covariance matrix. 

 

4.2.1.2 Unbalanced Sample Sizes 

The next set of results discussed are the unbalanced sample sizes; 

       1 2, 50,20 , 100,50 , 100,20n n     . The results are also considered for variable 

dimensions 2,6,10p  .  
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Table  4.4 

Mean Misclassification Error for Linear Discriminant Models with Unbalanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 2 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.2897 0.3106 0.2855 0.2684 0.2746 0.2658 0.3552 0.3771 0.3463 

 

10 3 - 0.4885 0.4368 0.4509 0.4836 0.3723 0.4308 0.4997 0.4877 0.4952 
10 5 - 0.5000 0.4116 0.4327 0.5000 0.3441 0.4213 0.5000 0.4783 0.4914 
10 0 9 0.4881 0.3592 0.3168 0.4909 0.3033 0.2892 0.4998 0.4385 0.4048 
10 0 25 0.5000 0.3664 0.3182 0.5000 0.3083 0.2914 0.5000 0.4458 0.4085 
10 0 100 0.5000 0.3697 0.3181 0.5000 0.3104 0.2920 0.5000 0.4486 0.4095 
10 3 9 0.4949 0.3641 0.3355 0.4988 0.3069 0.3054 0.5000 0.4430 0.4284 
10 3 25 0.5000 0.3667 0.3238 0.5000 0.3089 0.2964 0.5000 0.4463 0.4161 
10 3 100 0.5000 0.3695 0.3194 0.5000 0.3105 0.2933 0.5000 0.4487 0.4114 

10 5 9 0.4983 0.3702 0.3508 0.4999 0.3114 0.3211 0.5000 0.4492 0.4456 
10 5 25 0.5000 0.3675 0.3279 0.5000 0.3096 0.3003 0.5000 0.4473 0.4219 
10 5 100 0.5000 0.3695 0.3203 0.5000 0.3106 0.2940 0.5000 0.4489 0.4127 

 
20 3 - 0.5017 0.4969 0.5007 0.5015 0.4946 0.5012 0.5001 0.4997 0.5000 
20 5 - 0.5040 0.4843 0.4962 0.5050 0.4569 0.5024 0.5002 0.4985 0.4994 
20 0 9 0.4995 0.4234 0.3695 0.4998 0.3579 0.3392 0.5000 0.4843 0.4649 
20 0 25 0.5000 0.4405 0.3633 0.5000 0.3771 0.3397 0.5000 0.4913 0.4644 
20 0 100 0.5000 0.4476 0.3541 0.5000 0.3853 0.3312 0.5000 0.4933 0.4584 

20 3 9 0.4999 0.4330 0.4138 0.5000 0.3691 0.3988 0.5000 0.4879 0.4864 
20 3 25 0.5000 0.4410 0.3764 0.5000 0.3773 0.3555 0.5000 0.4911 0.4716 
20 3 100 0.5000 0.4470 0.3556 0.5000 0.3855 0.3347 0.5000 0.4934 0.4605 
20 5 9 0.5000 0.4437 0.4418 0.5000 0.3836 0.4435 0.5000 0.4917 0.4943 
20 5 25 0.5000 0.4422 0.3861 0.5000 0.3791 0.3686 0.5000 0.4915 0.4764 
20 5 100 0.5000 0.4471 0.3579 0.5000 0.3856 0.3372 0.5000 0.4934 0.4620 

 
40 3 - 0.5333 0.5132 0.5342 0.5667 0.5448 0.5679 0.5015 0.5004 0.5017 

40 5 - 0.5226 0.5244 0.5264 0.5485 0.5611 0.5547 0.5009 0.5020 0.5021 
40 0 9 0.5000 0.4961 0.4888 0.5000 0.4859 0.4884 0.5000 0.4999 0.4999 
40 0 25 0.5000 0.4996 0.4860 0.5000 0.4983 0.4917 0.5000 0.5000 0.4999 
40 0 100 0.5000 0.5000 0.4474 0.5000 0.4998 0.4577 0.5000 0.5000 0.4972 
40 3 9 0.5000 0.4986 0.4985 0.5000 0.4959 0.4999 0.5000 0.5000 0.5000 
40 3 25 0.5000 0.4997 0.4911 0.5000 0.4986 0.4958 0.5000 0.5000 0.4999 
40 3 100 0.5000 0.5000 0.4491 0.5000 0.4998 0.4617 0.5000 0.5000 0.4974 
40 5 9 0.5000 0.4995 0.5000 0.5000 0.4990 0.5008 0.5000 0.5000 0.5000 

40 5 25 0.5000 0.4997 0.4929 0.5000 0.4989 0.4976 0.5000 0.5000 0.5000 
40 5 100 0.5000 0.5000 0.4503 0.5000 0.4998 0.4639 0.5000 0.5000 0.4975 

Performance 2.9% 17.7% 79.4% 2.9% 32.4% 64.7% 11.8% 29.4% 79.4% 

 

From Table 4.4, certain observations were noted with respect to the manipulated 

variables. Firstly, it is observed that as   increases, the mean misclassification error 

also increases at constant   and   with convergence towards an approximate mean 

misclassification error of 0.5. Secondly, considering  1 2,n n , a discussion could not 

be presented as to what happens when the sample sizes increases in reduces. This is 
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because such a pattern does not exist with respect to the sample size values, thus, the 

observation drawn is that the maximum mean misclassification also tends to an 

approximate misclassification error of 0.5 as the sample size increases. From the 

performance row, due to the convergence of all the linear discriminant models 

towards an 0.5 mean misclassification, a higher performance percentage is observed 

as the sample size increased. Although, the model with the highest percentage was 

RLDAWMQ having the least misclassification error even when there was no 

contamination. Thirdly, as the shift in location of the population    increased, the 

mean misclassification error decreased while also converging to an approximate 0.5. 

Finally, a sharp reduction was not observed as the shift in the shape of the population 

varied since the prior values were already close or tending to 0.5.  

Generally, unlike the case of the balanced sample sizes, at the point where the data 

has no contamination, RLDAWMQ has the least mean misclassification error. The 

RLDAWMQ performs better than the CA at this point because the combination of 

simulation scenario does not satisfy all assumptions of the LDA. Observing the results 

at 10% contamination, a maximal mean misclassification error value of 0.5000 is 

observed and the RLDAWMQ model still performs better since the CA and RLDAMQ 

models attain this high error value faster. This is also similar to the results computed 

at the 20% and 40% contamination levels. 

Therefore, for the case where the variable dimension is p=6 and p=10, the mean 

misclassification error analysis for CA, RLDAMQ and RLDAWMQ are shown for the 

unbalanced sample sizes  1 2,n n  in Tables 4.5 and 4.6 respectively. 
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Table  4.5 

Mean of Misclassification Error for Linear Discriminant Models with Unbalanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 6 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.1428 0.1520 0.1417 0.1268 0.1296 0.1261 0.1681 0.1813 0.1638 

 

10 3 - 0.4609 0.3673 0.4025 0.4511 0.2841 0.3781 0.4955 0.4580 0.4787 
10 5 - 0.5000 0.3375 0.3721 0.4998 0.2531 0.3621 0.5000 0.4413 0.4661 
10 0 9 0.3213 0.1758 0.1582 0.3474 0.1416 0.1373 0.4668 0.2334 0.2027 
10 0 25 0.4592 0.1786 0.1587 0.4989 0.1436 0.1384 0.4998 0.2410 0.2055 
10 0 100 0.4972 0.1800 0.1588 0.5000 0.1445 0.1387 0.5000 0.2446 0.2064 
10 3 9 0.4043 0.1862 0.1772 0.4634 0.1477 0.1524 0.4946 0.2529 0.2429 
10 3 25 0.4637 0.1800 0.1630 0.4996 0.1445 0.1419 0.4999 0.2441 0.2151 
10 3 100 0.4969 0.1801 0.1596 0.5000 0.1446 0.1395 0.5000 0.2449 0.2083 

10 5 9 0.4547 0.2032 0.2019 0.4934 0.1576 0.1742 0.4992 0.2826 0.2925 
10 5 25 0.4696 0.1827 0.1675 0.4999 0.1457 0.1454 0.5000 0.2482 0.2247 
10 5 100 0.4968 0.1803 0.1603 0.5000 0.1447 0.1401 0.5000 0.2454 0.2100 

 
20 3 - 0.5104 0.4868 0.5044 0.5110 0.4779 0.5079 0.5010 0.4980 0.5007 
20 5 - 0.5212 0.4559 0.4781 0.5238 0.4171 0.5003 0.5022 0.4897 0.4960 
20 0 9 0.4684 0.2246 0.1914 0.4793 0.1673 0.1606 0.4996 0.3224 0.2795 
20 0 25 0.4999 0.2391 0.1862 0.5000 0.1774 0.1609 0.5000 0.3494 0.2772 
20 0 100 0.5000 0.2457 0.1789 0.5000 0.1824 0.1566 0.5000 0.3615 0.2656 

20 3 9 0.4972 0.2553 0.2529 0.4999 0.1886 0.2262 0.5000 0.3683 0.3841 
20 3 25 0.5000 0.2430 0.1991 0.5000 0.1803 0.1735 0.5000 0.3554 0.3032 
20 3 100 0.5000 0.2458 0.1812 0.5000 0.1826 0.1586 0.5000 0.3619 0.2701 
20 5 9 0.4996 0.3018 0.3175 0.5000 0.2232 0.3143 0.5000 0.4199 0.4496 
20 5 25 0.5000 0.2501 0.2110 0.5000 0.1849 0.1859 0.5000 0.3650 0.3258 
20 5 100 0.5000 0.2465 0.1833 0.5000 0.1830 0.1604 0.5000 0.3630 0.2743 

 
40 3 - 0.5637 0.5379 0.5646 0.5861 0.5644 0.5876 0.5088 0.5041 0.5096 

40 5 - 0.5507 0.5412 0.5497 0.5659 0.5680 0.5722 0.5070 0.5100 0.5118 
40 0 9 0.4995 0.4279 0.4052 0.4997 0.3397 0.3743 0.5000 0.4924 0.4929 
40 0 25 0.5000 0.4784 0.4158 0.5000 0.4303 0.4200 0.5000 0.4995 0.4968 
40 0 100 0.5000 0.4923 0.3075 0.5000 0.4685 0.3175 0.5000 0.5000 0.4600 
40 3 9 0.5000 0.4753 0.4892 0.5000 0.4415 0.4979 0.5000 0.4991 0.5000 
40 3 25 0.5000 0.4813 0.4433 0.5000 0.4430 0.4638 0.5000 0.4997 0.4986 
40 3 100 0.5000 0.4925 0.3135 0.5000 0.4686 0.3272 0.5000 0.5000 0.4639 
40 5 9 0.5000 0.4925 0.4993 0.5000 0.4857 0.5036 0.5000 0.4999 0.5000 

40 5 25 0.5000 0.4855 0.4567 0.5000 0.4544 0.4812 0.5000 0.4998 0.4993 
40 5 100 0.5000 0.4923 0.3168 0.5000 0.4699 0.3350 0.5000 0.5000 0.4670 

Performance 0% 26.5% 73.5% 2.9% 44.1% 53% 0% 35.3% 64.7% 
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Table  4.6 

Mean of Misclassification Error for Linear Discriminant Models with Unbalanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 10 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.0862 0.0913 0.0860 0.0707 0.0725 0.0704 0.0958 0.1035 0.0936 

 

10 3 - 0.4478 0.3452 0.3886 0.4323 0.2609 0.3608 0.4880 0.4367 0.4627 
10 5 - 0.5003 0.3193 0.3565 0.4998 0.2285 0.3455 0.4999 0.4215 0.4457 
10 0 9 0.1823 0.1039 0.0970 0.2064 0.0791 0.0783 0.3366 0.1323 0.1167 
10 0 25 0.2412 0.1052 0.0975 0.4644 0.0800 0.0791 0.4811 0.1361 0.1187 
10 0 100 0.2609 0.1057 0.0973 0.5000 0.0803 0.0794 0.4997 0.1378 0.1192 
10 3 9 0.2785 0.1169 0.1180 0.3803 0.0862 0.0950 0.4511 0.1547 0.1561 
10 3 25 0.2584 0.1068 0.1016 0.4775 0.0809 0.0824 0.4853 0.1391 0.1262 
10 3 100 0.2622 0.1057 0.0981 0.5000 0.0805 0.0800 0.4994 0.1381 0.1206 

10 5 9 0.3597 0.1387 0.1477 0.4621 0.0986 0.1211 0.4872 0.1931 0.2134 
10 5 25 0.2799 0.1096 0.1062 0.4870 0.0826 0.0862 0.4902 0.1444 0.1351 
10 5 100 0.2638 0.1059 0.0987 0.5000 0.0806 0.0805 0.4993 0.1384 0.1217 

 
20 3 - 0.5149 0.4801 0.5046 0.5182 0.4677 0.5111 0.5030 0.4949 0.5018 
20 5 - 0.5283 0.4452 0.4548 0.5358 0.4047 0.4858 0.5060 0.4813 0.4902 
20 0 9 0.3432 0.1314 0.1180 0.4000 0.0932 0.0937 0.4913 0.1942 0.1671 
20 0 25 0.4933 0.1376 0.1156 0.5000 0.0977 0.0937 0.5000 0.2127 0.1653 
20 0 100 0.5000 0.1399 0.1109 0.5000 0.1000 0.0909 0.5000 0.2208 0.1558 

20 3 9 0.4666 0.1701 0.1798 0.4984 0.1162 0.1561 0.4999 0.2596 0.2870 
20 3 25 0.4955 0.1427 0.1261 0.5000 0.1010 0.1043 0.5000 0.2217 0.1878 
20 3 100 0.5000 0.1406 0.1131 0.5000 0.1003 0.0926 0.5000 0.2218 0.1600 
20 5 9 0.4921 0.2285 0.2523 0.5000 0.1584 0.2533 0.5000 0.3492 0.3929 
20 5 25 0.4974 0.1523 0.1385 0.5000 0.1064 0.1162 0.5000 0.2375 0.2129 
20 5 100 0.5000 0.1411 0.1142 0.5000 0.1006 0.0938 0.5000 0.2226 0.1626 

 
40 3 - 0.5749 0.5545 0.5749 0.5998 0.5812 0.6006 0.5192 0.5105 0.5204 

40 5 - 0.5590 0.5366 0.5497 0.5788 0.5574 0.5773 0.5158 0.5150 0.5196 
40 0 9 0.4924 0.3139 0.2928 0.4970 0.2108 0.2562 0.5000 0.4503 0.4598 
40 0 25 0.5000 0.4016 0.3171 0.5000 0.3035 0.3220 0.5000 0.4912 0.4804 
40 0 100 0.5000 0.4397 0.2100 0.5000 0.3628 0.2154 0.5000 0.4978 0.3897 
40 3 9 0.5000 0.4278 0.4669 0.5000 0.3700 0.4937 0.5000 0.4947 0.4996 
40 3 25 0.5000 0.4153 0.3635 0.5000 0.3285 0.4034 0.5000 0.4936 0.4911 
40 3 100 0.5000 0.4396 0.2147 0.5000 0.3642 0.2258 0.5000 0.4979 0.3961 
40 5 9 0.5000 0.4724 0.4948 0.5000 0.4623 0.5068 0.5000 0.4994 0.5000 

40 5 25 0.5000 0.4325 0.3926 0.5000 0.3621 0.4505 0.5000 0.4963 0.4962 
40 5 100 0.5000 0.4407 0.2200 0.5000 0.3666 0.2331 0.5000 0.4980 0.4023 

Performance 0% 35.3% 64.7% 0% 61.8% 38.2% 0% 38.2% 61.8% 

 

Considering all variables in Tables 4.5 and 4.6, the following conclusions were 

drawn. An increase in the percentage of contamination, brought about a simultaneous 

increase in the mean misclassification error. Although, an in-depth insight was not 

possible for the CA approach as there was a limitation of all misclassification error 

values being equal or tending towards 0.5. This setback was not observed with the 

robust models as the increase in the dimension of variables had brought about a 
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convergent reduction in the mean misclassification error. Therefore, the pattern of the 

errors with respect to the variables was better understood with the robust LDAs than 

the conventional LDA for unbalanced sample sizes. Other observations includes 

reduction in mean misclassification error as the shift in location of the population    

increased, a sharp reduction observed in the robust models only as the shift in the 

shape of the population increased, and a higher performance percentage observed 

from the RLDAMQ as p increased although on a general performance scale, 

RLDAWMQ had greater frequency. 

The classical approach falls short in competing with the robust models and the 

RLDAWMQ still maintains the position of the linear model with the least mean values 

for the misclassification error when 0,  0,  0     . When the contamination was 

introduced, at the point where there is little (say 9  ) or no shift in  0  , 

RLDAMQ was seen to perform better. This is observed for both cases of balanced and 

unbalanced sample sizes. This implies that the RLDAMQ cannot handle large 

concentration of contamination. Therefore, considering the general performance 

percentage results, RLDAWMQ competes best when adapted to data with unbalanced 

sample sizes and equal covariance matrix except for the case when    1 2, 100,50n n 

where RLDAMQ had a higher performance percentage. However, this singular 

performance value is not consistent enough to earn the RLDAMQ model to be better 

than RLDAWMQ. 

This leads to the discussion on the analysis for datasets with unequal covariance 

matrix. 
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4.2.2 Unequal Covariance Matrices 

Similar to the case for the equal covariance matrices, the combination of the various 

variable settings as highlighted in Table 3.1 also gave rise to 54 uncontaminated, 324 

location contamination, 486 shape contamination and 972 location and shape 

contamination. This produces a total of 1836 different data conditions. The following 

subsections will highlight the results obtained for both the balanced and unbalanced 

sample sizes per variable dimension. 

 

4.2.2.1  Balanced Sample Sizes 

This subsection considers the balanced sample sizes; 

       1 2, 20,20 , 50,50 , 100,100n n      for variable dimension 2,6,10p  . The mean 

misclassification error is computed for each linear discriminant model. 
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Table  4.7 

Mean Misclassification Error for Linear Discriminant Models with Balanced Sample 

Sizes, Unequal Covariance Matrices and 𝑝 = 2 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.3169 0.3192 0.3177 0.3069 0.3078 0.3071 0.3038 0.3043 0.3039 

 

10 3 - 0.3863 0.3652 0.3740 0.3512 0.3316 0.3407 0.3302 0.3192 0.3236 
10 5 - 0.4850 0.3694 0.4032 0.4896 0.3382 0.3788 0.4931 0.3267 0.3616 
10 0 9 0.3620 0.3225 0.3242 0.3294 0.3086 0.3096 0.3152 0.3047 0.3052 
10 0 25 0.4366 0.3213 0.3252 0.4106 0.3084 0.3103 0.3781 0.3045 0.3056 
10 0 100 0.4903 0.3203 0.3249 0.4865 0.3079 0.3105 0.4805 0.3045 0.3057 
10 3 9 0.4189 0.3246 0.3347 0.3969 0.3102 0.3164 0.3713 0.3058 0.3101 
10 3 25 0.4623 0.3213 0.3285 0.4558 0.3084 0.3124 0.4395 0.3047 0.3072 
10 3 100 0.4943 0.3202 0.3251 0.4931 0.3079 0.3110 0.4925 0.3045 0.3061 

10 5 9 0.4693 0.3268 0.3435 0.4784 0.3114 0.3234 0.4846 0.3068 0.3149 
10 5 25 0.4805 0.3216 0.3305 0.4890 0.3084 0.3137 0.4921 0.3047 0.3084 
10 5 100 0.4964 0.3204 0.3257 0.4977 0.3079 0.3113 0.5008 0.3045 0.3064 

 
20 3 - 0.5366 0.4941 0.5197 0.5718 0.4739 0.5478 0.6024 0.4581 0.5770 
20 5 - 0.6182 0.5141 0.5759 0.6546 0.4753 0.6170 0.6702 0.4483 0.6427 
20 0 9 0.3917 0.3294 0.3367 0.3511 0.3107 0.3151 0.3278 0.3057 0.3083 
20 0 25 0.4691 0.3261 0.3375 0.4411 0.3099 0.3179 0.4146 0.3053 0.3101 
20 0 100 0.4987 0.3232 0.3326 0.4911 0.3086 0.3158 0.4891 0.3049 0.3102 

20 3 9 0.5036 0.3389 0.3700 0.5231 0.3163 0.3464 0.5486 0.3094 0.3321 
20 3 25 0.5016 0.3273 0.3452 0.5051 0.3101 0.3254 0.5180 0.3058 0.3167 
20 3 100 0.5025 0.3231 0.3340 0.4987 0.3087 0.3172 0.5014 0.3050 0.3110 
20 5 9 0.5772 0.3467 0.4028 0.6342 0.3208 0.3945 0.6638 0.3125 0.3886 
20 5 25 0.5242 0.3281 0.3515 0.5486 0.3104 0.3313 0.5845 0.3060 0.3234 
20 5 100 0.5052 0.3230 0.3348 0.5037 0.3087 0.3182 0.5115 0.3050 0.3122 

 
40 3 - 0.6568 0.6541 0.6555 0.6798 0.6766 0.6790 0.6886 0.6858 0.6880 

40 5 - 0.6566 0.6485 0.6521 0.6793 0.6570 0.6751 0.6879 0.6596 0.6840 
40 0 9 0.4270 0.3648 0.3862 0.3820 0.3269 0.3457 0.3495 0.3130 0.3244 
40 0 25 0.4813 0.3734 0.4069 0.4662 0.3319 0.3791 0.4459 0.3141 0.3542 
40 0 100 0.4972 0.3546 0.3886 0.4975 0.3209 0.3807 0.4935 0.3099 0.3755 
40 3 9 0.5860 0.4280 0.5057 0.6370 0.3846 0.5458 0.6674 0.3539 0.5837 
40 3 25 0.5160 0.3798 0.4316 0.5453 0.3398 0.4308 0.5727 0.3189 0.4274 
40 3 100 0.5005 0.3577 0.3918 0.5039 0.3205 0.3831 0.5073 0.3106 0.3863 
40 5 9 0.6355 0.4747 0.5703 0.6701 0.4465 0.6249 0.6842 0.4232 0.6516 

40 5 25 0.5420 0.3850 0.4505 0.5858 0.3459 0.4735 0.6217 0.3232 0.4928 
40 5 100 0.5023 0.3570 0.3959 0.5085 0.3218 0.3903 0.5162 0.3107 0.3921 

Performance 2.9% 97.1% 0% 2.9% 97.1% 0% 2.9% 97.1% 0% 

 

Table 4.7 shows the mean misclassification error just like Table 4.1 but in this case, 

the covariance matrices are unequal. In discussing each of the variables, similar 

behavior is exhibited between Table 4.1 and Table 4.7. For instance, considering the 

percentage of contamination   , it is similarly observed that as   increases, the 

mean misclassification error also increases at constant   and  . Certain exemptions 
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were again noticed for CA at    1 2, 20,20n n   where the mean misclassification 

error of    , , 20,0,100     which is 0.4987 is greater than the mean 

misclassification error of    , , 40,0,100     which is 0.4972. Similarly, when   

increases from 20% to 40% for    , 3,100    and    , 5,100   , same 

anomality is observed with CA as 0.5025 0.5005  and 0.5052 0.5023  respectively. 

Although, as  1 2,n n  increased, there is stability as all mean misclassification errors 

increased with increasing  .   

Considering  1 2,n n , the discussion focuses on the linear discriminant model with the 

highest performance percentage as the sample size increases. CA maintains a 

performance percentage of 2.9% at all sample sizes and this performance is obtained 

when the data has no contamination. RLDAWMQ on the other hand shows no 

performance as its percentage takes value of 0% all through. This leaves the RLDAMQ 

as the estimator with highest percentage performance as the sample size increases. 

The change in shift in location of the population    helped draw the conclusion that 

when 0   with increasing  , linear discriminant models have better accuracy in 

detecting of outliers. This is because of the behavior of   as it increased from 3 to 5 

at 0  , a decrease was recorded in the mean misclassification error. Although, this 

observation was not consistent at 10% and 20% contamination, it was consistent as 

40% contamination. On the other hand, increase in the shift in shape of the population 

   showed decrease in the mean misclassification error. 

Generally, the introduction of contamination makes the mean misclassification error 

is seen to increase for CA making the RLDAMQ the best approach in the presence of 
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contamination. The mean misclassification error results for 6,10p   using CA, 

RLDAMQ and RLDAWMQ are shown for the balanced sample sizes  1 2,n n  in Tables 

4.8 and 4.9 respectively. 

 

Table  4.8 

Mean of Misclassification Error for Linear Discriminant Models with Balanced 

Sample Sizes, Unequal Covariance Matrices and 𝑝 = 6 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.2342 0.2376 0.2354 0.2069 0.2092 0.2075 0.1986 0.1997 0.1989 

 
10 3 - 0.3842 0.3395 0.3602 0.3400 0.2824 0.3132 0.2980 0.2468 0.2752 
10 5 - 0.4715 0.3605 0.4021 0.4817 0.3047 0.3855 0.4843 0.2674 0.3637 
10 0 9 0.2722 0.2428 0.2431 0.2439 0.2119 0.2141 0.2215 0.2010 0.2026 
10 0 25 0.3090 0.2418 0.2432 0.3190 0.2119 0.2154 0.2829 0.2010 0.2036 
10 0 100 0.3301 0.2411 0.2432 0.4511 0.2116 0.2157 0.4375 0.2008 0.2040 
10 3 9 0.3246 0.2506 0.2593 0.3256 0.2170 0.2289 0.2979 0.2034 0.2126 
10 3 25 0.3217 0.2425 0.2471 0.3678 0.2127 0.2196 0.3542 0.2012 0.2063 

10 3 100 0.3310 0.2410 0.2439 0.4650 0.2116 0.2166 0.4598 0.2009 0.2045 
10 5 9 0.3731 0.2610 0.2774 0.4150 0.2234 0.2478 0.4266 0.2069 0.2268 
10 5 25 0.3345 0.2443 0.2508 0.4110 0.2135 0.2232 0.4268 0.2016 0.2088 
10 5 100 0.3320 0.2415 0.2446 0.4738 0.2118 0.2171 0.4751 0.2009 0.2049 

 
20 3 - 0.5067 0.4776 0.4942 0.5413 0.4712 0.5247 0.5696 0.4548 0.5476 
20 5 - 0.5429 0.4878 0.5174 0.5986 0.4707 0.5624 0.6438 0.4552 0.6019 
20 0 9 0.3053 0.2508 0.2556 0.2639 0.2165 0.2234 0.2311 0.2029 0.2076 
20 0 25 0.3911 0.2494 0.2556 0.3828 0.2156 0.2272 0.3323 0.2026 0.2111 

20 0 100 0.4764 0.2463 0.2521 0.4878 0.2140 0.2250 0.4699 0.2020 0.2105 
20 3 9 0.4258 0.2699 0.2973 0.4984 0.2297 0.2731 0.5267 0.2100 0.2482 
20 3 25 0.4402 0.2515 0.2638 0.4985 0.2173 0.2382 0.4995 0.2034 0.2197 
20 3 100 0.4841 0.2466 0.2542 0.5034 0.2142 0.2267 0.4957 0.2020 0.2119 
20 5 9 0.5057 0.2922 0.3400 0.6349 0.2466 0.3430 0.7026 0.2210 0.3308 
20 5 25 0.4736 0.2541 0.2719 0.5733 0.2190 0.2490 0.6157 0.2043 0.2291 
20 5 100 0.4899 0.2467 0.2551 0.5133 0.2143 0.2284 0.5129 0.2020 0.2129 

 

40 3 - 0.6162 0.6123 0.6133 0.6900 0.6781 0.6867 0.7341 0.7221 0.7312 
40 5 - 0.5958 0.6079 0.5913 0.6664 0.6466 0.6585 0.7129 0.6721 0.7042 
40 0 9 0.3590 0.2917 0.3072 0.3021 0.2390 0.2584 0.2547 0.2143 0.2263 
40 0 25 0.4607 0.3081 0.3290 0.4357 0.2457 0.3044 0.3893 0.2178 0.2623 
40 0 100 0.4984 0.2930 0.3050 0.4948 0.2341 0.2985 0.4854 0.2122 0.2926 
40 3 9 0.6071 0.3711 0.4643 0.7038 0.3192 0.5485 0.7508 0.2742 0.6079 
40 3 25 0.5315 0.3176 0.3625 0.5844 0.2568 0.3731 0.6238 0.2248 0.3610 
40 3 100 0.5035 0.2922 0.3099 0.5101 0.2346 0.3049 0.5127 0.2125 0.3033 

40 5 9 0.6737 0.4273 0.5438 0.7499 0.4079 0.6526 0.7798 0.3777 0.7121 
40 5 25 0.5713 0.3281 0.3885 0.6449 0.2669 0.4339 0.6985 0.2322 0.4687 
40 5 100 0.5067 0.2922 0.3121 0.5185 0.2354 0.3108 0.5294 0.2128 0.3110 

Performance 2.9% 94.2% 2.9% 2.9% 97.1% 0% 2.9% 97.1% 0% 
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Table  4.9 

Mean of Misclassification Error for Linear Discriminant Models with Balanced 

Sample Sizes, Unequal Covariance Matrices and 𝑝 = 10 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.2005 0.2041 0.2019 0.1607 0.1630 0.1612 0.1483 0.1496 0.1486 

 

10 3 - 0.3985 0.3538 0.3738 0.3527 0.2802 0.3220 0.3107 0.2311 0.2781 
10 5 - 0.4647 0.3791 0.4090 0.4755 0.3137 0.3977 0.4803 0.2642 0.3808 
10 0 9 0.2282 0.2089 0.2077 0.2019 0.1653 0.1672 0.1776 0.1510 0.1530 
10 0 25 0.2411 0.2081 0.2077 0.2697 0.1653 0.1686 0.2409 0.1512 0.1548 
10 0 100 0.2442 0.2073 0.2079 0.3618 0.1651 0.1689 0.4123 0.1511 0.1554 
10 3 9 0.2791 0.2224 0.2292 0.2883 0.1734 0.1872 0.2767 0.1556 0.1682 
10 3 25 0.2505 0.2099 0.2125 0.3012 0.1663 0.1730 0.3086 0.1517 0.1581 
10 3 100 0.2449 0.2073 0.2088 0.3694 0.1651 0.1697 0.4395 0.1511 0.1560 

10 5 9 0.3286 0.2406 0.2540 0.3705 0.1858 0.2152 0.3992 0.1632 0.1927 
10 5 25 0.2623 0.2124 0.2173 0.3301 0.1680 0.1775 0.3774 0.1527 0.1617 
10 5 100 0.2458 0.2076 0.2093 0.3750 0.1651 0.1704 0.4585 0.1511 0.1565 

 
20 3 - 0.4880 0.4689 0.4789 0.5200 0.4672 0.5074 0.5461 0.4557 0.5284 
20 5 - 0.5096 0.4757 0.4890 0.5615 0.4667 0.5335 0.6046 0.4563 0.5683 
20 0 9 0.2593 0.2199 0.2211 0.2167 0.1703 0.1766 0.1848 0.1538 0.1595 
20 0 25 0.3083 0.2202 0.2212 0.3274 0.1702 0.1802 0.2961 0.1537 0.1640 
20 0 100 0.3397 0.2162 0.2188 0.4694 0.1688 0.1786 0.4690 0.1533 0.1634 

20 3 9 0.3594 0.2484 0.2674 0.4358 0.1897 0.2355 0.5008 0.1657 0.2147 
20 3 25 0.3330 0.2238 0.2307 0.4448 0.1725 0.1916 0.4941 0.1552 0.1746 
20 3 100 0.3417 0.2164 0.2203 0.4884 0.1691 0.1805 0.5019 0.1532 0.1648 
20 5 9 0.4235 0.2816 0.3133 0.5723 0.2194 0.3125 0.6857 0.1868 0.3151 
20 5 25 0.3552 0.2282 0.2389 0.5288 0.1761 0.2033 0.6285 0.1575 0.1867 
20 5 100 0.3435 0.2167 0.2216 0.5015 0.1693 0.1820 0.5230 0.1533 0.1660 

 
40 3 - 0.5684 0.5657 0.5656 0.6572 0.6435 0.6528 0.7183 0.7003 0.7138 

40 5 - 0.5484 0.5730 0.5457 0.6252 0.6183 0.6172 0.6833 0.6468 0.6729 
40 0 9 0.3120 0.2580 0.2628 0.2521 0.1929 0.2092 0.2075 0.1660 0.1789 
40 0 25 0.4299 0.2812 0.2782 0.4074 0.2035 0.2515 0.3635 0.1718 0.2205 
40 0 100 0.4950 0.2670 0.2581 0.4899 0.1928 0.2463 0.4858 0.1654 0.2490 
40 3 9 0.5587 0.3436 0.4084 0.7176 0.2877 0.5123 0.7867 0.2431 0.6005 
40 3 25 0.5173 0.2905 0.3071 0.5916 0.2152 0.3208 0.6572 0.1793 0.3244 
40 3 100 0.5038 0.2672 0.2611 0.5078 0.1938 0.2544 0.5204 0.1655 0.2586 
40 5 9 0.6284 0.4009 0.4834 0.7771 0.3848 0.6334 0.8220 0.3654 0.7232 

40 5 25 0.5662 0.3023 0.3320 0.6692 0.2294 0.3853 0.7421 0.1893 0.4454 
40 5 100 0.5100 0.2682 0.2647 0.5199 0.1944 0.2601 0.5428 0.1659 0.2673 

Performance 2.9% 73.5% 23.6% 2.9% 94.2% 2.9% 2.9% 97.1% 0% 

 

From Tables 4.8 and 4.9, CA still maintains the position of the linear model with the 

least mean values for the misclassification error when 0,  0,  0     . As the 

percentage of contamination was introduced with moderate and extreme outlier 

values, the best mean values moved to the robust models. A consistent behavior is 

observed in the percentage of contamination    because as   increases at constant 
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  and   the mean misclassification error increases. In terms of performance, 

RLDAMQ stayed as the estimator with highest percentage performance as the sample 

size increases. A consistent pattern was not observed with the shift in location of the 

population    and the shift in shape of the population   . However, from 

observation, the conclusion that can be drawn that the mean misclassification error is 

inversely proportional to the dimension of the variables, that is, as p increases, mean 

misclassification error reduces. 

 

4.2.2.2 Unbalanced Sample Sizes 

The next set of results discussed are the unbalanced sample sizes; 

       1 2, 50,20 , 100,50 , 100,20n n     . The results will also be considered for 

variable dimensions 2,6,10p  .  
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Table  4.10 

Mean Misclassification Error for Linear Discriminant Models with Unbalanced 

Sample Sizes, Unequal Covariance Matrices and 𝑝 = 2 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.3267 0.3533 0.3231 0.3059 0.3145 0.3031 0.3608 0.3873 0.3545 

 

10 3 - 0.4571 0.4398 0.4326 0.4557 0.4035 0.4254 0.4856 0.4715 0.4718 
10 5 - 0.4826 0.4442 0.4481 0.4902 0.4065 0.4573 0.4940 0.4739 0.4787 
10 0 9 0.4675 0.3913 0.3499 0.4678 0.3432 0.3259 0.4965 0.4303 0.3950 
10 0 25 0.4995 0.3998 0.3507 0.4999 0.3513 0.3306 0.5000 0.4389 0.3977 
10 0 100 0.5000 0.4042 0.3509 0.5000 0.3551 0.3318 0.5000 0.4424 0.3981 
10 3 9 0.4856 0.3970 0.3689 0.4929 0.3486 0.3479 0.4993 0.4359 0.4166 
10 3 25 0.4996 0.4005 0.3572 0.5000 0.3521 0.3374 0.5000 0.4393 0.4051 
10 3 100 0.5000 0.4040 0.3522 0.5000 0.3552 0.3333 0.5000 0.4424 0.3996 

10 5 9 0.4934 0.4021 0.3831 0.4985 0.3547 0.3692 0.4998 0.4413 0.4323 
10 5 25 0.4997 0.4012 0.3617 0.5000 0.3532 0.3430 0.5000 0.4400 0.4099 
10 5 100 0.5000 0.4039 0.3532 0.5000 0.3554 0.3346 0.5000 0.4425 0.4009 

 
20 3 - 0.4840 0.4860 0.4804 0.4905 0.4871 0.4881 0.4936 0.4948 0.4913 
20 5 - 0.4851 0.4853 0.4798 0.4887 0.4842 0.4858 0.4939 0.4940 0.4895 
20 0 9 0.4946 0.4327 0.3893 0.4958 0.3881 0.3688 0.4999 0.4679 0.4428 
20 0 25 0.5000 0.4509 0.3888 0.5000 0.4119 0.3781 0.5000 0.4796 0.4437 
20 0 100 0.5000 0.4594 0.3802 0.5000 0.4235 0.3715 0.5000 0.4843 0.4355 

20 3 9 0.4991 0.4431 0.4276 0.4999 0.4035 0.4306 0.5000 0.4750 0.4717 
20 3 25 0.5000 0.4524 0.4008 0.5000 0.4133 0.3970 0.5000 0.4799 0.4528 
20 3 100 0.5000 0.4591 0.3824 0.5000 0.4233 0.3755 0.5000 0.4843 0.4377 
20 5 9 0.4997 0.4520 0.4498 0.5000 0.4193 0.4652 0.5000 0.4810 0.4842 
20 5 25 0.5000 0.4526 0.4093 0.5000 0.4153 0.4103 0.5000 0.4804 0.4585 
20 5 100 0.5000 0.4591 0.3839 0.5000 0.4237 0.3782 0.5000 0.4845 0.4398 

 
40 3 - 0.4855 0.4872 0.4856 0.4964 0.4891 0.4974 0.4906 0.4946 0.4900 

40 5 - 0.4826 0.4853 0.4823 0.4932 0.4885 0.4936 0.4913 0.4938 0.4894 
40 0 9 0.4997 0.4881 0.4766 0.4999 0.4762 0.4766 0.5000 0.4979 0.4973 
40 0 25 0.5000 0.4981 0.4845 0.5000 0.4963 0.4915 0.5000 0.4998 0.4986 
40 0 100 0.5000 0.4997 0.4577 0.5000 0.4996 0.4735 0.5000 0.5000 0.4917 
40 3 9 0.5000 0.4955 0.4955 0.5000 0.4937 0.4988 0.5000 0.4995 0.4998 
40 3 25 0.5000 0.4983 0.4897 0.5000 0.4968 0.4953 0.5000 0.4999 0.4993 
40 3 100 0.5000 0.4997 0.4610 0.5000 0.4996 0.4756 0.5000 0.5000 0.4921 
40 5 9 0.5000 0.4977 0.4966 0.4999 0.4979 0.4973 0.5000 0.4998 0.4998 

40 5 25 0.5000 0.4986 0.4917 0.5000 0.4974 0.4978 0.5000 0.4999 0.4995 
40 5 100 0.5000 0.4997 0.4618 0.5000 0.4995 0.4772 0.5000 0.5000 0.4920 

Performance 2.9% 5.9% 94.2% 0% 35.3% 64.7% 0% 14.7% 88.2% 
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Table  4.11 

Mean of Misclassification Error for Linear Discriminant Models with Unbalanced 

Sample Sizes, Unequal Covariance Matrices and 𝑝 = 6 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.2362 0.2500 0.2351 0.2149 0.2203 0.2138 0.2512 0.2684 0.2481 

 

10 3 - 0.4037 0.3761 0.3792 0.4013 0.3355 0.3676 0.4440 0.4224 0.4236 
10 5 - 0.4351 0.3870 0.3940 0.4477 0.3492 0.4000 0.4596 0.4274 0.4294 
10 0 9 0.3320 0.2737 0.2509 0.3360 0.2360 0.2273 0.4343 0.3068 0.2774 
10 0 25 0.4439 0.2778 0.2522 0.4931 0.2400 0.2302 0.4989 0.3132 0.2800 
10 0 100 0.4949 0.2794 0.2520 0.5000 0.2418 0.2308 0.5000 0.3157 0.2800 
10 3 9 0.3919 0.2844 0.2710 0.4349 0.2439 0.2466 0.4791 0.3209 0.3067 
10 3 25 0.4499 0.2792 0.2570 0.4965 0.2411 0.2344 0.4995 0.3154 0.2873 
10 3 100 0.4946 0.2794 0.2529 0.5000 0.2419 0.2316 0.5000 0.3161 0.2817 

10 5 9 0.4310 0.2993 0.2927 0.4755 0.2563 0.2719 0.4922 0.3399 0.3375 
10 5 25 0.4567 0.2816 0.2615 0.4983 0.2426 0.2390 0.4997 0.3184 0.2940 
10 5 100 0.4946 0.2797 0.2537 0.5000 0.2420 0.2323 0.5000 0.3165 0.2831 

 
20 3 - 0.4436 0.4427 0.4382 0.4577 0.4455 0.4513 0.4625 0.4683 0.4559 
20 5 - 0.4519 0.4400 0.4434 0.4671 0.4389 0.4593 0.4652 0.4659 0.4545 
20 0 9 0.4352 0.3139 0.2790 0.4395 0.2639 0.2520 0.4938 0.3613 0.3263 
20 0 25 0.4993 0.3311 0.2816 0.5000 0.2809 0.2596 0.5000 0.3822 0.3304 
20 0 100 0.5000 0.3383 0.2738 0.5000 0.2891 0.2548 0.5000 0.3910 0.3206 

20 3 9 0.4853 0.3384 0.3305 0.4975 0.2873 0.3215 0.4998 0.3902 0.3942 
20 3 25 0.4997 0.3343 0.2933 0.5000 0.2839 0.2750 0.5000 0.3853 0.3470 
20 3 100 0.5000 0.3385 0.2762 0.5000 0.2893 0.2573 0.5000 0.3915 0.3241 
20 5 9 0.4940 0.3676 0.3714 0.4995 0.3203 0.3900 0.5000 0.4193 0.4339 
20 5 25 0.4999 0.3390 0.3029 0.5000 0.2887 0.2897 0.5000 0.3910 0.3615 
20 5 100 0.5000 0.3391 0.2780 0.5000 0.2898 0.2594 0.5000 0.3921 0.3270 

 
40 3 - 0.4819 0.4753 0.4819 0.5088 0.4960 0.5098 0.4730 0.4786 0.4716 

40 5 - 0.4722 0.4771 0.4719 0.4941 0.4937 0.4941 0.4697 0.4782 0.4653 
40 0 9 0.4932 0.4290 0.4025 0.4938 0.3790 0.3849 0.5000 0.4743 0.4724 
40 0 25 0.5000 0.4765 0.4404 0.5000 0.4537 0.4480 0.5000 0.4955 0.4904 
40 0 100 0.5000 0.4913 0.3916 0.5000 0.4836 0.4161 0.5000 0.4991 0.4628 
40 3 9 0.4997 0.4690 0.4771 0.4999 0.4570 0.4917 0.5000 0.4935 0.4982 
40 3 25 0.5000 0.4787 0.4572 0.5000 0.4623 0.4771 0.5000 0.4965 0.4952 
40 3 100 0.5000 0.4910 0.3938 0.5000 0.4836 0.4206 0.5000 0.4992 0.4651 
40 5 9 0.4998 0.4824 0.4876 0.4998 0.4836 0.4956 0.5000 0.4973 0.4991 

40 5 25 0.5000 0.4817 0.4674 0.5000 0.4698 0.4877 0.5000 0.4971 0.4973 
40 5 100 0.5000 0.4908 0.3972 0.5000 0.4841 0.4243 0.5000 0.4992 0.4675 

Performance 0% 23.6% 76.4% 0% 47.1% 52.9% 0% 20.6% 79.4% 
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Table  4.12 

Mean of Misclassification Error for Linear Discriminant Models with Unbalanced 

Sample Sizes, Unequal Covariance Matrices and 𝑝 = 10 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 0.1950 0.2063 0.1948 0.1703 0.1752 0.1694 0.2060 0.2195 0.2042 

 

10 3 - 0.3914 0.3579 0.3712 0.3810 0.3180 0.3522 0.4210 0.3977 0.4029 
10 5 - 0.4233 0.3715 0.3859 0.4280 0.3361 0.3831 0.4386 0.4049 0.4088 
10 0 9 0.2519 0.2230 0.2073 0.2545 0.1875 0.1816 0.3368 0.2462 0.2252 
10 0 25 0.2912 0.2250 0.2085 0.4377 0.1897 0.1838 0.4639 0.2497 0.2275 
10 0 100 0.3061 0.2251 0.2086 0.4999 0.1907 0.1846 0.4991 0.2505 0.2279 
10 3 9 0.3151 0.2382 0.2320 0.3671 0.1990 0.2055 0.4218 0.2654 0.2589 
10 3 25 0.3033 0.2267 0.2136 0.4578 0.1915 0.1889 0.4712 0.2522 0.2345 
10 3 100 0.3070 0.2250 0.2095 0.4999 0.1909 0.1854 0.4988 0.2507 0.2292 

10 5 9 0.3631 0.2597 0.2605 0.4302 0.2177 0.2384 0.4596 0.2930 0.2977 
10 5 25 0.3174 0.2301 0.2189 0.4721 0.1944 0.1944 0.4783 0.2565 0.2424 
10 5 100 0.3080 0.2248 0.2100 0.4999 0.1911 0.1862 0.4988 0.2509 0.2303 

 
20 3 - 0.4330 0.4236 0.4295 0.4420 0.4221 0.4366 0.4438 0.4460 0.4380 
20 5 - 0.4425 0.4205 0.4343 0.4560 0.4179 0.4488 0.4478 0.4431 0.4382 
20 0 9 0.3387 0.2543 0.2297 0.3621 0.2090 0.2025 0.4649 0.2940 0.2656 
20 0 25 0.4812 0.2637 0.2312 0.4994 0.2198 0.2090 0.5000 0.3102 0.2700 
20 0 100 0.5000 0.2641 0.2267 0.5000 0.2241 0.2050 0.5000 0.3143 0.2621 

20 3 9 0.4377 0.2880 0.2869 0.4861 0.2393 0.2749 0.4973 0.3340 0.3424 
20 3 25 0.4876 0.2678 0.2430 0.4999 0.2242 0.2233 0.5000 0.3147 0.2865 
20 3 100 0.5000 0.2648 0.2291 0.5000 0.2246 0.2073 0.5000 0.3146 0.2647 
20 5 9 0.4670 0.3262 0.3352 0.4965 0.2833 0.3484 0.4992 0.3791 0.3968 
20 5 25 0.4917 0.2757 0.2552 0.5000 0.2317 0.2391 0.5000 0.3237 0.3032 
20 5 100 0.5000 0.2650 0.2303 0.5000 0.2250 0.2091 0.5000 0.3150 0.2669 

 
40 3 - 0.4762 0.4682 0.4760 0.5074 0.4941 0.5078 0.4610 0.4647 0.4598 

40 5 - 0.4651 0.4741 0.4648 0.4900 0.4950 0.4895 0.4555 0.4643 0.4520 
40 0 9 0.4657 0.3671 0.3379 0.4742 0.3098 0.3191 0.4994 0.4346 0.4334 
40 0 25 0.5000 0.4366 0.3871 0.5000 0.3946 0.4003 0.5000 0.4811 0.4747 
40 0 100 0.5000 0.4617 0.3343 0.5000 0.4389 0.3656 0.5000 0.4926 0.4337 
40 3 9 0.4981 0.4355 0.4533 0.4998 0.4184 0.4824 0.5000 0.4815 0.4945 
40 3 25 0.5000 0.4431 0.4147 0.5000 0.4106 0.4500 0.5000 0.4843 0.4864 
40 3 100 0.5000 0.4608 0.3377 0.5000 0.4397 0.3722 0.5000 0.4928 0.4377 
40 5 9 0.4992 0.4614 0.4749 0.4998 0.4632 0.4935 0.5000 0.4919 0.4974 

40 5 25 0.5000 0.4510 0.4329 0.5000 0.4275 0.4740 0.5000 0.4879 0.4924 
40 5 100 0.5000 0.4616 0.3403 0.5000 0.4405 0.3790 0.5000 0.4928 0.4400 

Performance 0% 29.4% 70.6% 0% 50% 52.9% 0% 26.5% 73.5% 

 

From Table 4.10, certain observations were noted with respect to the manipulated 

variables. Firstly, it is observed that as   increases, the mean misclassification error 

also increases at constant   and   with convergence towards an approximate mean 

misclassification error of 0.5 for all the linear discriminant models. This is similar to 

the pattern observed in Table 4.4. This convergence towards an approximate mean 
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misclassification is also observed with changes in  1 2,n n . From the performance 

row, due to the convergence of all the linear discriminant models towards an 0.5 mean 

misclassification error, a higher performance percentage is observed as the sample 

size increased for all models. Although, the model with the highest percentage was 

RLDAWMQ having the least misclassification error even when there was no 

contamination. As the shift in location of the population and shift in the shape of the 

population increased, the mean misclassification error decreased while also 

converging to an approximate 0.5.  

As the dimensions of the variables increased, a concise analysis was not made for the 

CA approach as there was a limitation of all misclassification error values being equal 

or tending towards 0.5. This setback was not observed with the robust models as the 

increase in the dimension of variables had brought about a convergent reduction in the 

mean misclassification error. Therefore, other for the robust LDAs includes reduction 

in mean misclassification error as the shift in location of the population    

increased, a sharp reduction in mean misclassification error as the shift in the shape of 

the population increased, and a higher performance percentage observed from the 

RLDAWMQ as p increased. 

A series of conclusion can be drawn from the results documented in Tables 4.1- 4.12. 

The first observation is that when all assumptions of LDA are satisfied, the classical 

linear discriminant model performs best. However, in the presence of contamination, 

the robust models have better accuracy. Considering the general performance 

percentages, it is worth taking note of that the RLDAWMQ model handles datasets with 

unbalanced sample sizes better than RLDAMQ irrespective of the property of the 

covariance matrices. An insight has been displayed on which linear discriminant 
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model performs better in terms of mean misclassification error at certain variable 

specifications, it is also important to investigate which approach requires more 

computation time. 

 

4.3 Computational Time Analysis with Simulation Study 

This section displays the computational time involved when adopting the linear 

discriminant models. Variable dimensions 2, 6 and 10 are considered for balanced and 

unbalanced sample sizes which are similar to the analysis for the misclassification 

error with equal and unequal covariance matrices. A testing sample of size 2000 from 

each population was also generated and the computational time was computed after 

repeating the process 2000 times.  

 

4.3.1 Equal Covariance Matrices with Balanced Sample Sizes 

The first set of results discussed is the computational time of adopting the models for 

balanced sample sizes;        1 2, 20,20 , 50,50 , 100,100n n      with equal covariance 

matrices. The results are considered for variable dimension 2,6,10p  and discussion 

of the results will be made after the tables. 

 

 

 



90 
 

Table  4.13 

Computational Time (in seconds) for Linear Discriminant Models with Balanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 2 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 2 8 4 2 25 13 2 223 121 
10 3 - 2 7 4 2 25 13 3 230 124 

20 3 - 2 7 4 2 25 14 2 232 124 
40 3 - 2 8 4 2 25 13 2 230 120 
10 5 - 2 8 4 2 25 14 3 228 125 
20 5 - 2 8 4 2 26 14 2 226 123 
40 5 - 2 8 4 2 24 14 2 225 124 
10 0 9 2 7 4 2 25 13 2 224 124 
20 0 9 2 8 4 2 25 13 2 220 122 
40 0 9 2 8 4 2 25 13 2 221 121 

10 0 25 2 7 4 2 25 14 2 225 123 
20 0 25 2 8 4 2 25 13 2 222 121 
40 0 25 2 8 4 2 26 13 2 221 120 
10 0 100 2 8 4 2 26 13 2 227 120 
20 0 100 2 8 4 2 26 13 2 223 121 
40 0 100 2 8 4 2 25 13 2 226 118 
10 3 9 2 7 4 2 25 13 2 231 125 
20 3 9 2 7 4 2 26 14 2 228 125 
40 3 9 2 7 4 2 25 13 2 229 123 

10 3 25 2 7 4 2 26 13 2 226 126 
20 3 25 2 7 4 2 26 13 2 224 120 
40 3 25 2 7 4 2 26 13 2 235 123 
10 3 100 2 7 4 2 25 13 2 229 127 
20 3 100 2 8 4 2 25 13 2 231 122 
40 3 100 2 8 4 2 25 13 2 231 125 
10 5 9 2 7 4 2 26 14 3 229 126 
20 5 9 2 8 4 2 25 13 2 232 125 

40 5 9 2 7 4 2 25 13 2 229 125 
10 5 25 2 8 4 2 25 14 3 229 126 
20 5 25 2 8 4 2 25 14 2 229 124 
40 5 25 2 8 4 2 25 13 2 229 127 
10 5 100 2 7 4 2 25 13 2 230 127 
20 5 100 2 7 4 2 25 14 2 227 124 
40 5 100 2 7 4 2 25 13 2 221 125 
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Table  4.14 

Computational Time (in seconds) for Linear Discriminant Models with Balanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 6 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 5 25 11 5 74 38 6 693 349 
10 3 - 5 29 11 5 78 38 5 651 362 

20 3 - 5 29 10 5 78 38 6 683 373 
40 3 - 5 28 10 5 77 38 5 704 368 
10 5 - 5 29 11 6 79 39 6 702 368 
20 5 - 5 29 11 5 79 39 5 702 377 
40 5 - 5 28 10 5 79 40 5 704 366 
10 0 9 5 26 10 6 78 40 6 704 351 
20 0 9 5 28 11 5 77 40 6 705 353 
40 0 9 5 27 10 5 77 41 5 700 354 

10 0 25 5 27 11 6 74 39 6 700 354 
20 0 25 5 28 11 6 74 40 5 708 353 
40 0 25 5 27 11 5 74 41 5 709 352 
10 0 100 5 27 11 5 76 40 5 705 355 
20 0 100 5 27 11 5 76 40 5 708 355 
40 0 100 5 27 11 5 77 40 5 706 351 
10 3 9 5 28 11 5 79 39 6 703 358 
20 3 9 5 27 11 5 78 39 5 700 347 
40 3 9 5 27 10 5 77 39 5 701 341 

10 3 25 5 26 11 6 72 39 6 694 341 
20 3 25 5 24 11 5 79 39 6 705 349 
40 3 25 5 25 11 5 73 39 5 703 342 
10 3 100 5 26 11 5 80 38 5 701 333 
20 3 100 5 27 11 5 79 39 5 709 335 
40 3 100 5 27 11 5 79 38 5 704 345 
10 5 9 5 29 11 6 78 38 5 708 391 
20 5 9 5 29 11 5 80 38 6 707 396 

40 5 9 5 29 10 5 78 37 5 704 376 
10 5 25 5 28 11 5 78 38 6 706 366 
20 5 25 5 29 11 5 79 37 6 701 368 
40 5 25 5 28 10 5 79 38 6 705 367 
10 5 100 5 28 11 5 77 39 5 702 361 
20 5 100 5 28 11 5 77 38 5 704 370 
40 5 100 5 29 10 5 79 38 5 701 378 
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Table  4.15 

Computational Time (in seconds) for Linear Discriminant Models with Balanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 10 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 8 46 17 9 133 63 9 1165 579 
10 3 - 10 45 17 10 132 64 11 1041 596 

20 3 - 10 46 18 11 133 65 10 1054 605 
40 3 - 8 47 17 8 136 64 8 1039 599 
10 5 - 10 45 17 10 133 65 11 1086 597 
20 5 - 10 44 17 10 134 66 11 1153 597 
40 5 - 9 45 17 8 132 66 8 1074 594 
10 0 9 9 45 17 9 137 67 9 1107 602 
20 0 9 9 45 17 9 136 66 9 1166 602 
40 0 9 8 45 17 8 138 67 8 1194 600 

10 0 25 11 45 17 11 137 66 11 1176 597 
20 0 25 10 44 18 11 136 66 11 1179 608 
40 0 25 8 46 17 9 135 66 8 1180 598 
10 0 100 8 45 17 8 133 65 8 1063 597 
20 0 100 8 44 17 8 134 64 8 1044 604 
40 0 100 8 45 17 8 134 63 8 1075 596 
10 3 9 10 46 17 10 135 65 11 1217 592 
20 3 9 10 48 17 10 134 67 11 1174 592 
40 3 9 8 47 17 8 134 65 8 1231 600 

10 3 25 10 45 17 10 132 66 11 1152 600 
20 3 25 10 46 17 10 135 65 11 1181 591 
40 3 25 8 45 17 8 134 67 8 1178 595 
10 3 100 8 45 17 8 132 66 8 1184 610 
20 3 100 8 45 17 9 135 66 8 1165 568 
40 3 100 8 45 18 8 136 67 8 1099 578 
10 5 9 10 46 17 10 133 65 10 1186 596 
20 5 9 10 45 17 10 132 65 11 1129 599 

40 5 9 8 46 18 8 134 66 8 1119 600 
10 5 25 10 45 17 10 133 65 11 1121 595 
20 5 25 10 45 18 10 132 65 10 1129 595 
40 5 25 8 45 18 8 132 65 9 1135 599 
10 5 100 8 45 17 8 133 66 8 1038 597 
20 5 100 8 45 17 8 134 67 8 1152 595 
40 5 100 8 46 17 8 135 66 8 1173 600 

 

From Tables 4.13 to 4.15, the model with the least computational time is the classical 

LDA followed by the RLDAWMQ and the highest being the RLDAMQ robust model. 

The RLDAMQ model requires the highest computational time in comparison to the 

other linear discriminant models, although the model gives a good level of accuracy 

when considering datasets with balanced sample sizes. An average of the 

computational time values is given in the following table. 
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Table  4.16 

Average Computational Time (in seconds) for Linear Discriminant Models with 

Balanced Sample Sizes, Equal Covariance Matrices 

  20,20   50,50   100,100
 

 

 CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

          

2p   2 8 4 2 25 13 2 227 123 

6p   5 27 11 5 77 39 5 701 359 

10p   9 45 17 9 134 65 9 1134 596 

 

Figures 4.1-4.3 give a better pictorial view of this increase in the average 

computational time as seen in Table 4.16 with simultaneous increase in variable 

dimensions. 
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Figure 4.1 Average Computational Time (in seconds) for Linear Discriminant Models 

with Balanced Sample Sizes, Equal Covariance Matrices and 𝑝 = 2 

 

Figure 4.2 Average Computational Time (in seconds) for Linear Discriminant Models 

with Balanced Sample Sizes, Equal Covariance Matrices and  𝑝 = 6 

 

Figure 4.3 Average Computational Time (in seconds) for Linear Discriminant Models 

with Balanced Sample Sizes, Equal Covariance Matrices and 𝑝 = 10 
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4.3.2 Equal Covariance Matrices with Unbalanced Sample Sizes 

The next set of results discussed is the computational time of adopting the models for 

unbalanced sample sizes;        1 2, 50,20 , 100,50 , 100,20n n      still with the same 

equal covariance matrix property. The results are also considered for variable 

dimension 2,6,10p  and discussion of the results are made after the tables.  

Table  4.17 

Computational Time (in seconds) for Linear Discriminant Models with Unbalanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 2 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 2 17 7 2 126 61 2 118 62 
10 3 - 2 17 8 2 126 62 2 128 60 
20 3 - 2 18 9 2 126 62 2 121 61 
40 3 - 2 19 8 2 127 61 2 117 63 
10 5 - 2 17 9 2 127 70 2 126 61 
20 5 - 2 17 9 2 128 71 2 128 63 
40 5 - 2 17 9 2 129 63 2 128 59 
10 0 9 2 17 7 2 132 63 2 119 63 

20 0 9 2 17 7 2 129 64 2 125 60 
40 0 9 2 17 7 2 129 68 2 126 62 
10 0 25 2 17 9 2 134 63 2 122 63 
20 0 25 2 17 9 2 132 71 2 112 63 
40 0 25 2 18 8 2 123 69 2 128 63 
10 0 100 2 16 7 2 123 59 2 120 64 
20 0 100 2 17 7 2 128 66 2 124 64 
40 0 100 2 17 8 2 128 62 2 126 61 

10 3 9 2 18 8 2 123 66 2 121 64 
20 3 9 2 19 8 2 125 69 2 126 58 
40 3 9 2 18 9 2 121 60 2 126 61 
10 3 25 2 18 8 2 119 66 2 128 61 
20 3 25 2 19 8 2 126 64 2 129 62 
40 3 25 2 19 8 2 126 70 2 122 65 
10 3 100 2 19 9 2 122 61 2 129 63 
20 3 100 2 19 9 2 122 64 2 126 63 

40 3 100 2 18 9 2 124 62 2 129 61 
10 5 9 2 18 9 2 127 64 2 126 58 
20 5 9 2 19 9 2 128 69 2 131 57 
40 5 9 2 19 9 2 124 70 2 129 58 
10 5 25 2 19 9 2 125 68 2 130 60 
20 5 25 2 17 9 2 124 68 2 125 64 
40 5 25 2 19 9 2 123 64 2 116 60 
10 5 100 2 18 8 2 125 68 2 128 63 
20 5 100 2 19 8 2 126 69 2 127 63 

40 5 100 2 18 8 2 126 64 2 129 64 
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Table  4.18 

Computational Time (in seconds) for Linear Discriminant Models with Unbalanced 

Sample Sizes, Equal Covariance Matrices and 𝑝 = 6 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 5 55 23 5 402 197 5 366 199 
10 3 - 5 52 24 5 401 208 5 367 194 

20 3 - 5 53 25 5 395 209 6 365 198 
40 3 - 5 51 23 5 394 206 5 366 193 
10 5 - 5 57 26 5 397 210 5 382 194 
20 5 - 5 54 26 5 396 193 5 382 195 
40 5 - 5 52 24 5 399 211 5 370 192 
10 0 9 5 54 23 5 395 213 5 385 197 
20 0 9 5 56 25 5 400 195 5 381 193 
40 0 9 5 56 24 5 404 196 5 381 194 

10 0 25 5 56 26 5 410 213 5 386 194 
20 0 25 5 56 23 5 410 214 5 387 192 
40 0 25 5 57 26 5 416 195 5 373 199 
10 0 100 5 49 26 5 401 195 5 380 198 
20 0 100 5 49 24 5 407 216 5 382 199 
40 0 100 5 53 26 5 413 211 5 374 197 
10 3 9 5 58 24 5 403 213 5 366 196 
20 3 9 5 57 24 5 408 214 5 367 198 
40 3 9 5 56 25 5 410 196 5 379 191 

10 3 25 5 56 22 5 416 210 5 373 199 
20 3 25 5 57 24 5 419 214 5 378 195 
40 3 25 5 56 25 5 404 200 5 377 194 
10 3 100 5 57 24 5 396 192 5 378 200 
20 3 100 5 57 26 5 400 213 5 381 194 
40 3 100 5 57 25 5 410 216 5 368 194 
10 5 9 5 56 26 5 414 195 5 369 183 
20 5 9 5 56 27 5 418 194 5 369 192 

40 5 9 5 58 24 5 400 191 5 362 194 
10 5 25 5 57 26 5 399 204 5 368 199 
20 5 25 5 57 26 5 411 206 5 377 200 
40 5 25 5 58 24 5 415 212 5 377 189 
10 5 100 5 56 24 5 411 208 5 372 194 
20 5 100 5 55 23 5 403 218 5 350 199 
40 5 100 5 57 26 5 407 216 5 354 195 
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Table  4.19 

Computational Time (in seconds) for Linear Discriminant Models with Unbalanced 

Sample Sizes, Equal Covariance Matrices and p=10 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 8 87 39 8 556 339 8 618 317 
10 3 - 8 91 41 8 552 327 8 642 308 
20 3 - 8 85 41 8 556 333 8 621 316 
40 3 - 8 90 41 8 554 334 8 628 290 

10 5 - 8 101 40 8 669 325 8 662 287 
20 5 - 8 102 39 8 675 337 8 658 319 
40 5 - 8 101 41 8 670 331 8 656 286 
10 0 9 8 98 40 8 691 336 8 664 322 
20 0 9 8 99 44 8 727 342 8 651 296 
40 0 9 8 90 45 8 707 335 8 589 336 
10 0 25 8 99 45 8 714 328 8 643 331 
20 0 25 8 103 45 8 647 333 8 650 343 

40 0 25 8 102 47 8 655 333 8 607 304 
10 0 100 8 100 40 8 689 332 8 627 340 
20 0 100 8 90 41 8 696 328 8 648 299 
40 0 100 8 99 41 8 695 336 8 696 336 
10 3 9 8 87 44 8 566 325 8 617 319 
20 3 9 8 84 46 8 553 336 8 650 325 
40 3 9 8 89 46 8 688 324 8 666 334 
10 3 25 8 98 42 8 667 331 8 609 336 
20 3 25 8 82 35 8 694 336 8 606 327 

40 3 25 8 89 44 8 657 339 8 607 335 
10 3 100 8 89 46 8 670 340 8 643 314 
20 3 100 8 93 48 8 662 305 8 669 327 
40 3 100 8 90 47 8 676 336 8 679 325 
10 5 9 8 99 43 8 676 310 8 662 290 
20 5 9 8 102 45 8 644 318 8 635 318 
40 5 9 8 91 38 8 677 330 8 655 316 
10 5 25 8 97 40 8 680 340 8 651 333 

20 5 25 8 99 39 8 684 334 8 663 329 
40 5 25 8 101 40 8 678 327 8 656 341 
10 5 100 8 82 47 8 653 313 8 599 320 
20 5 100 8 97 46 8 647 340 8 654 285 
40 5 100 8 96 47 8 632 338 8 667 315 

 

The model with the least computational time as seen in Tables 4.17- 4.19 still remains 

CA followed by the RLDAWMQ and then the highest being the RLDAMQ robust model. 

An average of the computational time values is given in the following Table 4.20 with 

the corresponding graphs in Figures 4.4-4.6. 
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Table  4.20 

Average Computational Time (in seconds) for Linear Discriminant Models with 

Unbalanced Sample Sizes, Equal Covariance Matrices 

  50,20   100,50   100,20  

 CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

          

2p   2 18 8 2 126 65 2 125 62 

6p   5 55 25 5 405 206 5 373 195 

10p   8 94 43 8 655 331 8 643 318 
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Figure 4.4Average Computational Time (in seconds) for Linear Discriminant Models 

with Unbalanced Sample Sizes, Equal Covariance Matrices and p=2 

 

Figure 4.5Average Computational Time (in seconds) for Linear Discriminant Models 

with Unbalanced Sample Sizes, Equal Covariance Matrices and p=6 

 

Figure 4.6 Average Computational Time (in seconds) for Linear Discriminant Models 

with Unbalanced Sample Sizes, Equal Covariance Matrices and p=10 
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Figures 4.4-4.6 do not show a growing spike in the average computational time as 

seen in Figures 4.1-4.3. This is as a result of the unbalanced sample sizes where 2n  is 

not greater than 50. Therefore, a close computation time is expected between the 

analysis for     1 2, 100,20n n    and    1 2, 100,50n n  . 

However, a general trend is still observed irrespective of the balanced or unbalanced 

sample sizes. This pattern follows that RLDAMQ has the highest computational time 

followed by the RLDAWMQ and the least is CA. This leads to the consideration of the 

computational time for the linear models when the covariance matrices are unequal. 

 

4.3.3 Unequal Covariance Matrices with Balanced Sample Sizes 

Now, we move over to considering the unequal covariance matrices for balanced 

sample sizes;        1 2, 20,20 , 50,50 , 100,100n n     . The computational time for 

each linear model per variable dimension 2,6,10p  are presented.  
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Table  4.21 

Computational Time (in seconds) for Linear Discriminant Models with Balanced 

Sample Sizes, Unequal Covariance Matrices and p=2 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 2 8 4 2 25 13 2 219 113 
10 3 - 2 8 4 2 26 12 2 221 121 
20 3 - 2 8 4 2 26 13 2 222 116 
40 3 - 2 7 5 2 25 13 2 221 118 

10 5 - 2 8 4 2 26 12 2 231 118 
20 5 - 2 8 4 2 26 13 2 228 119 
40 5 - 2 7 4 2 25 13 2 224 110 
10 0 9 2 8 4 2 26 14 2 219 119 
20 0 9 2 8 4 2 26 14 2 223 118 
40 0 9 2 8 4 2 25 13 2 211 108 
10 0 25 2 7 4 2 24 14 2 228 118 
20 0 25 2 8 4 2 24 13 2 211 119 

40 0 25 2 7 4 2 25 13 2 221 120 
10 0 100 2 7 4 2 24 13 2 223 115 
20 0 100 2 7 4 2 24 13 2 234 119 
40 0 100 2 7 4 2 25 13 2 220 118 
10 3 9 2 8 4 2 25 13 2 221 118 
20 3 9 2 8 4 2 26 13 2 238 122 
40 3 9 2 7 4 2 23 14 2 237 119 
10 3 25 2 8 4 2 24 14 2 242 121 
20 3 25 2 7 4 2 25 13 2 241 117 

40 3 25 2 7 4 2 25 13 2 224 118 
10 3 100 2 8 4 2 25 13 2 224 119 
20 3 100 2 8 4 2 25 14 2 222 118 
40 3 100 2 7 4 2 23 14 2 221 120 
10 5 9 2 7 4 2 25 12 2 234 114 
20 5 9 2 8 4 2 26 13 2 234 117 
40 5 9 2 7 4 2 26 14 2 232 119 
10 5 25 2 7 4 2 25 12 2 223 117 

20 5 25 2 8 4 2 25 14 2 234 118 
40 5 25 2 8 4 2 25 13 2 234 118 
10 5 100 2 8 4 2 24 14 2 232 115 
20 5 100 2 8 4 2 25 13 2 247 113 
40 5 100 2 7 4 2 26 14 2 242 116 
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Table  4.22 

Computational Time (in seconds) for Linear Discriminant Models with Balanced 

Sample Sizes, Unequal Covariance Matrices and p=6 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 5 23 10 5 75 36 5 800 408 
10 3 - 5 23 10 5 78 37 5 800 409 
20 3 - 5 23 9 5 79 38 5 794 405 
40 3 - 5 23 9 5 76 37 5 758 401 

10 5 - 5 23 11 5 77 37 5 729 394 
20 5 - 5 24 11 5 70 37 5 723 397 
40 5 - 5 24 10 5 78 37 5 709 401 
10 0 9 5 24 10 5 76 37 5 788 338 
20 0 9 5 23 10 5 75 37 5 788 351 
40 0 9 5 23 10 5 76 37 5 766 353 
10 0 25 5 23 11 5 75 36 5 715 352 
20 0 25 5 24 10 5 75 35 5 766 351 

40 0 25 5 23 10 5 75 36 5 760 354 
10 0 100 5 23 11 5 75 35 5 770 357 
20 0 100 5 24 10 5 75 35 5 806 354 
40 0 100 5 23 10 5 75 35 5 811 355 
10 3 9 5 24 11 5 75 36 5 705 368 
20 3 9 5 24 10 5 75 35 5 711 369 
40 3 9 5 24 10 5 76 37 5 710 357 
10 3 25 5 23 10 5 76 37 5 709 357 
20 3 25 5 25 11 5 75 37 5 698 358 

40 3 25 5 23 10 5 76 34 5 715 357 
10 3 100 5 22 10 5 76 37 5 706 384 
20 3 100 5 22 11 5 77 35 5 701 385 
40 3 100 5 24 10 5 73 38 5 709 359 
10 5 9 5 22 11 5 75 37 5 701 394 
20 5 9 5 22 10 5 74 36 5 707 396 
40 5 9 5 24 11 5 76 34 5 702 394 
10 5 25 5 23 10 5 76 34 5 697 393 

20 5 25 5 22 10 5 75 37 5 687 389 
40 5 25 5 22 10 5 76 37 5 691 391 
10 5 100 5 23 10 5 75 34 5 694 388 
20 5 100 5 23 11 5 77 38 5 705 391 
40 5 100 5 23 10 5 75 35 5 704 388 
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Table  4.23 

Computational Time (in seconds) for Linear Discriminant Models with Balanced 

Sample Sizes, Unequal Covariance Matrices and p=10 

      1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 8 46 17 8 142 68 8 1315 638 
10 3 - 8 45 16 8 148 74 8 1297 639 
20 3 - 8 45 17 8 144 73 8 1238 632 
40 3 - 8 45 16 8 134 75 8 1335 628 

10 5 - 8 46 16 8 142 73 8 1270 595 
20 5 - 8 47 17 8 144 72 8 1315 629 
40 5 - 8 45 17 8 146 75 8 1288 636 
10 0 9 8 43 17 8 143 73 8 1284 633 
20 0 9 8 44 17 8 141 71 8 1272 584 
40 0 9 8 46 17 8 132 74 8 1280 624 
10 0 25 8 45 17 8 132 72 8 1259 633 
20 0 25 8 44 17 8 138 74 8 1104 662 

40 0 25 8 45 17 8 137 72 8 1279 660 
10 0 100 8 45 17 8 159 70 8 1314 645 
20 0 100 8 44 17 8 160 74 8 1222 642 
40 0 100 8 45 17 8 164 74 8 1229 645 
10 3 9 8 45 17 8 148 71 8 1283 592 
20 3 9 8 44 17 8 156 72 8 1275 630 
40 3 9 8 44 17 8 156 74 8 1291 633 
10 3 25 8 44 16 8 137 75 8 1287 625 
20 3 25 8 43 17 8 138 74 9 1318 611 

40 3 25 8 45 17 8 147 76 8 1206 623 
10 3 100 8 44 16 8 149 71 8 1330 624 
20 3 100 8 46 17 8 148 72 8 1362 625 
40 3 100 8 46 17 8 144 72 8 1321 631 
10 5 9 8 46 17 8 147 72 8 1227 657 
20 5 9 8 46 17 8 147 72 8 1207 627 
40 5 9 8 45 16 8 151 73 8 1202 642 
10 5 25 8 45 17 8 150 71 8 1260 652 

20 5 25 8 45 17 8 150 73 8 1242 659 
40 5 25 8 45 17 8 150 73 8 1229 660 
10 5 100 8 45 17 8 146 73 8 1111 638 
20 5 100 8 45 17 8 146 72 8 1219 603 
40 5 100 8 45 17 8 145 71 8 1314 624 

 

In accordance with the results obtained from the equal covariance matrices property, 

Tables 4.21-4.23 shows the model with the least computational time still remains CA 

and the model with the highest computational time is the same RLDAMQ robust 

model. An average of the computational time values is also given for the analysis for 

unequal covariance for balanced sample sizes in the following table. Note that the 

graphs were not plotted as there is convergence in the average computational time 

values with Table 4.16, hence same shape of graph is expected. 
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Table  4.24 

Average Computational Time (in seconds) for Linear Discriminant Models with 

Balanced Sample Sizes, Unequal Covariance Matrices 

  20,20   50,50   100,100
 

 

 CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

          

2p   2  8 4 2 25 13 2 228 117 

6p   5 23 10 5 75 36 5 733 376 

10p   8 45 17 8 146 73 8 1264 632 

 

4.3.4 Unequal Covariance Matrices with Unbalanced Sample Sizes 

The next set of results discussed are the computational time of adopting the models 

for unequal covariance matrix property having unbalanced sample sizes as defined 

previously        1 2, 50,20 , 100,50 , 100,20n n     . The results are also considered 

for 2,6,10p  .  
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Table  4.25 

Computational Time (in seconds) for Linear Discriminant Models with Unbalanced 

Sample Sizes, Unequal Covariance Matrices and p=2 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 2 16 9 2 120 63 2 121 62 
10 3 - 2 16 8 2 126 64 2 121 60 
20 3 - 2 16 8 2 133 66 2 119 60 
40 3 - 2 16 8 2 131 65 2 120 58 

10 5 - 2 16 8 2 132 59 2 121 59 
20 5 - 2 17 8 2 130 65 2 122 56 
40 5 - 2 17 8 2 130 66 2 119 58 
10 0 9 2 17 8 2 129 68 2 121 62 
20 0 9 2 16 9 2 127 67 2 121 57 
40 0 9 2 15 8 2 126 72 2 121 59 
10 0 25 2 16 8 2 131 65 2 122 59 
20 0 25 2 17 8 2 134 68 2 121 59 

40 0 25 2 16 8 2 129 69 2 117 59 
10 0 100 2 17 8 2 128 66 2 122 63 
20 0 100 2 17 8 2 128 69 2 122 63 
40 0 100 2 17 8 2 130 67 2 118 60 
10 3 9 2 17 8 2 122 66 2 128 59 
20 3 9 2 16 8 2 124 66 2 125 58 
40 3 9 2 16 8 2 129 66 2 111 57 
10 3 25 2 17 8 2 133 69 2 124 58 
20 3 25 2 17 8 2 130 67 2 125 55 

40 3 25 2 16 8 2 132 68 2 124 59 
10 3 100 2 16 8 2 131 65 2 123 58 
20 3 100 2 16 8 2 128 67 2 112 58 
40 3 100 2 16 8 2 133 67 2 117 60 
10 5 9 2 17 8 2 133 67 2 121 60 
20 5 9 2 16 8 2 134 66 2 122 59 
40 5 9 2 16 8 2 134 66 2 120 60 
10 5 25 2 17 8 2 127 66 2 121 61 

20 5 25 2 16 8 2 129 64 2 120 60 
40 5 25 2 17 8 2 134 66 2 122 58 
10 5 100 2 17 8 2 133 65 2 121 58 
20 5 100 2 17 8 2 133 66 2 121 61 
40 5 100 2 16 8 2 131 67 2 121 58 
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Table  4.26 

Computational Time (in seconds) for Linear Discriminant Models with Unbalanced 

Sample Sizes, Unequal Covariance Matrices and p=6 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 5 48 24 5 386 202 5 367 213 
10 3 - 5 51 24 5 384 203 5 358 221 
20 3 - 5 51 25 5 398 215 5 359 216 
40 3 - 5 49 23 5 387 222 5 345 236 

10 5 - 5 50 23 5 404 234 5 349 211 
20 5 - 5 48 22 5 394 232 5 332 230 
40 5 - 5 50 24 5 392 233 5 344 221 
10 0 9 5 51 22 5 393 214 5 364 226 
20 0 9 5 51 25 5 391 217 5 364 220 
40 0 9 5 47 21 5 395 216 5 353 206 
10 0 25 5 51 24 5 396 218 5 350 217 
20 0 25 5 48 24 5 392 222 5 364 224 

40 0 25 5 50 22 5 393 208 5 364 234 
10 0 100 5 50 23 5 382 204 5 352 231 
20 0 100 5 50 23 6 398 206 5 366 231 
40 0 100 5 51 23 6 398 208 5 370 230 
10 3 9 5 50 23 5 400 223 5 354 221 
20 3 9 5 51 23 5 396 223 5 359 221 
40 3 9 5 48 24 5 393 222 5 350 222 
10 3 25 5 50 23 5 393 201 5 360 224 
20 3 25 5 51 23 5 393 214 5 357 228 

40 3 25 5 47 24 5 400 221 5 349 224 
10 3 100 5 50 24 5 393 222 5 358 218 
20 3 100 5 51 23 5 390 220 5 357 222 
40 3 100 5 51 25 5 395 230 5 360 221 
10 5 9 5 50 24 5 402 215 5 322 220 
20 5 9 5 50 23 5 394 229 5 365 229 
40 5 9 5 50 24 5 388 216 5 360 219 
10 5 25 5 50 23 5 382 238 5 368 230 

20 5 25 5 49 23 5 402 235 5 362 227 
40 5 25 5 50 24 5 413 233 5 354 229 
10 5 100 5 50 23 5 391 212 5 346 210 
20 5 100 5 51 24 5 403 213 5 361 227 
40 5 100 5 51 24 5 396 201 5 353 221 
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Table  4.27 

Computational Time (in seconds) for Linear Discriminant Models with Unbalanced 

Sample Sizes, Unequal Covariance Matrices and p=10 

      1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

  
 

  CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

- - - 8 87 39 8 653 387 8 658 335 
10 3 - 8 89 40 8 678 353 8 693 319 
20 3 - 8 86 39 8 652 350 8 719 329 
40 3 - 8 85 39 8 701 362 8 648 334 

10 5 - 8 89 39 8 670 350 8 703 341 
20 5 - 8 91 39 8 670 352 8 673 320 
40 5 - 8 90 39 8 645 362 8 720 338 
10 0 9 8 85 39 8 732 398 8 711 330 
20 0 9 8 85 38 8 717 370 8 653 329 
40 0 9 8 86 37 8 731 362 8 658 333 
10 0 25 8 84 39 8 731 374 8 704 328 
20 0 25 8 85 38 8 693 343 8 709 337 

40 0 25 8 87 40 8 683 348 8 705 334 
10 0 100 8 90 40 8 746 367 8 676 319 
20 0 100 8 90 37 8 731 382 8 672 316 
40 0 100 8 88 40 8 672 364 8 660 333 
10 3 9 8 85 39 8 719 345 8 706 322 
20 3 9 8 85 39 8 730 348 8 711 329 
40 3 9 8 86 40 8 721 331 8 682 334 
10 3 25 8 89 39 8 678 357 8 743 329 
20 3 25 8 84 40 8 734 325 8 705 326 

40 3 25 8 87 37 8 707 347 8 747 327 
10 3 100 8 85 37 8 749 351 8 745 334 
20 3 100 8 87 37 8 756 363 8 668 332 
40 3 100 8 87 39 8 748 346 8 622 331 
10 5 9 8 85 39 8 730 354 8 654 337 
20 5 9 8 85 39 8 708 339 8 761 324 
40 5 9 8 85 40 8 693 350 8 744 332 
10 5 25 8 85 39 8 630 346 8 678 325 

20 5 25 8 84 39 8 672 345 8 667 341 
40 5 25 8 86 39 8 637 335 8 766 332 
10 5 100 8 85 40 8 749 337 8 712 337 
20 5 100 8 87 40 8 744 336 8 685 336 
40 5 100 8 89 39 8 743 348 8 651 339 

 

With reference to the tables displaying the computational time required to implement 

the models, a clear conclusion can be drawn to the computational rigor involved in 

using the RLDAMQ model. Although this model have its advantages when considering 

its misclassification error rate for balanced sample sizes. An average computational 

time calculation is made in the Table 4.28 for unequal sample sizes with unequal 

covariance matrices property. Also, just like the case unequal covariance for balanced. 

Sample sizes, Table 4.20 and Table 4.24 are in convergence. Therefore, the plots from 

Table 4.28 is expected to follow the shape of Figures 4.4-4.6. 
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Table  4.28 

Average Computational Time (in seconds) for Linear Discriminant Models with 

Unbalanced Sample Sizes, Unequal Covariance Matrices 

  50,20   100,50   100,20
 

 

 CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

          

2p   2 16 8 2 130 66 2 121 59 

6p   5 50 23 5 394 218 5 356 223 

10p   8 86 39 8 705 354 8 694 331 

 

4.4 Misclassification Error Analysis with Real Data 

In addition to the simulation study, CA, RLDAMQ and RLDAWMQ were also tested on 

real data. The data considered was obtained from the financial sector in Malaysia and 

the analysis was based on classifying distressed and non-distressed banking 

institutions. The financial data were extracted from selected balance sheet in the 

annual report of 27 commercial banks from year1988 to 1999.  

Out of the 27 banks considered, 17 observations were identified as non-distressed 

bank while the other 10 were identified to be distressed banks. The independent 

variables considered for the classification to show the variation in financial crisis were 

two, which are the ratio of total shareholder’s fund to total assets and the ratio of total 

shareholder’s fund to total equity.  

The performance of the CA, RLDAMQ and RLDAWMQ models were based on two 

types of error rates: their apparent error rates (AER) and the estimate of their error 

rates using CV. These approaches evaluate the performance of the models by 

estimating the actual error rate. 
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Table  4.29 

Error Rates for Linear Models using Real Data 

Estimators  AER  CV 

 

CA 0.1111 0.1111 

MOM-Qn 0.0741 0.1111 

WMOM-Qn 0.1111 0.1481 

 

From Table 4.29, the real data results show that the robust models are quite suitable 

for detecting outliers. For in-depth comparison, the AER approach was implemented 

alongside CV. From AER, the robust RLDAMQ model has the least actual error rate of 

0.0741 while CA and RLDAWMQ tie at value of 0.1111. Therefore, based on AER, 

RLDAMQ is more suitable to analyze the distress situation of the banks. In addition to 

AER, CV approach was likewise adopted with RLDAMQ and CA tying for the best 

approaches having actual error rate of 0.1111 while RLDAWMQ has error rate of 

0.1481. Thus, it implies that following CV, CA and RLDAWMQ are more suitable to 

analyze the distressed banks. However, the reason for implementing these two 

approaches (AER and CV) to estimate the error rate, is to have a better conclusion of 

which LDA model performs better with real data. Therefore, the RLDAMQ is best 

overall, having AER error rate of 0.0741 and CV error rate of 0.1111. 

This real data results indicate that the robust estimator RLDAMQ detects and 

eliminates outliers better because it has the smallest AER misclassification error rates. 

In addition, the robust models having equal error rates values at certain points to the 

classical approach are quite encouraging. This is because there is an expected increase 

in error rates for the robust models as a result of the summation involved in the 

different data conditions considered. Hence, the justification stands that the robust 

discriminant models are capable of handling outliers when classifying both simulation 

and real data. This is proven from the results obtained using the simulation study and 

the real data analysis results. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

 

This chapter concludes this research work by considering the research objectives 

highlighted in Chapter One of this research and discussing how each of the objectives 

were actualized. Furthermore, suggestions are made on what areas can be delved into 

for future research work. 

 

5.1 Conclusion 

This research has looked into a comparison of robust linear discriminant analysis 

based on coordinate-wise approach. MOM and its winsorized counterpart WMOM 

were adopted with the robust Qn scale estimator. The reason for adopting these robust 

estimators was because of its novel property in being able to handle outliers in data. 

The first objective of this research as highlighted in Chapter One was to modify the 

robust estimators. This objective was achieved in Chapter Three of this research 

where the RLDAMQ and RLDAWMQ algorithms were introduced (See Sections 3.4.1 

and 3.5.1). Both algorithms begin with eliminating the extreme values in the data via 

trimming. Likewise, the modification done in both the MOM and WMOM algorithm 

involved replacing the default MADn scale estimator with the Qn estimator. 

The second objective considered conducting a simulation study on the modified 

robust estimators by creating scenarios that could be encountered in real life by 

manipulation of certain variables. The variables chosen to be manipulated were 

chosen from thorough investigation of past literature to know which variable can give 

concrete discussion basis when comparing the performance of the estimators. The 
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chosen variables were highlighted in Section 3.6 and they include dimension of 

variable  p , percentage of contamination   , sample size of the training data 

 1 2,n n , shift in location of the population    and shift in shape of the population 

  . Take note that the sample of training data considered both the balanced and 

unbalanced type which introduced the cases of equal and unequal covariance 

matrices. Thus, the second objective of this research was achieved by using a testing 

sample of size 2000 from each population and the misclassification error was 

computed by obtaining the proportion of misclassified testing sample observations in 

each population. This process was repeated 2000 times and the mean misclassification 

error and computational time was recorded.  

The third objective achieved in this research was showing the superiority of the robust 

linear models over the classical linear model. The actualization of this objective was 

discussed in detail in Chapter Four. Two basic criterions formed the basis for 

comparison which was the mean misclassification error and the computational time of 

each model to complete the simulation run. The results from the analysis show the 

classical linear discriminant model performing optimally when all assumptions were 

fulfilled with no contamination in the data. However, as soon as the percentage of 

contamination was increased, the RLDAMQ model was consistently giving the least 

value for the mean misclassification error for balanced sample sizes while the 

RLDAWMQ had better accuracy for unbalanced sample sizes. In addition, considering 

the each of the variables (dimension of variable  p , percentage of contamination 

  , sample size of the training data  1 2,n n , shift in location of the population    

and shift in shape of the population   ), certain conclusions were drawn. Although 

some these conclusions do not suitably follow with the classical approach, on the 
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basis of expectation, the conclusions hold. It follows that with increase in dimension 

of the variables, a more consistent behavior is observed with the linear models and 

thus better analysis can be made. It is expected that as the percentage of 

contamination increases, the misclassification error also increases. Therefore, the 

linear model with the least mean misclassification error is said to be the best due to its 

ability to retain low misclassification error despite the increase in contamination. 

However, there is an expected inverse behavior with the increase in the shift in 

location of the population and shift in shape of the population. An expected decrease 

in misclassification error was observed with increase in   and  , this is in line with 

the statistical norm that a change in the shape or location parameters alters the 

behavior of the data. However, more emphasis is placed on which linear model 

performs best with which covariance matrix property for either balanced or 

unbalanced sample sizes. 

From Chapter Four, it was highlighted that the simulation conditions will be 

investigated for both equal and unequal covariance matrix property. It was observed 

that the linear models tend to same behavior irrespective of the covariance matrix 

property while variations were more evident with balanced or unbalanced sample 

sizes. When the sample sizes are balanced and all assumptions of the discriminant 

model is met, CA performs better when there is no contamination, although CA is 

overridden by the robust RLDAWMQ model when the sample sizes become 

unbalanced. Furthermore, in the presence of contamination, RLDAMQ has a higher 

performance for balanced sample sizes while RLDAWMQ takes the lead for unbalanced 

sample sizes. A clearer insight to the behavior of the linear models is displayed in the 

following section. 
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Hence the conclusion that the robust models are better than classical model, although 

one outweighs the other when certain variables are considered but the differences are 

negligible. It is worth taking note of that this accuracy comes with a cost of high 

computational time, however this can be handled by using high-performance server 

available nowadays. Therefore, this research has achieved its aim of comparing 

certain robust linear discriminant analysis models based on coordinate-wise approach. 

A general comparison among the linear models are shown in the following section. 

 

5.2 Comparison between the Linear Models 

Recall that the analysis considered certain variable settings, such as the property of 

the covariance matrices and the sample sizes. Based on these, we would first consider 

a general summary of the results when the covariance matrices and sample sizes are 

equal as shown in Table 5.1 below. 

 

Table  5.1 

Summary of Results for Equal Covariance Matrices and Balanced Sample Size 

Analysis 

    1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

 

 CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

 

P=2 1 31 2 1 33 1 1 33 0 

 2.9% 91.2% 5.9% 2.9% 97.1% 2.9% 2.9% 97.1% 0% 

P=6 1 31 2 1 32 1 1 33 0 

 2.9% 91.2% 5.9% 2.9% 94.2% 2.9% 2.9% 97.1% 0% 

P=10 1 28 5 1 31 2                                                                                          1 33 0 

 2.9% 82.4% 14.7% 2.9% 91.2% 5.9% 2.9% 97.1% 0% 

 

 



114 
 

Based on Tables 4.1 to 4.3, a percentage analysis of the total times the linear models 

had the least misclassification error was computed and displayed in Table 5.1. Note 

that per group calculation, the total of the percentage analysis does not equal 100% 

because there were cases of duplicate models holding the position of the least 

misclassification error.  

Just as discussed in Chapter Four, the robust RLDAMQ model had a higher percentage 

of smallest mean error rates. Hence, being the best model for detecting outliers in 

cases of equal covariance matrices and balanced sample sizes. However, this is not 

the case for unbalanced sample sizes as the RLDAWMQ model performs better overall 

although the RLDAMQ competed favourably at high variable dimension. This is 

shown in the summary given in Table 5.2. 

 

Table  5.2 

Summary of Results for Equal Covariance Matrices and Unbalanced Sample Size 

Analysis 

    1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

 

 CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

 

P=2 1     6 27 1 11 22 4 10 27 

 2.9% 17.7% 79.4% 2.9% 32.4% 64.7% 11.8% 29.4% 79.4% 

P=6 0 9 25 1     15 18 0 12 22 

 0% 26.5% 73.5% 2.9% 44.1% 53% 0% 35.3% 64.7% 

P=10 0 12 22 0 21 13 0 13 21 

 0% 35.3% 64.7% 0% 61.8% 38.2% 0% 38.2% 61.8% 

 

In addition, the property of unequal covariance matrices was also considered for both 

balanced and unbalanced sample sizes, and a general summary of the results is given 

in Tables 5.3 and 5.4. 
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Table   5.3 

Summary of Results for Unequal Covariance Matrices and Balanced Sample Size 

Analysis 

    1 2, 20,20n n      1 2, 50,50n n      1 2, 100,100n n   

 

 CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

          

P=2 1     33 0 1     33 0 1     33 0 

 2.9% 97.1% 0% 2.9% 97.1% 0% 2.9% 97.1% 0% 

P=6 1     32 1     1     33 0 1     33 0 

 2.9% 94.2% 2.9% 2.9% 97.1% 0% 2.9% 97.1% 0% 

P=10 1     25 8 1     32 1 1     33 0 

 2.9% 73.5% 23.6% 2.9% 94.2% 2.9% 2.9% 97.1% 0% 

 

Table  5.4 

Summary of Results for Unequal Covariance Matrices and Unbalanced Sample Size 

Analysis 

    1 2, 50,20n n      1 2, 100,50n n      1 2, 100,20n n   

 

 CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ CA RLDAMQ RLDAWMQ 

          

P=2 1     2 32 0 12 22 0 5 30 

 2.9% 5.9% 94.2% 0% 35.3% 64.7% 0% 14.7% 88.2% 

P=6 0 8 26 0 16 18 0 7 27 

 0% 23.6% 76.4% 0% 47.1% 52.9% 0% 20.6% 79.4% 

P=10 0 10 24 0 17 18 0 9 25 

 0% 29.4% 70.6% 0% 50% 52.9% 0% 26.5% 73.5% 

 

Tables 5.3 and 5.4 show similar results to Tables 5.1 and 5.2 respectively, where the 

robust RLDAMQ has upper hand accuracy when the sample sizes are balanced. In 

addition, the robust RLDAMQ model competes well for the unbalanced sample sizes 

too by displaying close results for     1 2, 100,50n n   when p=6 and p=10. In the 

case of the unbalanced sample sizes with unequal covariance matrices, the RLDAWMQ 

robust model performs better. Table 5.5 gives an overall summary of the results 

obtained. 
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Table  5.5 

Summary of Results for Performance of Models with Respect to Presence of 

Contaminations 

Conditions Contamination Best Method 

 

Equal Covariance Matrices with Balanced 

Sample Sizes 

NO CA 

Equal Covariance Matrices with Balanced 
Sample Sizes  

YES RLDAMQ 

Equal Covariance Matrices with Unbalanced 
Sample Sizes  

NO RLDAWMQ 

Equal Covariance Matrices with Unbalanced 
Sample Sizes  

YES RLDAWMQ 

Unequal Covariance Matrices with balanced 
Sample Sizes  

NO CA 

Unequal Covariance Matrices with Balanced 
Sample Sizes  

YES RLDAMQ 

Unequal Covariance Matrices with 
Unbalanced Sample Sizes  

NO RLDAWMQ 

Unequal Covariance Matrices with 
Unbalanced Sample Sizes  

YES RLDAWMQ 

 

In addition to the real data analysis results (Table 4.29), both robust estimators are 

equally good in detection of outliers. Although one may outshine the other based on 

variable manipulations. 

 

5.3 Implication of Study 

The main aim of this research is to make a comparison between linear discriminant 

models for multivariate data analysis. It is generally known that as a reason of the 

presence of outliers, these linear discriminant models have been improved from the 

conventional classical form to robust models. Therefore, via this research, certain 

advances have been made regarding some robust models in comparison to the 

classical approach. 

MOM and WMOM were modified by the introduction of the Qn scale estimator on 

both robust models (RLDAMQ and RLDAWMQ). To investigate the usability of both 

robust models, analysis was made on both simulation and real data. The results show 

the robust model performing favorably in detecting outliers. Therefore, RLDAMQ and 
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RLDAWMQ are suitable for classification of multivariate date even in the presence of 

high contamination of outliers. 

 

5.4 Limitation of Study and Future Work 

Certain limitations were observed in this study and from these limitations there is 

room to explore more research. The first limitation is that only two robust estimators 

are considered for modification, the MOM and WMOM. Therefore, future research 

can consider modification of other coordinate-wise based robust models. 

In addition, the robust scale estimator integrated in the modification is limited to nQ  

estimator, hence creating room for exploring other scale estimators. Comparison 

could also be made between distance based robust estimators integrated with robust 

scale estimators and coordinate-wise based robust estimators integrated with robust 

scale estimators. Likewise, comparison was made between the robust models and the 

classical approach only, however a comparison between these modified robust models 

and previously existing robust models in literature can also be investigated.  

Finally, in consideration of real data, the application problem was limited to real 

financial data which is just one selected field of study. Other areas of applications 

could also be considered. Similarly more recent database values can be culled for real 

time analysis to draw certain conclusions in varying fields of application. 
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Appendix A  

Program Calculates the Value of the Robust Scale Estimator Qn 

function Result=Qn(X) 

[s1 s2]=size(X); 

dist=zeros(s1,s2); 

count=0; 

for i=1:s1  

    for j=1:s1  

        if i<j 

            count=count+1; 

            dist(count,s2)=abs(X(i,s2)-X(j,s2));            

        end 

    end 

end 

sortdist=sort(dist); 

h=floor(s1/2)+1; 

k=nchoosek(h,2); 

Result=sortdist(k,s2)*2.2219; 
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Appendix B 

Programs for Calculates Modified One-Step M-Estimator RLDAMQ and 

Winsorized Modified One-Step M-Estimator RLDAWMQ Sample with the scale 

estimator Qn 

 

1- Program calculates the RLDAMQ 

function Result=MOM_Qn_sample(Y) 

[S1 S2]=size(Y);         

if S2>1  

    disp('error Only vectors not coulumns or Matrices'); 

return; 

end 

 

Med=median(Y);           

QN= Qn(Y);            

const = 2.24; 

Low=-const*QN;          

High=const*QN;          

k=0; 

for i=1:S1, 

    if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        k= k+1; 

    end 

end 

X = zeros(k,S2); 

k=1; 

for i=1:S1 

    if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        X(i) = Y(i); 

        k= k+1; 

    else 

        X(i)=nan; 

    end 

end 

 

Result=X;    

 

2- Program calculates the RLDAWMQ 

function Result=WQn_sample(Y) 

[S1 S2]=size(Y);         

if S2>1  

    disp('error Only vectors not coulumns or Matrices'); 

return; 

end 

 

Med=median(Y);           

QN= Qn(Y);          

const = 2.24; 

Low=-const*QN;          
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High=const*QN;          

k=0; 

for i=1:S1, 

    if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        k= k+1; 

    end 

end 

X = zeros(k,S2); 

k=1; 

for i=1:S1 

    if ((Y(i) - Med) >= Low) && ((Y(i) - Med) <= High) 

        X(i) = Y(i); 

        k= k+1; 

    end 

end  

Max = max(X); 

Min = min(X); 

for i=1:S1 

if ((Y(i) - Med) < Low) 

    X(i) = Min; 

elseif((Y(i) - Med) > High) 

    X(i) = Max; 

end 

end 

Result=X;      
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Appendix C 

Programs for Simulation Study 

1- Programs for Simulation RLDAMQ 

function result = simulation_MOM_Qn 

clear all;      

start_time = cputime; 

 

N1=2000;            

N2=2000;             

n1=20;              

n2=20;               

p1=2;               

err = 0.4;       

R=2000;         

 

miscl = zeros(R,1);  

 

for r=1:R 

     

    seed1 = 12954+r;           

    randn('seed',seed1);      

     

    G1=randn(N1,p1);     

    G2=1+2*randn(N2,p1); 

 

    V1 = repmat(1:1, [N1 1]);           

    V2 = repmat(2:2, [N2 1]); 

 

    test_data=[G1 V1 

                G2 V2];  

 

    [n,p] = size(test_data);      

         

    seed = 3984+r;         

    randn('seed',seed);      

      

    X1=[randn((1-err)*n1,p1) 

        3+randn(err*n1,p1)];         

    X2=[1+2*randn((1-err)*n2,p1) 

        -2+2*(randn(err*n2,p1))]; 

        

    MS_Qn1 = zeros(n1,p1); 

    MS_Qn2 = zeros(n2,p1); 

    Qn_X1=zeros(1,p1); 

    Qn_X2=zeros(1,p1); 

     

 for i=1:p1 

   MS_Qn1(1:n1,i) = MOM_Qn_sample(X1(1:n1,i)); 



133 
 

   MS_Qn2(1:n2,i) = MOM_Qn_sample(X2(1:n2,i)); 

 end 

 

    dim = p-1; 

    a = log (n2/n1); 

 

   for i=1:p1 

    Qn_X1(i) = Qn(X1(1:n1,i)); 

    Qn_X2(i) = Qn(X2(1:n2,i));  

   end 

    

    Product_Qn_X1=Qn_X1'*Qn_X1; 

    Product_Qn_X2=Qn_X2'*Qn_X2; 

              

    mu1  = nanmean(MS_Qn1); mu2  = nanmean(MS_Qn2);  

    cov1 = corr(X1,'type','Spearman').*Product_Qn_X1;   

    cov2 = corr(X2,'type','Spearman').*Product_Qn_X2; 

 

    sigma  = ((n1-1)*cov1+(n2-1)*cov2)/(n1+n2-2); 

    linear   = (mu1-mu2)/sigma; 

    constant = 1/2*linear*(mu1+mu2)'; 

    scores   = linear*test_data(1:n,1:dim)' - constant ; 

 

    group  = (scores < a) + 1; 

    miscl(r) = mean(group ~= test_data(:,p)'); 

end 

 

end_time = cputime; 

 

result.average_MOM_Qn_miscl =mean(miscl); 

result.std_dev_MOM_Qn_miscl =std(miscl); 

result.exec_time = end_time-start_time; 

 

2- Programs for Simulation RLDAWMQ 

function result = simulation_WMOM_Qn 

clear all;       

start_time = cputime; 

 

N1=2000;            

N2=2000;            

n1=50;              

n2=20;             

p1=2;           

err = 0.4;       

R=2000;        

 

miscl = zeros(R,1);  

 

for r=1:R 
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    seed1 = 12954+r;          

    randn('seed',seed1);     

     

    G1=randn(N1,p1);     

    G2=1+2*randn(N2,p1); 

 

    V1 = repmat(1:1, [N1 1]);            

    V2 = repmat(2:2, [N2 1]); 

 

    test_data=[G1 V1 

                G2 V2];  

     

    [n,p] = size(test_data);  

             

    seed = 3984+r;           

    randn('seed',seed);      

     

    X1=[randn((1-err)*n1,p1) 

        3+randn(err*n1,p1)];         

    X2=[1+2*randn((1-err)*n2,p1) 

        -2+2*(randn(err*n2,p1))]; 

     

    WG1 = zeros(n1,p1); 

    WG2 = zeros(n2,p1); 

  

for i=1:p1 

   WG1(1:n1,i) = WQn_sample(X1(1:n1,i)); 

   WG2(1:n2,i) = WQn_sample(X2(1:n2,i));  

end 

 

    dim = p-1; 

    a = log (n2/n1); 

        

    mu1  = mean(WG1); mu2  = mean(WG2); 

    cov1 = cov(WG1); cov2 = cov(WG2); 

 

    sigma  = ((n1-1)*cov1+(n2-1)*cov2)/(n1+n2-2); 

    linear   = (mu1-mu2)/sigma; 

    constant = 1/2*linear*(mu1+mu2)'; 

    scores   = linear*test_data(1:n,1:dim)' - constant ; 

 

    group  = (scores < a) + 1; 

    miscl(r) = mean(group ~= test_data(:,p)'); 

end 

 

end_time = cputime; 

 

result.average_WMOM_Qn_miscl =mean(miscl); 

result.std_dev_WMOM_Qn_miscl =std(miscl); 

result.exec_time = end_time-start_time; 



135 
 

Appendix D 

Programs for Real Data 

1- Programs for Real Data RLDAMQ 

[n,p] = size(datafull); 

    [N,P] = size(datafull); 

        

    dim = p-1; 

    Dim = P-1;       

     

    X1 = datafull(datafull(:,p)==1,1:dim); 

    X2 = datafull(datafull(:,p)==2,1:dim); 

    n1 = size(X1,1); 

    n2 = size(X2,1); 

    a = log (n2/n1); 

    MS_Qn1 = zeros(n1,dim); 

    MS_Qn2 = zeros(n2,dim); 

    Qn_X1=zeros(1,dim); 

    Qn_X2=zeros(1,dim); 

 

 for i=1:dim 

   MS_Qn1(1:n1,i) = MOM_Qn_sample(X1(1:n1,i)); 

   MS_Qn2(1:n2,i) = MOM_Qn_sample(X2(1:n2,i)); 

 end 

   

  for i=1:dim 

    Qn_X1(i) = Qn(X1(1:n1,i)); 

    Qn_X2(i) = Qn(X2(1:n2,i));  

  end 

   

    Product_Qn_X1=Qn_X1'*Qn_X1; 

    Product_Qn_X2=Qn_X2'*Qn_X2; 

     

    mu1  = nanmean(MS_Qn1); mu2  = nanmean(MS_Qn2); 

    cov1 = corr(X1,'type','Spearman').*Product_Qn_X1;    

    cov2 = corr(X2,'type','Spearman').*Product_Qn_X2; 

 

    sigma  = ((n1-1)*cov1+(n2-1)*cov2)/(n1+n2-2); 

    linear   = (mu1-mu2)/(sigma); 

    constant = 0.5*linear*(mu1+mu2)'; 

    scores   = linear*datafull(1:N,1:Dim)' - constant ; 

    group  = (scores < a) + 1; 

    miscl = mean(group ~= datafull(:,P)'); 

  

2- Programs for Real Data RLDAWMQ 

[n,p] = size(datafull); 

    [N,P] = size(datafull); 

        

    dim = p-1; 

    Dim = P-1; 

           

    X1 = data27(data27(:,p)==1,1:dim); 

    X2 = data27(data27(:,p)==2,1:dim); 

    n1 = size(X1,1); 
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    n2 = size(X2,1); 

    a = log (n2/n1); 

    WG1 = zeros(n1,dim); 

    WG2 = zeros(n2,dim); 

     

for i=1:dim 

   WG1(1:n1,i) = WQn_sample(X1(1:n1,i)); 

   WG2(1:n2,i) = WQn_sample(X2(1:n2,i));  

end 

 

    mu1  = mean(WG1); mu2  = mean(WG2); 

    cov1 = cov(WG1);  cov2 = cov(WG2); 

 

    sigma  = ((n1-1)*cov1+(n2-1)*cov2)/(n1+n2-2); 

    linear   = (mu1-mu2)/(sigma); 

    constant = 0.5*linear*(mu1+mu2)'; 

    scores   = linear*datafull(1:N,1:Dim)' - constant ; 

    group  = (scores < a) + 1; 

    miscl = mean(group ~= datafull(:,P)'); 

 

 

 

 

 

 
 


