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اِلرَّحبِِ اِلٌِله اِلرِّحيمِِمِِسمِ ِن
يَِسْطُرون وِما ِنِوالق لمِ

اِلعظيم اِلعلي اِلله  صدق
 ِِِِِِِِسُورةُِِالق لمِِ)آية1ِِ(ِِِ
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 الاىداء
 

ِِِ مِعلم ِ)ِصلىِِإلى اِلأمين اِلنبي اِلأنامِ اِليدايةِسيد ِِورسول اِلأول الإنسانيةِ
)ِ ِاللهِعليوِوالوِوسلم  

 
 

اِليو لِماِوصلت تِعجزِكلماتيِعنِشكره مِن اِلعزيزِرحموِِِ......الى والدي
 الله

 

اِبوابِِ لِيا تِفتح مِن يِدالسماالى اِذاِرفعت بِالدعاءيء والدتيِِِ....يا
ِِِِِِِِِِِِِِِِِِةالعزيزِ  

 

اِتمامِدراستيِِ فِي نِجاحي اِلى يِتطلع مِنِكان  الىِكل
 

اِلمتواضعِىذا جِيدي  اىدي
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Abstract 
 

     The main objective of this thesis.is to.extend and study.some properties of 

topological spaces such as.compact space, lindelof space by covering 

properties by.using coc-r-open.sets . 

 

    We have.formerly studied compact, .lindelof, connected.spaces and 

separation aximes. In this work we extend.these concepts by.using coc-r-open 

sets.to study s-coc-r-connected, coc-r-compact, .coc-r-lindelof, I-coc-r-

lindelof  spaces and  coc-r-separation aximes 

         Also we studied.concept (coc-r , co  ́ -r) function , super coc-r-

open.function  , (coc-r , co ́-r) continuous.function and.clarified the properties 

of that function. The following are.among our main.results :- 

 

1. Let   be   -space, then the following.statements are equivalent. 

i)   is coc-r-compact. 

ii) Every.cover of     by  r- open  subsets.has a finite subcover. 

 

2. Let   is    -space, then.the following statements are equivalent. 

i) Every.proper r- closed  subset of    is coc-r-compact.relative to  . 

ii)   is coc-r-compact. 

iii)   is r-compact. 

 

3. Let        be a coc-r-continuous function, onto and   be extremally 

disconnected space, if   is coc-r-compact then    is I-compact. 

 

4. Let        be a coc-r-open., bijective function and   be a extremally 

disconnected space. If   is coc-r- lindelof then    is I- lindelof. 
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 5. Let   is coc-r-extremally disconnected,     -r-regular.space, then the 

following.statements are equivalent. 

1)   is   - coc-r - lindelof. 

2)   is  I-coc-r-lindelof. 

3)   is  coc-r-lindelof. 

 

6.  Let   is   , extremally disconnected space, then the following.statements 

are equivalent. 

1)   is coc-r-lindelof. 

2)    is I-lindelof. 

3)    is lindelof. 

4)    is I-coc-r-lindelof. 

 

7. Let                    be a  - coc-r -   -closed, super coc-r-open  

function, with         - coc-r - lindelof for each      and    coc-r-

extremally disconnected, coc-r - P- space. If    is I- lindelof, then   is I-coc-r-

lindelof. 
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Introduction 

 

This thesis.introduces some concepts.in.general topology by.using coc-r-open sets 

and the relationship.between the spaces ( compact,.lindelof, I-lindelof ) by using 

coc-r-open.cover. 

 

In the year.2011[1] S. Al Gore.and S. Samarah provided coc-open.sets in the 

topological spaces, where they studied continuity.by using these sets. Later, 

some.researchers have studied.these sets and expanded, in1937 [15], regular.open 

sets were introduced and used to define the semiregularization space of a 

topological space1995[11],1970[16], N. Bourbaki 1989[2] introduced the concept of 

compact.space, in 1979[3] D. E. .Cameron introduced.the concept of I-

compact.space, where he studied maximal.C-compact spaces, maximal QHC.spaces, 

and maximal.nearly compact spaces..He also discussed covering property which 

turns.out to be equivalent.to S-closed and extremally.disconnected. in 1996[9] D. S. 

Jankovic and C. Konstadilaki introduced.the concept of rc-compact, rc-lindelof, 

countably rc-compact,  perfectly k-normal,  Luzin space,  generalized ordered space, 

in 2003[17] K. Al-Zoubi and B. Al-Nashef  introduced.the concept of.I-lindelof 

spaces. 

 

This thesis consists.of three chapters. Chapter.one is.divided into two sections. In 

section.one , the basic definitions have been recalled. In section.two, we define coc-

r-  - open and coc-r - regular  open.sets and we.prove some properties about them. 

 

       Chapter two.is divided into four.sections . In section one, we recall.definition of 

coc-r-continuous.function and prove some.properties about it . In section.two, we 

recall definitions of.coc-r-open.function and prove some.properties about it. In 

section.three, we introduced fundamental.concept of separation.axioms and 

generalized by coc-r-open.sets. In section four, we.introduce the fundamental concept 

of connected.space and generalized by coc-r-open.sets. 
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      Chapter three.is divided into three.sections  . In section one, we.recall the concept 

of coc-r-compact space.and give some.important generalizations on this.concept. In 

section two, we recall.definition, proposition.and theorems of coc-r-lindelof.space. In 

section.three, we introduces the.concept of I-coc-r-lindelof.space and we.prove some 

results on this.concept and give the.relation between I-coc-r-lindelof, .coc-r-lindelof, 

I-lindelof, and lindelof.space. 
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This Chapter is divided into two sections. In section.one , the 

basic definition.have been recalled. In section.two, we define 

coc-r- -open and coc-r-regular open.sets and we.prove some 

properties about them. 
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1.1  On coc-r-open sets  

     This section.present the definition of coc-r-open.set , remarks ,propositions and 

example.about the concept . 

 

Definition (1.1.1) [1] 

      A subset   of a topological space ( , ) is called.cocompact open.set (notation : 

coc-open set ) if for every     there exists an.open set      and a.compact subset 

  of   such.that           . The complement of coc-open set is called coc-

closed set. 

The family of all coc-open subsets of a space (     forms topology.on       and 

denoted by   . 

 

Remarks (1.1.2) [10] 

1. Every open.set is a coc-open set. 

2. Every closed.set is a coc-closed set. 

3. The converse of (i, ii) is not true.in.general. 

 

Definition (1.1.3) [15] 
      A subset   of a.topological space ( , ) is called.regular open.set (notation : r-

open set ) if    
 
. The complement of.regular open set is.called regular closed (r- 

closed) set and it is easy to.see that   is regular.closed if      .   

 

Remarks (1.1.4) [16]      

     Let X  be a topological space, then: 

i. Every r-open.set is an open.set. 

ii. Every r-closed.set is a.closed set. 

iii. The converse of (i, ii) is not true.in general. 

     

Remarks (1.1.5) [11]      

     Let X  be a topological space, then: 

1) The family.of all r - open.sets in   is denoted by    ( ,  ). 

2) The family.of all r - closed sets in   is.denoted by    ( ,  ). 

 

Definition (1.1.6) 
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     A subset A of.a topological space       is called.cocompact regular open.set 

(notation : coc -r-open set) if for.every     there.exists r-open set     and 

compact.subset   such that         , the complement.of coc-r-open.set is 

called coc -r-closed set . 

 

Remarks (1.1.7)      

     Let X  be a topological space, then: 

1- Every r-open set is coc -open.set. 

2- Every r-closed.is coc - closed.set. 

3- Every r-open set is coc -r-open set. 

4- Every r- closed.set is coc -r- closed.set. 

5- Every coc -r-open.set is coc-open. 

6- Every.coc -r- closed.set is coc- closed. 

       It is clear 

 

Remark (1.1.8) 

     The converse.of Remarks (1.1.7) is not true  in general as.the following 

examples show: 

 

Examples (1.1.9) 

1- Let   {     }   {    { } { } {   }} be a.topology on  . Notice.that {   } is 

a coc-open  coc-r-open but.it is not r-open.and { } is a coc-closed  coc-r- closed.but 

it is not r- closed. 

2- Let   {       },   {       }  { } be a topology.on  , the.coc-r-open 

sets.are {                }  { }, thus  { } is a coc-open but it is not coc-r-open 

and {     } is a coc- closed.but it.is not coc-r- closed. 

 

Remark (1.1.10) 

    Every coc -r-open.set is not necessarily to be.open set, every coc-r-closed.set is 

not necessarily.to be closed.set . Also every.open set is not.necessarily to be coc -r-

open set and every.closed set is not.necessarily to be coc -r-closed.set. 

     As the following examples.show: 
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Examples (1.1.11) 

1- Let   {     }   {    { } { } {   }} be a topology.on  , the coc-r-open.sets 

are {    { } { } { } {   } {   } {   }} then { } is a coc-r-open but it is not.open 

and { } is coc-r-closed but it is not.closed set. 

2- Let   {       },  {       }  { } be a.topology on  , the coc-r-open 

sets.are {                }  { }. Notice.that { } is an.open but is not coc-r-open 

and {     } is a closed but it is.not coc-r-closed.  

 

 

     The following diagram.shows the relation between.types of coc-r -open sets  

 

                              r-open                open                   coc-open 

                         

                                                     coc-r -open  

 

 

Remark (1.1.12)       

     Let X  be a topological space, then: 

1- The intersection of  two r-open.set is r-open . [16] 

2- The.intersection of  two .coc-open set is.coc-open . [1] 

 

Remarks (1.1.13) 

     Let X  be a topological space, then: 

1- The.intersection of r-open sets and open set is open . 

2- The intersection of.two coc -r -open set is coc -r -open  . 

3- The union of coc-r-open sets is coc-r-open set . 

4- The intersection of coc-r-open.sets and coc-open set is coc-open . 

5- The coc-r-open.sets forms topology.on   denoted by    . 

Proof : 

1)  It is clear. 

2) Let  ,   be coc-r-open, to.prove     is coc -r -open.set. Suppose that     

 , then     and    , since  ,   are coc-r-open, thus.there exist two r-open.sets 

      and two.compact subset     such.that         ,        , 

therefore                    imply.that                   
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    then                       thus we get              

      , by using (1)     is r-open, since       is compact.set in  . 

Hence      is coc -r -open. 

3) Let    ,     be.coc-r-open set for each     to.prove         is coc-r-open. 

Suppose          , then.      for.some    , since    is.coc-r-open, 

thus.there exist r-open.sets      and compact.subset    such.that         

   for.some    , since             . Hence         is coc-r-open. 

(4) and (5)  It is clear. 

 

Definition (1.1.14) [13] 

1. Let   be a.topological space.and    , a point      is.called r-interior.point of 

  if.there exists a r - open.set   in   containing    such that       .  

    The set of all  r-Interior.points of   is called  r-Interior set.of  , it is denoted by  

    and       {    r-open set in  .and     }.  

 

Definition (1.1.15) [13] 

     Let   be.a topological space and       . The.intersection of.all r - closed.sets of 

  containing  .is called  the r - closure of   and.is denoted by  
 
. 

 

Remarks (1.1.16) [13] 

     Let    be.a topological.space and      , then: 

1)       . 

2)      
 
. 

3) If     
 
, then for.any r-open set   in  .containing   we have      . 

4) If    a closed.set, then     is a. r-open set. 

5) If    an.open.set, then    is a  r-closed.set. 

6) If    a  r-closed  set, then.  is closed.set. 

 

 

Definition (1.1.17) [13] 

     A topological space   is.said to be  r - compact.if every r - open.covering of   

has a.finite sub covering. 

 

Proposition (1,1.18) [13]      
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     Let X  be a topological space, then: 

1) Every.compact space is.r - compact  space. 

2) Every r-compact.subset of    -space is r- closed.set. 

 

Theorem (1.1.19) 

     Let.   be   -space,    . 

1. If  .is a coc-r-open.in  , .then      . 

2. if   is.a coc-r-closed.in  , then    
 
. 

Proof : 

1. Let.  be coc.-r-open in  , since         , we.need.to prove.that      . Let 

   , since.  is coc-r-open, then.there exist  r-open set  and compact.subset 

  such.that        . Since.every compact is r-compact  and  .be   -space, 

thus    is  r- closed set ( by using Proposition (1.1.18), (1), (2) ) , so    r-

open.subset in   and          and      are.r-open sets.in  , there fore 

     is r-open in  , hence       . 

2. Let    
 
 and    , then      since.  is.coc-r-closed.in   , thus    is coc-r-

open  in.  and      , there.exist  r-open  , .compact.subset   such.that     

    . Since   is compact.subset in  , .therefore   is.r-compact , so    is r-closed ( 

by using.Proposition (1.1.18), (1), (2) ), then    r-open, since      is r-open, 

          ,    
 
and.using by Remarks (1.1.16), (3) then          

  this is.contradiction with        , thus     , since      
 
, hence.   

 
. 

 

Remarks  (1.1.20)       

     Let X  be a topological space, then: 

1) If  .is a finite.set  then     is a discrete.topology. 

2) A closed.subset of compact space   is compact.relative to  . [6] 

3) In any space, the.intersection of compact set with a.closed set.is compact. [6] 

4) Every.compact subset of    -space is.closed set. [6] 

5) A space   is regular.space iff for.every     and each.open set    in    such 

that     there.exists an open set   such.that        . [5] 

6) A space ( ,  ) is.called    -space  if    is  regular space.and    -space. [5] 

7) Every   -space.is   -space. [5] 
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Proposition (1.1.21) [13] 

    Let   be.regular space, if     is an.open  then      ( ,  ). 

 

Corollary (1.1.22) 

    Let   be.regular space, if     is a closed.then      ( ,  ). 

Proof :  It is clear.  

 

Theorem (1.1.23) 

     Let        be.a   -space, then       . 

        

     Let      .To.prove    , let     , then.there exists r-open.set     

and.compact.subset   such that            thus         . Since   

is.compact and   is   -space, therefore   is.closed, so    is open. By using.remarks 

(1.1.20), (5), so       is.open set in  . Hence     

 

Remarks (1.1.24) 

     Let        be.a   -space, then 

1) Every coc-r-open set is.open set. 

2) Every coc-r-closed.set is closed.set. 

       It is clear. 

 

Theorem (1.1.25) 

    Let        be.a        -space, then.      . 

 

       Clear, by.using Proposition (1.1.21). 

     

 

Corollary (1.1.26) 

     Let        be.a   -space, then       . 
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Definition (1.1.27)                   

     Let    be.a space and       . The intersection.of all coc-r-closed.sets of   

containing   called.coc-r-closure of  .and is.denoted by  
  

 , i.e  
  

   {    coc-r 

- closed.set in.  and     }.  

Remark (1.1.28)      

     Let X  be a topological space.and     X, then: 

      
  

 is the smallest  coc-r - closed set.containing  .                                              

 

Proposition (1.1.29) 

     Let X  be a topological space.and       X, then: 

i. .  
  

 is an coc-r - closed.set . 

ii.    is.an coc-r - closed.set if and.only if   =  
  

 

iii.   
  

  
  

  

     

iv.  
  

  
  

    

Proof: It is clear. 

 

Proposition (1.1.30) 

    Let X.be a space.and     X. Then    
  

 iff.for each coc-r - open.set  .in   

contained point   we.have         

Proof: It is clear. 

 

Proposition (1.1.31) 

     Let   be topological space and        , then: 

1.  
  

  ,  
  

   .  

2.    
  

  
  

  
  

. 

3.    
  

  
  

  
  

. 

Proof: It is clear. 
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Definition (1.1.32)  

    Let   be.a space and    . The.union of all coc-r-open sets of   containing.in   

is called coc-r-Interior.of   denoted.by       , i.e       {    coc-r - open.set in   

and     }. 

 

 

 

Proposition (1.1.33) 

     Let  .be a space and     , then       is the.largest.coc-r-open set containing in 

    

Proof : Clear by.definition of        . 

 

Proposition (1.1.34) 

     Let  .be a space.and      , then        if.and only if.there exists coc-r- 

open.set   containing   such.that       .  

 

Proof : 

     Let       , then          .such that    coc-r-open.set and       ,    . 

.Thus        for.some    , .since          , then            for.some 

   . Conversely, let there.exists   coc-r-open set such.that        then     

  ,     and   coc-r- open.set then        . 

 

Proposition (1.1.35) 

     Let   be.a space and      .then: 

1.         is coc-r- open.set . 

2.   is coc-r-open if.and only if        . 

3.                 . 

4. if     then           . 

5.                    . 

6.                     . 

Proof : It is clear. 

 

Remark (1.1.36)      

     Let (  ,   ) be topological space and      , then: 
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                    , as .the following.example shwos. 

 

Example (1.1.37) 

     Let   {       }   {       }  { }, then     {                 } 

 { }, let   { },   {       }, thus       ,        . 

There fore                              . 

 

Proposition (1.1.38) 

     Let   be a.topological space and     , then 

1.   
  

            

2.              
  

 

3.  
  

           

4.          
  

   

Proof : 

1) since      
  

, .then   
  

      .and  
  

 coc-r – closed. set in  , .thus  

  
  

   is coc-r.-.open set in  , .but         is coc-r-open.set in   and             . 

By.using proposition (1.1.33), then   
  

           ………(1) 

Now: 

Let           , then.there exist coc-r – open set   in   such that  

       , to prove     
  

  . 

Let     
  

  , .thus    
  

, .since.     .and   coc-r - open.set in  . 

There fore      , this is.contradiction with      , so     
  

  . 

Hence            
  

   ………(2) 

From (1), (2) we.get            
  

  . 

2) By.using (1),    
  

       , . then   
  

        . 

3) By.using (1),   
  

          , . then           
  

. 

4) By.using (1),   
  

        , . then         
  

  . 
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Definition (1.1.39) 

     Let   be.a.topological space and B any.subset of a space  , ..a coc-r-

neighborhood . (coc-r-nbd) of   is.any subset of   which.contains an coc-r-open.set 

containing   .The.coc-r-neighborhood.of subset { }  is also.called.coc-r-

neighborhood of.the point  . 

 

 

 

Remark (1.1.40) 

     The family.of all coc-r-neighborhoods (coc-r-nbds) of.the subset   of a.space   

is denoted by       . In specific the.family of all neighborhoods.of   is denoted by 

      . 

 

Proposition (1.1.41) 

     Let   be a.topological space and for.all    , let        be a family.of all coc-r-

nbds of   then :- 

i- If          .such that     then          . 

ii- If            .then            .such that       

iii- If           .then                . 

Proof : It is clear. 

 

Proposition (1.1.42)  

     Let   be a topological.space and     then   coc-r-open.set in a space   if.and 

only if   is coc-r- nbd for all it points. 

Proof :  

     Suppose   coc-r-open.set and    , .since       then   is.coc-r- nbd of    

for each    . 

Conversely : 

Suppose   coc-r-nbd for all it points.and    , then    is coc-r- nbd for   thus.there 

exists.coc-r-open set     such.that        , there fore     {     }  

 {       }   , so    {       } ,     is coc-r-open.set and the union of  

coc-r-open sets is also coc-r-open . Hence   is  coc-r-open set. 
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Definition (1.1.43) 

     Let   be.a topological.space .and          , the point   is.called coc-r-limit 

point of B  if  every coc-r-open .set  containing  .x contains a point  of   distinct 

from  . The set of all coc-r-limit point of    is called coc-r-derived set of   and 

denoted by      , then        iff.for every coc-r-open set    in . , i.e     

and.     —{ }    . 

  

Proposition (1.1.44) 

     Let   be a topological.space and        then: 

1)   
  

       . 

2)    coc-r-closed.set if and only if       . 

3)  If     , then           . 

Proof : It is clear. 

 

Definition (1.1.45) 

     Let   be.a topological space.and   be any subset of    . A.point     is called 

coc-r-boundary point.of   iff for every coc-r-open.set    containing  ,        

and         . 

The family of every  coc-r-boundary .point of   is denoted by.        

 

Proposition (1.1.46) 

     Let   be a.topological space and  .be any subset of    then: 

1)           
  

   ̅̅ ̅  
. 

2)                .  

3)  
  

           . 

4)  
  

               . 

5)              
  . 

6)   coc-r-open.set iff          . 

7)   coc-r-closed.set iff         . 

Proof: It is clear. 
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Definition (1.1.47) 

     Let   be.a subspace  of a space (  ,   ).   subset    of a space (  ,   ) is said.to 

be.an coc-r-open.set in   if  for every      there.exists a r-open.set   in   and.a 

compact subset   in   such.that         . 

 

Theorem (1.1.48) 

     Let   be.a subspace of a.space (  ,   ). If    is an open.set in (  ,   ) then     

is.a r-open set in   if and only if   is.a r-open set in (  ,   ). 

 

 

 

Proof : 

     Let       ,   be..an open.set in   and   be a r-open.set in   then   

 
   

            
  

       
  

     
 
, hence   is  a r-open.set in  . 

Conversely, let    is.a r-open.set in  , then    
 
  

  
     

  
     

           
   

, hence   .is  a r-open set.in  . 

 

Definition (1.1.49) [8] 

     A subset   of.a topological space (  ,   ) is said.to be clopen if it is both.open and 

closed.in (  ,   ). 

 

Remarks (1.1.50)   

     Let (  ,   ) be topological space, then: 

1. Every clopen.set is r-open set. [8] 

2. Every clopen.set is coc-r-open set. 

 

Theorem (1.1.51) 

     Let   be a.subspace  of a space (  ,   ),     . If   is a clopen.set in (  ,   ), then  

  is a coc-r-open set in   if and.only if    is a coc-r-open.set in (  ,   ). 

 

Proof : 

     Let   be.a coc-r-open.set.in  .and        then.there exists a r-open set    in 

  and a compact.subset    in   such.that          . Since   is.a clopen set 
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in   then   is an.open set in  , thus    is  a r-open.set in   ( Theorem (1.1.48) ), 

therefore       is a coc-r-open.set in  . Put              , thus    is a 

coc-r-open set in  . Now, we need.to prove     , since         for all     

then     , let    , thus.there exists a r-open.set    in  .and a.compact subset 

   in   such.that          , therefore                , so.that 

   . Hence    . 

Conversely, let     then  there exists.a r-open set   in   and a compact.subset   in 

  such.that        , since   is a clopen.set in  , .then   is a r-open.set in   ( 

Remarks (1.1.50), (1) ), thus     is a r-open.set in  , since        and    is 

an open.set in  , therefore     is a r-open.set in   ( Theorem (1.1.48) ). Now, 

since.  is a.compact.in    and.  is a closed.in   , so     is a.compact in    ( 

Remarks (1.1.20), (4) ) and        , hence..    is a compact.in   . Since 

      then.    .but    , thus       .but      , therefore   

     –                 . Hence.  is a coc-r-open set.in  . 

 

Corollary (1.1.52) 

      Let   be a clopen.subspace of a space (  ,   ). If   coc-r-open.set in (  ,   ) 

then     coc-r-open set.in  . 

 

Proof : 

      Let   be.a clopen subspace.of a space   and   be a coc-r-open set in  , 

since   is a clopen.set in  , then   coc-r-open.set in   ( Remarks (1.1.50), (2)    

), thus     .also coc-r-open set in  , .therefore     coc-r-open.set in  ( 

Theorem (1.1.51)  ). 

 

Corollary (1.1.53) 

     Let   be.a subspace of a space. (  ,   ),     . If   is a clopen.set in (  ,   ) 

then.  is a coc-r-closed set in    if and.only if    is a coc-r-closed.set in (  ,   ). 

Proof : 

     Let  .is a coc-r-closed set in    then    is a.coc-r-open set.in  , thus    is a coc-

r-open in  ( Theorem (1.1.51) ) , therefore.   is a coc-r-closed set in  . 

Conversely, let    is a coc-r-closed.set in   then    is a coc-r-open.set in  , thus 

   is a coc-r-open.in   ( Theorem (1.1.51) ) , therefore    is a coc-r-closed.set in  . 
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2. On coc-r-  - open and coc-r - regular  open sets.    
 

     This section.present the definition.of coc-r-  - open and coc-r - regular.open sets, 

remarks ,propositions and.example about them. 

 

Definition (1.2.1) [4] 

      Let (  ,   ) be topological space and     , then: 

1) A subset..  is called   - open.set if      
 
. 

The.complement of   - open  is called to.be   - closed.   

2) A subset   is.called   - closed.set if    
 
   . 

 

Definition (1.2.2) 

     Let (  ,   ) be topological space and      , then: 

1) A subset   is called coc-r-  - open set if      
     

  

. 

The complement of coc-r-  - open   is called to be coc-r-  - closed.   

2) A subset   is called coc-r-  - closed set if      
     

   . 

 

Remark (1.2.3) 

     Let (  ,   ) be topological space, then: 

1)   - open          coc-r-  - open.  

2) coc-r-  - open             - open. 

As the following examples shows. 

 

Examples (1.2.4) 

1) Let   {       }   {       }  { }, then     {                } 

 { }, let   { }, then  
     

  

  , then   is not coc-r-  - open but  
 
   , then 

  is   - open. 

2) Let   {     },   {    { }}, then     {      }, then { } is  

coc-r-  - open but is not   - open because { } 
 
  . 
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Remark (1.2.5) 

     Every coc-r-open is coc-r-  - open set in (  ,   ) but the convers is not true in 

general, as the following example  shows. 

 

Example (1.2.6) 

     Let     with usual.topology, since   is    and.regular space, then      , 

      ], thus   is coc-r-  - open.but is not coc-r-open in  . 

 

Remark (1.2.7) 

     The intersection of  two coc-r-  - open sets is not necessary coc-r-  - open set, as 

the following example show. 

 

Example (1.2.8) 

     Let     with usual topology, since   is    and regular space, then      , 

      ],         , thus  ,    are  coc-r-  - open but     {1}  is not  

coc-r - open in  . 

 

Remarks (1.2.9) 

     Let (  ,   ) be topological space and     , then: 

1) A subset   is called coc-r-  - open in ( ,  ) iff    is called   - open in ( ,    ). 

2) The family of all coc-r-  - open sets in   is denoted by    ( ,    ). 

3) Every r-open is coc-r-  - open set. 

 

Definition (1.2.10) 

     Let   be a topological space and       .    is  said to be  coc-r - regular  open  set 

in   if    
     

 .The complement of coc-r - regular  open  set is called coc-r - 

regular closed and it is easy to see that   is coc-r - regular closed if       
  

 .   

 

Remarks (1.2.11)  

    Let (  ,   ) be topological space     , then: 

1) A subset   is called coc-r- regular open in ( ,  ) iff    is called r-open in ( ,    ). 

2) The family of all coc-r - regular open sets in   is denoted by    ( ,    ). 

3) The family of all coc-r - regular closed sets in   is denoted by    ( ,    ). 
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Remarks (1.2.12) 

     If      ( ,     ), then   is coc-r-open but the convers is not true, as the 

following example. 

 

Example (1.2.13) 

     Let   {       }   {       }  { }, then     {                }  

{ }, let   {         } is coc-r-open in   but  
     

   , hence     ( ,    ). 

 

Proposition (1.2.14)  

     Let (  ,   ) be topological space and       , then: 

1) If    is coc-r-open, then  
  

   ( ,    ). 

2) If    is coc-r-closed, then        ( ,    ). 

3) If         ( ,    ), then       ( ,    ). 

4) If        ( ,    ), then  
  

   ( ,    ). 

Proof : 

1) Let   is coc-r-open, then       . Since    
  

, thus     
  

  
     

  

, there 

fore   
  

  
     

  

………(1) 

Since  
     

  
  

, then  
     

  

  
  

………(2) 

From (1), (2) we get  
  

  
     

  

, hence  
  

   ( ,    ). 

2) Let   is coc-r-closed, then    
     

. 

Since     
  

  
  

  , then     
     

     ………(1) 

Since          
     

………(2) 

From (1), (2) we get             
     

, hence         ( ,    ). 

3) Let       ( ,    ), then     are r-open in ( ,    ). Since the intersection of 

two r-open sets are r-open . Thus     is r-open in ( ,     ), hence     

  ( ,    ). 
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4) Since       ( ,    ), then     
     

  

, so  
  

   
     

  

.But  
     

  

   
  

, 

thus  
  

   
     

  

, hence    
  

    ( ,    ). 

 

Remarks (1.2.15)  

     Let (  ,   ) be topological space and     , then: 

1) If       ( ,    ), then       ( ,    ). 

2) If       ( ,    ), then       ( ,    ). 

3) If       ( ,    ), then    is coc-r-closed. 

Proof : It is clear. 
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Introduction 

 

This Chapter is divided into four.sections . In section one, we 

recall.definition of coc-r-continuous.function and prove some.properties 

about it . In section.two, we recall definitions of.coc-r-open.function 

and prove some.properties about it. In section.three, we introduced 

fundamental.concept of separation.axioms and generalized by coc-r-

open.sets. In section four, we.introduce the fundamental concept of 

connected.space and generalized by coc-r-open.sets. 
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2.1 On coc-r-continuous Functions 

     In this section, we.introduce the definition of coc-r-continuous , 

remarks.and propositions .about this concept . 

 

Definition (2.1.1) [12]    

     Let        be a function.of a space  .into a space  .Then   is.called a 

continuous.function if        is an open.set in    for every.open set   in  . 

 

Theorem (2.1.2) [14] 

     Let        function.of a space   into a.space   then the.following 

statements are .equivalent. 

i.   is. a continuous function  .  

ii.        is a closed.set in   for every.closed set   in  . 

iii.     ̅      ̅̅ ̅̅ ̅for every set   in  . 

iv.        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        ̅  for.every set   in  . 

v.          (      )
 
for.every set    in  . 

 

Definition (2.1.3) [10] 

     Let        be a.function of a space   into a.space  , then   is called coc-

continuous function if        is a coc-open .set in   for each open.set   in  . 

 

Definition (2.1.4) 

     Let        be a function.of a space   into a.space  , then   is.called coc-

r-continuous.function if        is a coc-r-open.set in   for each.open set   in 

 . 

 

Proposition (2.1.5) 

1. Every .continuous function is .coc-continuous function. [10] 

2. Every. coc-r-continuous function is .coc-continuous function. 
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Proof:  

2) Let        be a coc-r-continuous function and   be an open set  in  . To 

prove that        is a coc-open set in  , since   is a coc-r-continuous function, 

then        coc-r-open set in   and every coc-r-open set is coc-open set. 

Hence   is coc-continuous function. 

 

Remark (2.1.6) 

     The converse of Proposition (2.1.5) is not true in general as the following 

examples show: 

 

Examples (2.1.7) 

1. Let   {   }  and    {   }  ,    be indiscrete topology on    and    

{    { }} be a topology on  . Let        be a function defined by      

         then   is an coc-continuous ,but is not continuous.      

2. Let   {       }    {       }  { } then   
   {  

              }  { } ,   {     }  and     {    { }} , then    
  is discrete 

and        be a function defined by      {
    {   }  
    {   }  

, since { } is open 

set in   but     { }  {   } is not coc-r-open set in   but {   } is coc-open 

set in  , thus   is an coc-continuous ,but is not coc-r-continuous. 

 

Remark (2.1.8)  

1)  continuous           coc-r-continuous.  

2)  coc-r-continuous           continuous. 

 

Examples (2.1.9) 

1. In Examples (2.1.7), (2)   is an continuous ,but is not coc-r-continuous. 

2. Let   {       }    {       }  { } then    
   {  

              }  { },   {     } and    {    { }}, then   
  discrete and 

       be a function defined by      {
    {   }  
    {   }  

, since { } is open set 

in   but     { }  {     } is not open set in   but {     } is coc-r-open 

set in  , thus   is an coc-r-continuous ,but is not continuous. 
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Remarks (2.1.10) 

     Let        be a function of a space   in to a space   then  

i. Every constant function is coc-r-continuous function. 

ii. If(X,   is discrete space then    is a coc-r-continuous. 

iii. If   finite set and   any topology on    then   is a coc-r-continuous. 

iv. If (Y,  ) is an indiscrete space then   coc-r-continuous. 

v. If(X,      -space then every coc-r-continuous function is continuous 

function. 

vi. If(X,      -space then and (Y,   ) indiscrete topology, then    coc-r-

continuous function iff   continuous function. 

vii. If(X,   is a discrete topology, then   is a coc-r-continuous function iff   is a 

continuous function 

 

Theorem (2.1.11)  

     Let        be a function of a space   into a space  . Then the following 

statements are equivalent. 

1.   is  coc-r-continuous function.  

2.         (      )
   

for every set    in  . 

3.       
  

       ̅  for every set   in  . 

4.  ( 
  

)      ̅̅ ̅̅ ̅ for every set   in  . 

5.        coc-r-closed set in   for every closed set   in  . 

Proof: 

(1)          (2) 

Since    is  an open set in   and   is  a coc-r-continuous function then         

coc-r-open set in  , thus                                  for every set 

   in  .            
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(2)          (3) 

Since     ̅then               ̅ , we need to prove that       ̅  coc-r-

closed in  . Since   ̅  is open in  , then   ̅ 
 
   ̅  and       ̅ 

 
  

(      ̅  )
   

 thus      ̅   (      ̅  )
   

, therefore       ̅   coc-r-open in 

  and        ̅           ̅    . So we get       ̅  coc-r-closed in  , 

hence       
  

       ̅  for every set   in  . 

(3)          (4) 

Let    , then       thus     (    )
  

    (     ̅̅ ̅̅ ̅̅ ) , therefore 

 
  

    (     ̅̅ ̅̅ ̅̅ )  hence   ( 
  

)   (   (     ̅̅ ̅̅ ̅̅ ))       ̅̅ ̅̅ ̅̅  for every set   in 

 . 

(4)          (5) 

Let   be closed set in  , to prove       
  

       . Since          then 

 (      
  

)   (      ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅   , thus       
  

       , hence        

coc-r-closed set in   for every closed set   in  . 

(5)          (1) 

Let   be open set in  , to prove        coc-r-open set in  . Since   open set 

in   then    closed set in  , thus         coc-r-closed set in  , there fore 

       coc-r-open set in  , hence   is  coc-r-continuous function. 

 

Remarks (2.1.12) 

     From Theorem (2.1.11) we have   is a coc-r-continuous function iff the 

inverse image of every closed set in   is a coc-r-closed set in  . 
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Proposition(2.1.13) 

      If      is coc-r-continuous function and bijective then for all     

and for all   neighborhood of   there exists coc-r-open    in    such 

that                  and        coc-r-neighborhood of       . 

Proof: 

     Let     and    nbd of y, then there exists   open set   in   such that 

      .Since   coc-r-continuous function then        coc-r-open set in  , 

since   onto thus there exists     such that       , since  is one to one so 

         and         . There fore                        . Put 

        , hence                  and        coc-r-neighborhood of 

      . 

 

Remarks (2.1.14) 

     A composition of two coc-r-continuous function is  not necessary to be 

coc-r-continuous function. 

 

Examples (2.1.15) 

     Let   {       }    {       }  { } ,then    
   {  

              }  { } ,   {     }  and     {    { }} , then    
  discrete, , 

  {   } and    {    { }}, then    
   is also discrete and        be a 

function defined by      {
    {   }  
    {   }  

,         defined by      

 ,            . Then     are coc-r-continuous function, but          is 

not coc-r-continuous function, since          { }  {   } is not  coc-r-open 

set in  . 
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Proposition (2.1.16) 

     Let     and   are spaces and        be coc-r-continuous. If        is    

continuous then         is coc-r-continuous. 

Proof: 

     Let   be an open set in  , since        is continuous, then        open 

set in  , since        is coc-r-continuous, then    (      )     

        coc-r-open set in  , hence         is coc-r-continuous. 

 

Definition (2.1.17) 

     Let        be a function of a space   into a space  .   is called coc- 

irresolute ( co ́-continuous ) function if        coc-open set in   for each 

coc-open set       . 

 

Definition (2.1.18) 

     Let        be a function of a space   into a space  . Then   is called coc-

r- irresolute ( co ́-r-continuous ) function if        coc-r-open set in   for 

each coc-r-open set       . 

 

Remarks (2.1.19) 

1. Every co ́-continuous function is coc-continuous function but the convers 

is not true in general. 

2. continuous function             co ́-r-continuous function. 

3. coc-r-continuous function             co ́-r-continuous function. 

4. co ́-continuous function            co ́-r-continuous function. 

As the following examples show: 
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Examples (2.1.20) 

1. Let   {       }    {       }  { } , then   
   {      

 }  {                    } ,    {     }  and     {    { }} , 

then   
  discrete and        be a function defined by      {

       
       

,   is 

coc-continuous function but is not co ́-continuous function since { } is coc-

open in   but     { }  { } is not coc-open in  .  

2.   (i) Let   {       }    {       }  { } ,then    
   

{                }  { } ,   {     }  and     {    { }} , 

then   
  discrete and        be a function defined by      {

    {   }  
    {   }  

 

, since     { }  {   } is open in   but is not coc-r-open in  , hence   is 

continuous function but is not co ́-r-continuous. 

(ii) Let    {     }  and      {    { }} , then    
  discrete,    {     } 

and    {    { }}, then   
  discrete and        be a function defined by 

     {
       
       

,   is co ́-continuous but is not coc-continuous function. 

3. (i) Let   {       }    {       }  { } , then    
   

{                }  { } ,   {     }  and     {    { }} , 

then    
  discrete and        be a function defined by 

     {
    {   }  
    {   }  

,  then   coc-r-continuous function but  is not co  ́ -r-

continuous function, since     { }  {   } is not  coc-r-open set in  . 

(ii) Let   {       }    {       }  { } , then    
   {  

              }  { } and        be a function defined by       , for all 

   , then   co ́-r-continuous function but  is not coc-r-continuous function, 

since     { }  { } is not  coc-r-open set in  . 

4. (i) Let   {       }    {       }  { } , then   
   

{       }  {                    } ,     {       }  { } , 

then    
   {                }  { }  and                  be a function 

defined by       , for all     then   co ́-r-continuous function but  is not 

co ́-continuous function, since     { }  { } is not  coc-open set in  . 
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(ii) Let   {       }    {       }  { } , then    
   {  

              }  { },   {     } and    {    { }}, then   
  discrete and 

       be a function defined by      {
    {   }  
    {   }  

, then   co ́-continuous 

function since      { }  {   } and     { }  {       } are coc-open sets 

in   but  is not co ́-r-continuous function, since     { }  {   } is not  coc-r-

open set in  . 

 

Theorem (2.1.21)  

     Let        function of a space   into a space   then the following 

statements are equivalent. 

1.   is  co ́-r-continuous function.  

2.           (      )
   

for every set    in  . 

3.       
  

    ( 
  

) for every set   in  . 

4.  ( 
  

)       
  

for every set   in  . 

5.        coc-r-closed set in   for every coc-r-closed set   in  . 

Proof: 

(1)          (2) 

Since      is  an coc-r-open set in   and   is  a coc-r-continuous function then 

         coc-r-open set in  ,thus           (         )
   

             

for every set    in  .            

(2)          (3) 

Since    
  

then            ( 
  

), we need to prove that    ( 
  

) coc-

r-closed in  . Since  
   

 is coc-r-open in  , then   
   

         
   

 and 

      
   

      (   ( 
   

))

   

           
   

  (   ( 
   

))

   

, 
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therefore      
   

  coc-r-open in   and       
   

         
  

    . So we 

get      ( 
  

) coc-r-closed in  , hence       
  

    ( 
  

) for every set   

in  . 

 

(3)          (4) 

Let    , then        thus     (    )
  

    (    
  

) , therefore 

 
  

    (    
  

)hence  ( 
  

)   (   (    
  

))      
  

 for every set   

in  .  

(4)          (5) 

Let   be coc-r-closed set in  , to prove       
  

       . Since          

then  (      
  

)   (      )
  

  
  

  , thus       
  

       , hence 

       coc-r-closed set in   for every coc-r-closed set   in  . 

(5)          (1) 

Let   be coc-r-open set in  , to prove        coc-r-open set in  . Since   coc-

r-open set in   then    coc-r-closed set in  , thus         coc-r-closed set in 

 , there fore        coc-r-open set in  , hence   is  co ́-r-continuous function. 

  

Remarks (2.1.22) 

     From Theorem (2.1.21) we have   co ́-r-continuous function iff the inverse 

image of every coc-r-closed set in   is a coc-r-closed set in  . 

 

Proposition (2.1.23) 

     Let     and   are spaces         and        are co ́-r-continuous 

function then         is co ́-r-continuous function. 
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Proof: 

     Let   be coc-r-open set in  , to prove            coc-r-open set in  , 

since        and        are co ́-r-continuous function, then        coc-r-

open set in   and    (       )  coc-r-open set in  , but    (       )  

          , hence         is co ́-r-continuous function. 

 

The following diagram shows the relation among certain types of 

continuous functions 

 

                                                        continuous 

  

  

  

                   co ́-r-continuous                                        coc-r-continuous   
 

 

 
 

 

                 coc´-continuous                                           coc-continuous   
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2.2  On coc-r-open functions  

     We introduce.and study coc-r-open.and coc-r-closed.function also some 

properties about them. 

 

Definition (2.2.1)  

     Let       be a function.of space   into.space   then:- 

1.    is called open.function if      is open set in   for every.open set        . 

[2]    

2.    is called r-open function if      is r-open set in   for every open set 

      . 

3.   is called coc-open.function if      is coc-open.set in   for every open.set 

      . [10]    

4.   is called coc-r-open function if      is coc-r-open set in   for every open 

set       . 

 

Theorem (2.2.2) [5] 

    Let       be a function.of space   into.space   then the.following 

statements are.equivalent. 

1.   open.function . 

2.       (    )
 
 for.every subset A of   X . 

3. (      )
 
         for.every subset   of  Y. 

4.      ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅  for.every subset  A of  Y. 

 

 Proposition (2.2.3) 

1. Every r-open function is coc-r-open function.  

2. Every coc-r-open function is coc-open function. 

Proof: It is clear. 

Remark (2.2.4) 

     the converse of Proposition (2.2.3) is not true in general as the following 

examples show: 
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Examples (2.2.5) 

1. Let   {     }  and    {      }  ,    {    { }} ,     {      

 }  { }  then    
   discrete,   

   {                }  { }  and        

be a function defined by      {
       

         
, since   { }  { } is not coc-

r-open set in  , then   coc-open function but is not coc-r-open function. 

2. Let   {     }     {    { }} ,     {    { }}  then    
     

   are 

discrete and                 be a function defined by       , for 

all    , then   coc-r-open function but is not r-open function since   { }  

{ } is not r-open in    

 

Remark (2.2.6) 

Open function          coc-r-open function. 

As the following example shows: 

 

Example (2.2.7) 

     In example (2.2.5), (1)   open function but is not coc-r-open function and 

in example (2.2.5), (2)   coc-r-open function but is not open function. 

 

Theorem (2.2.8)  

     Let       be a function of space   into space   then the following 

statements are equivalent. 

1.   coc-r-open function . 

2.                for every subset A of   X . 

3. (      )
 
    (    ) for every subset   of  Y. 

4.    ( 
  

)        ̅̅ ̅̅ ̅̅ ̅̅ ̅  for every subset  B of  Y. 
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Proof: 

(1)          (2) 

Let   be coc-r-open function     , then        coc-r-open set in   and  

          , thus                . 

 

(2)          (3) 

Let    , then                    (      )
 
                     . 

therefore  (      )
 
    (    ) 

(3)          (4) 

Let     then (       )
 
    (     

) thus                 (     
)              

                  ̅̅ ̅̅ ̅̅ ̅̅ ̅       (  
  

  )      ( 
  

)  , hence    ( 
  

)  

      ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

(4)          (1) 

Let   be open set in  then     (      
  

)             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , thus 

   (          )  (         )
  

, therefore            (        ), so we 

get                , hence      is coc-r-open set in  . 

 

Proposition (2.2.9)  

     Let     and   are spaces and        be open function. If        is coc-

r-open function then         is coc-r-open function. 

Proof: Clear. 

 

Definition (2.2.10)  

     Let       be a function of space   into space   then:- 

i-   is called closed function if      is closed set in   for every closed set 

      .[6]    
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ii-   is called coc-r-closed function if      is coc-r-closed set in   for every 

closed set       . 

 

Remark (2.2.11) 

     closed function          coc-r-closed function. 

As the following example shows: 

Example (2.2.12) 

     Let   {     }  and    {      }  ,    {    { }} ,     {      

 }  { }  then    
   discrete,   

   {                }  { }  and        

be a function defined by        , for all    , since {   } is closed set in   

but    {   }  {   } is not closed set in   but is coc-r-closed, then   coc-r-

closed function but is not a closed function. If      {      }    

{    { }}   {       }  { }  then    
   discrete,   

   {  

              }  { } and        be a function defined by       , for all 

   , since {       } is closed set in   but    {       }  {       } is not 

coc-r-closed set in   but is closed, then   closed function but is not a coc-r-

closed function. 

 

Proposition (2.2.13) 

     Let       be a function of space   into space  , then   is a coc-r-closed 

function if and only if     
  

     ̅ , for all    . 

Proof: 

     Let   be a coc-r-closed function,    . Then   ̅    and     ̅  is a coc-r-

closed set in  , since          ̅ , thus     
  

     ̅ . Conversely, Let   be a 

closed set in  , then      
  

     ̅       , thus      coc-r-closed set in  . 

Hence   coc-r-closed  function. 
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Theorem (2.2.14) 

     For bijective function             ́  the following statements are 

equivalent . 

1)    is coc-r-open . 

2)     is coc-r-continuous. 

3)      is coc-r-closed . 

 

Proof: 

(1)          (2) 

Let   be open set in   , then                 is a coc-r-open set in  (   

bijective, coc-r-open function ), hence     is coc-r-continuous function. 

(2)          (3) 

Let   be closed set in  , then                 is a coc-r-closed set in  (   

bijective,     is coc-r-continuous function ), hence   is coc-r-closed function. 

(3)          (1) 

Let   be open set in  , then    closed set in in  , thus               is a 

coc-r-closed set in   (   bijective, coc-r-closed function), there fore      is a 

coc-r-open set in  . Hence     is coc-r-open function. 

 

Definition (2.2.15) 

     Let         be spaces. A function       is called coc-r-

homeomorphism if: 

1.   is bijective . 

2.   is coc-r-continuous . 

3.     is coc-r-continuous. 
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Proposition (2.2.16) 

     Let       be a function of space   into space  , then   coc-r-

homeomorphism iff: 

1.  is bijective . 

2.   is coc-r-continuous . 

3.   is coc-r-open ( coc-r-closed ). 

Proof: It is clear. 

 

Definition (2.2.17)  

     Let        function of a space   into a space   then : 

i.   is called co ́-open function if      is coc-open set in   for every coc-open 

set       . [10]    

ii.   is called co ́-r-open function if      is coc-r-open set in   for every coc-r-

open set       . 

 

Remark (2.2.18) 

1. Co ́-r-open function          coc-r-open function. 

2. Co ́-r-open function          co ́-open function. 

     As the following examples show: 

Examples (2.2.19) 

1. Let   {     }  and    {      }  ,    {   } ,     {       }  

{ } then   
   {                }  { } and        be a function defined 

by        , for all    , thus   coc-r-open and co ́-open function but is not 

co ́-r-open function, since { } is coc-r-open in  , but   { }  is not coc-r-open 

in  . 

2. Let     {      }    {       }  { }    {       }  

{ } , then   
   {                }  { } ,   

   {       }  

{                    } and        be a function defined by       , for 
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all    , thus   co ́-r-open function but is not coc-r-open, co ́-open function, 

since { } is open (coc-open )  in  , but   { }  is not coc-r-open (coc-open ) 

in  . 

 

Theorem (2.2.20) 

     Let       be a function of space   into space   then the following 

statements are equivalent. 

1.   co ́-r-open function . 

2.    (    )  (    )
   

 for every subset A of    . 

3. (      )
   

    (    ) for every subset   of  Y.  

4.    ( 
  

)        
  

  for every subset  B of  Y.  

 

Proof: 

(1)          (2) 

Let    , then         coc-r-open set in   and             , thus         

         . 

(2)          (3) 

Let    , then                   (      )
   

                     . 

therefore  (      )
   

    (    ). 

(3)          (4) 

Let      then (       )
   

    (     
) thus              

    (     
) 

therefore         
  

       (  
  

  )      ( 
  

)  , hence    ( 
  

)  

      
  

. 
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(4)          (1) 

Let   be coc-r-open set in   then      (      
  

)             
  

, thus 

   (          )   (         )
   

  ,therefore            (        ), so 

we get               , hence      is coc-r-open set in  . 

Proposition (2.2.21) 

     Let     and   are spaces and        ,        are co ́-r-open function    

then         is also.    

Proof: It is clear. 

 

Definition (2.2.22)  

    Let       be a function of space   into space   then:- 

i-    is called co ́-closed function if      is coc-closed set in   for every coc-

closed set       . [10]    

ii-   is called co ́-r-closed function if      is coc-r-closed set in   for every 

coc-r-closed set       . 

 

Proposition (2.2.23) 

     Let       be a function of space   into space  , then    co  ́-r-closed 

function if and only if     
  

  ( 
  

), for all    . 

Proof: 

     Let   be a co ́-r-closed function,    . Then  
  

   and  ( 
  

) is a coc-

r-closed set in  . Since       ( 
  

), then      
  

  ( 
  

). Conversely, 

Let   be coc-r-closed set in  , then      
  

  ( 
  

)       , thus      coc-r-

closed set in  . Hence   co ́-r-closed  function. 
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Theorem (2.2.24) 

     For a bijective function             ́  the following statements are 

equivalent . 

1)     is co ́-r-continuous . 

2)    is co ́-r-open. 

3)      is co ́-r-closed . 

Proof: It is clear. 

 

Definition (2.2.25)  

     Let      be spaces. A function       is called co ́-r-homeomorphism if: 

1.   is bijective . 

2.   is co ́-r-continuous . 

3.     is co ́-r-continuous. 

 

Proposition (2.2.26) 

     For bijective function             ́  the following statements are 

equivalent: 

1.   is a co ́-r-homeomorphism. 

2.   is co ́-r-continuous, co ́-r-open function . 

3.   is co ́-r-continuous, co ́-r-closed function . 

4.  ( 
  

)      
  

. 

Proof: It is clear. 

 

Definition (2.2.27)  

     A function             ́  is called  

i- super coc-r-open if      is open in   for each coc-r-open   in    

ii- super coc-r-closed if      is closed in   for each   coc-r-closed in  . 
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Remark (2.2.28) 

1. super coc-r-open function           coc-r-open function. 

2. super coc-r-open function          co ́-r-open function. 

3. super coc-r-open function           coc-open function. 

4. super coc-r-open function           co ́-open function. 

5. super coc-r-open function           r-open function. 

 

Examples (2.2.29) 

1. Let   {     }    {    { }} ,    {     } and     

{    { } { } {   } {   }} then   
     

  discrete and        be a function 

defined by            ,       . Then   is a coc-r-open, coc-open, co ́-r-

open, co ́-open, r-open function but is not super coc-r-open function since { } 
is a coc-r-open in   but   { }  { } is not open set in  . 

2. Let   {     }   {      }  ,    {    { }} ,    {       }  

{ }  then   
   discrete,   

   {                }  { } and        be a 

function defined by       , for all    , then   super coc-r-open function, 

but is not a coc-r-open, not co ́-r-open and not r-open function since { } is 

coc-r-open ( open )  but   { }  { } is not coc-r-open ( r-open ). 

 

Remark (2.2.30) 

    If    is a   -space, then: 

1. Every coc-r-open function is super coc-r-open function. 

2. Every co ́-r-open function is super coc-r-open function. 

3. Every coc-open function is super coc-r-open function. 

4. Every co ́-open function is super coc-r-open function. 

5. Every r-open function is super coc-r-open function. 

6. Every open function is super coc-r-open function. 

 

Proposition (2.2.31) 

     Let        be bijective function then   super coc-r-open function if and 

only if   super coc-r-closed function. 

Proof: It is clear. 
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Proposition (2.2.32)  

     Let        be bijective and super coc-r-open function, then: 

1.  (    )        for every set   in  . 

2.  ( 
  

)      ̅̅ ̅̅ ̅ for every set   in  . 

Proof: It is clear. 

      

Theorem (2.2.33) 

    Let       be a function of space   into space     if   is a super coc-r-

open  function  then     ( )        
  

, for all     . 

Proof : 

    Let       be a  super coc-r-open  function,      ( )  and    be a coc-

r-open in     contain  , then            , since   is  super coc-r-open  

function and   coc-r-open in    , thus      is an open set in  , there fore 

         , so           , then         
  

, hence    ( )  

      
  

, for all     . 

 

Proposition (2.2.34) 

     Let     ,   are spaces and        ,         be  function, then: 

1. If   is super coc-r-open function and   is an open function then         

is super coc-r-open function. 

2. If   is co ́-r-open function,   is super coc-r-open function then         

is super coc-r-open function. 

3. If   is super coc-r-open function,   is coc-r-open function then         

is co ́-r-open function. 

4. If    is co  ́ -r-conts function, bijective,          is super coc-r-open 

function then   is super coc-r-open function. 
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Proof: It is clear. 

 

The following diagram shows the relation among certain types of open 

functions 

 

                                                           open 

  

  

   

        

          coc-open                             coc-r-open                          co ́-r-open                                

  

 

 

 

                                                   super coc-r-open 
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2.3 On coc-r-Separation Axioms 

    In this.section we recall some.definitions, remarks and.propositions about 

separation.properties, by using coc-r-open sets . 

 

Definition (2.3.1)  

     A topological space   is called coc-r-   -space if and only if for each 

        , there exist a coc-r-open set   such that     ,     or        

 . 

 

Definition (2.3.2)  

     A topological space   is called coc-r-  -space if and only if for each 

         there exist coc-r-open sets   and   such that     ,     and 

        . 

 

Definition (2.3.3) 

     A topological space   coc-r-  -space  ( coc-r-Hausdorff ) if and only if for 

each          there exist disjoint coc-r-open sets   and    such that    

  ,      

 

Proposition (2.3.4) 

      Every topological space is a coc-r-   -space such that i   0, 1. 

Proof: 

1. If  i   0 

Suppose  ,     such that    , since     { } coc-r-open set in   and 

     ,    , then   is coc-r-   -space. 

2. If  i   1 

Suppose  ,     such that    , since     { },     { } are coc-r-

open sets in   such that     ,     and         , then   is coc-r-   -

space. 
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Proposition (2.3.5) 

     Let    be a topological space.then every clopen.subspace of coc-r-   -

space is also coc-r-   -space. 

Proof: 

Let   be coc-r-   -space and   be clopen.subspace of a space   to.prove   is 

coc-r-   -space. Suppose  ,      such.that     , since      then  , 

     and   is a coc-r-   -space, thus.there exist disjoint coc-r-open.sets 

  and    in    such that      ,       Since    is a clopen.set in    then 

      ,        are coc-r-open.sets in   ( Corollary (1.1.52) ), so we 

get     ,     . Now to prove      , since             

                       , hence   is coc-r-   -space. 

 

Proposition (2.3.6) 

     Let       be one to one coc-r-continuous function . If    is   -space , 

then   is coc-r-   -space. 

Proof : 

     Let         such.that       . Since       one to.one function 

and       .Then            . Since   is   -space then there.exists disjoint 

open.sets     in   such that                    . Since    coc-r-

continuous, thus               are coc-r-open sets in  , since.       

           therefore           ,            and                

          ,  hence   is coc-r-  -space . 

 

Proposition (2.3.7) 

     Let       be onto, coc-r-open function . If    is   -space , then   is coc-

r-    – space. 

Proof : 

     Let         such that        . Since       onto function, then there 

exist         such that         ,         , thus      . Since   is   -

space then.there exists disjoint open.sets     in   such.that            
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  . Since   coc-r-open thus           coc-r-open sets in  , therefore       

                and                   ,  hence   is coc-r-  -space . 

 

Proposition (2.3.8) 

     Let   and   be co ́-r-homeomorphism, then   coc-r-  -space if and only if 

  is coc-r-  -space. 

Proof:  It is clear. 

 

Proposition (2.3.9) 

     Let       be bijective, super coc-r-open function. If    is coc-r-

    – space , then   is     – space. 

Proof: It is clear. 

 

Definition (2.3.10) 

     A space   is said to be coc-r-regular space if and only if for each      

and closed subset   of   such that     there exist disjoint coc-r-open sets 

   such that     and    . 

 

Definition (2.3.11)     

     A space   is said to be     -r-regular space if for each      and coc-r-

closed subset    of   such that      there exist disjoint coc-r-open 

sets    such that     and    . 

 

Proposition (2.3.12) 

     A space   is coc-r-regular space if and only if for all       and all open 

set        such that     there exists coc-r-open set    such that      
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Proof:  

     Let   be coc-r-regular space and                        such that      

. Then   is closed set in   and      then there exist disjoint coc-r-open sets 

     such that          , since      , thus     and      . 

Hence       
   

   
   

      . 

Conversely   

Let           be closed set in   such that      then    open set in   and 

        thus there exist coc-r-open set    such that      
   

     . There 

fore       ( 
    

)
 

 and   ( 
    

)
 

are disjoint coc-r-open sets. Hence   

coc-r-regular space. 

 

Proposition (2.3.13) 

     A space   is     -r-regular space if and only if for all       and all coc-r-

open set        such that     there exists coc-r-open set    such that 

      
   

   .  

Proof  

     Let   be     -r-regular space and       be coc-r-open set in   such that 

     . Then    is coc-r-closed set in   and      then there exist disjoint 

coc-r-open sets      such that          , since       , thus 

    and      . Hence       
   

   
   

      . 

Conversely   

Let           be coc-r-closed set in   such that      then    coc-r-open 

set in   and         thus there exist coc-r-open set    such that     

 
   

     . There fore       ( 
    

)
 

 and   ( 
    

)
 

are disjoint coc-r-

open sets. Hence       -r-regular space. 
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Proposition (2.3.14) 

     Let    be a topological space then: 

1. Every clopen subspace of coc-r-regular space is also coc-r-regular space. 

2. Every clopen subspace of     -r-regular space is also     -r-regular space. 

Proof: 

1. Let   be coc-r-regular space and   be clopen subspace of a space   to 

prove   is coc-r-regular space. Suppose     and   be closed set in   such 

that      , since   is a closed set in   then       where   is a closed set 

in  , since     then          thus       in   and   is a coc-r-regular 

space, therefore there exist disjoint coc-r-open sets     in   such that 

       . Since   is a clopen set in   then       ,        are 

coc-r-open sets in   ( Corollary (1.1.52) ), so we get        ,     

         and                                 

   , hence   is coc-r-regular space. 

2. Let   be     -r-regular space and   be clopen subspace of a space   to 

prove   is     -r-regular space. Suppose     and   be coc-r-closed set in   

such that      , since   is a clopen set in   then   is a coc-r-closed set in   ( 

Corollary (1.1.53)), since   is a     -r-regular space, then there exist disjoint 

coc-r-open sets     in   such that        . Since   is a clopen set in   

then       ,        are coc-r-open sets in   ( Corollary (1.1.52) ), 

so we get         ,              and             

                       , hence   is     -r-regular space. 

 

Definition (2.3.15) 

     A topological space   is called coc-r-normal space iff for every disjoint 

closed   sets        there exist disjoint coc-r-open sets       such that    

     ,          .  
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Definition (2.3.16) 

      A topological space   is called     -r-normal space iff for every disjoint 

coc-r-closed  sets        there exist disjoint coc-r-open sets       such 

that         ,          .  

 

Proposition (2.3.17) 

     A topological space   is coc-r-normal space if and only if for every closed 

set   in    and open set        such that      there exists coc-r-open set 

   such that     
      

   . 

Proof  

     Let   be coc-r-normal space,                      and   open set in   such 

that       . Then    is closed set in   and     are disjoint closed sets in  , 

since   coc-r-normal space, thus there exist disjoint coc-r-open sets      such 

that          , since       , so we get     and      . 

Hence      
   

   
   

      . 

      Conversely:  

Let       are disjoint closed sets in    then      
  and   

 open set in 

   thus there exist coc-r-open set    such that       
  

   
 . There fore 

        ( 
    

)
 

 and   ( 
    

)
 

are disjoint coc-r-open sets. Hence   coc-

r- normal space. 

 

Proposition (2.3.18) 

     A topological space   is     -r-normal space if and only if for every coc-r-

closed set   in   and coc-r-open set        such that      there exists coc-r-

open set    such that      
   

   . 

Proof:  
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      Let   be     -r-normal space,   be coc-r-closed set in   and   coc-r-open 

set in   such that       . Then    is coc-r-closed set in   and     are 

disjoint coc-r-closed sets in  , since       -r-normal space, thus there exist 

disjoint coc-r-open sets      such that          , since      , so 

we get     and      . Hence       
   

   
   

      . 

Conversely   

Let       are disjoint coc-r-closed sets in    then      
  and   

 coc-r-open 

set in    thus there exist coc-r-open set    such that       
   

   
 . 

There fore         ( 
    

)
 

 and   ( 
    

)
 

are disjoint coc-r-open sets. 

Hence       -r- normal space. 

 

 

Proposition (2.3.19) 

      Let    be a topological space then: 

1. Every clopen subspace of coc-r-normal space is also coc-r-normal space. 

2. Every clopen subspace of     -r-normal space is also     -r-normal space. 

Proof: 

1. Let   be coc-r-normal space and   be clopen subspace of a space   to 

prove   is coc-r-normal space. Suppose       are disjoint closed sets in  , 

then        are disjoint closed sets in  , since   is a coc-r-normal space, thus 

there exist disjoint coc-r-open sets     in   such that          . 

Since   is a clopen set in   then       ,        are coc-r-open sets 

in   ( Corollary (1.1.52) ), so we get                  ,       

           and                                 

   , hence   is coc-r-normal space. 

2. Let   be     -r-normal space and   be clopen subspace of a space   to 

prove   is     -r-normal space. Suppose       are disjoint coc-r-closed sets 

in  , since   is a clopen set in   then       are disjoint coc-r-closed set in   ( 

Corollary (1.1.53)), since   is a     -r-normal space, thus there exist disjoint 

coc-r-open sets     in   such that          , Since   is a clopen set 
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in    then       ,         are coc-r-open sets in    ( Corollary 

(1.1.52) ), so we get                  ,                

  and                                    , hence   

is     -r-normal space. 

Proposition (2.3.20) 

     If a topological space   is coc-r-normal space and   -space, then   is coc-

r-regular space. 

Proof: 

     Let           be closed set in   such that    , since   is   -space then 

{ } closed set in   and { }     , since   is coc-r-normal space, thus there 

exist disjoint coc-r-open sets      such that { }       , there fore    , 

   , hence   is coc-r-regular space. 
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2.4 On coc-r-Connected Space 

     we recall the.concept of coc-r-connected space and give.some 

generalization on.this concept.  

 

Definition (2.4.1) [5] 

     Let   be a.topological space, any two.subsets   and   of a.space   are 

called  -separated  if             . 

    Remarks (2.4.2) [5]    
     In any.topological space  , then the. following statements.are equivalent:       

1.   is a.connected  space. 

2.   is not union of two.disjoint nonempty.open sets. 

3.      are the only clopen sets.in  . 

4.   is not union.of two nonempty separated.sets. 

 

 Definition (2.4.3)  

   Let   be a.topological space, any two subsets   and   of a space   are called 

coc-r-separated  if   
  

      
  

     

 Definition (2.4.4) 

     Let   be a space and      . Then   is called coc-r-connected set if is  

not union of any two coc-r-separated sets. 

     Remark (2.4.5) 

         A set   is called coc-r-clopen if it is coc-r-open and coc-r-closed. 

 

    Proposition (2.4.6) 
      Let   be topological space, then the following statements are equivalent: 

1.   is a coc-r-connected  space. 
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2.      are the only coc-r-clopen sets in  . 

3.   is not union of two disjoint nonempty coc-r-open sets. 

Proof: 

(1)          (2) 

Let   be coc-r-connected space, suppose that   is coc-r-clopen set such that 

    and    . Let      , since     then      Since   is coc-r-

open, then   is coc-r-closed. But  
  

      
  

      , thus   and 

  are two coc-r-separated sets and       , there fore   is not coc-r-

connected space which is a contradiction. Hence  the only coc-r-clopen set in 

the space   are   and   .                                        

(2)          (3) 

Suppose the only coc-r-clopen set in the space are   and   . Assume that there 

exists two disjoint nonempty coc-r-open sets   and   such that      . 

Since      then    is coc-r-clopen set. But     and      which is a 

contradiction. Hence   is not union of two disjoint nonempty coc-r-open sets. 

(3)          (1) 

Suppose that   is not coc-r-connected space. Then there exist two  coc-r-

separated sets   and   such that      . Since  
  

     and     

 
  

    thus      , Since   
  

     , then   is coc-r-closed set. By 

the same way we can see that   is coc-r-closed set since     . Thus   and   

are two disjoint coc-r-open sets such that       which is a contradiction. 

Hence   is coc-r-connected space. 

 

Remark (2.4.7) 

     A topological space       is a coc-r-connected space if and only if          

is a connected space. 

 

Remark (2.4.8) 

     Every clopen set is a coc-r-clopen set. 
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Proposition (2.4.9) 
     Every coc-r-connected  space is a connected  space. 

Proof: 

     Let     be clopen set in  , then   is a coc-r-clopen set in  , since   is a 

coc-r-connected  space, thus either      or    , hence   is a connected  

space. 

 

Remark (2.4.10) 

     The convers of proposition (2.4.9) is not true in general.  

 As the following example shows: 

 

Example (2.4.11) 

     Let   {       }    {       }  { } , then   
   {      

 }  {                    } , then       is a connected space but  

         is not a connected space since   {         }  is clopen set in 

         . Hence      is not a  coc-r-connected  space. 

 Proposition (2.4.12)  

      Let   be coc-r-connected set and     coc-r-separated sets. If       

then    either     or       

Proof:  

     Suppose   be a coc-r-connected set and     coc-r-separated sets and   

   . Suppose     and    . assume that           and    

      then        . Since     , hence   

  
  

  
 , since 

  
 

    ,then   

  
     . Since      , hence    

  
  

  
.  

  
     , 

thus    

  
     . But         , therefor    is not coc-r-connected 

space which is a contradiction. There fore  either     or       
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Proposition (2.4.13) 

     Let   be a topological space such that any two element   and   of   are 

contained in some coc-r-connected subspace of  , then   is coc-r-connected 

space. 

    Proof: 

     Suppose   is not coc-r-connected. Then   is the union of two coc-r-

separated   sets    . since     are nonempty sets, thus there exists     such 

that    ,    , Let   be coc-r-connected subspace of   which contains    . 

Therefore either      or     which is a contradiction ( since      ). 

Then   is coc-r-    connected space.   

 Proposition (2.4.14)  

      If   is coc-r-connected set then  
  

 is coc-r-connected. 

  Proof:               

    Suppose   is coc-r-connected and  
  

is not. Then there exist two coc-r-

separated set     such that  
  

    . But    
  

, then       and 

since   is coc-r-connected set, then either     or     .                                                                                           

i. If      then  
  

  
  

. But  
  

     , hence   
  

     since 

 
  

     then     which is a contradiction.                             

ii. If      then  
  

  
  

. But  
  

     , hence  
  

     since 

 
  

     then      which is a contradiction. Hence   
  

 is coc-r-

connected. 

 

  Remark (2.4.15) 

     Let   be a space and      if   is coc-r-connected set in  , then    need 

not to be coc-r-connected set in  . 

As the following example shows: 
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Example (2.4.16) 

     Let    {     }  and    {   } , then     discrete, assume that   { } , 

then   is a coc-r-connected set in   but     is not a coc-r-connected. 

Proposition (2.4.17)  

       If   is coc-r-connected set and      
  

, then   is coc-r-connected. 

  Proof:  

     suppose   is coc-r-connected set,      
  

and   is not coc-r-

connected, then there exist two sets    ,   such that  
  

      
  

 

 ,       ,since     , thus either      or     . Suppose    , 

then  
  

  
  

. Thus  
  

    
  

    . But      
  

, then  
  

 

   . Therefore      which is a contradiction. Hence    is coc-r-

connected set. By the same way  can get a contradiction  if    , hence   is 

coc-r-connected set. 

  

Proposition (2.4.18) 

     If a space   contains a coc-r-connected subspace   such that  
  

  , 

then   is coc-r-connected. 

  Proof:  

     Suppose   a coc-r-connected subspace of a space    such that  
  

  , 

since      
  

, then by Proposition(2.4.17)   is coc-r-connected. 

 

  Proposition (2.4.19) 

     If every coc-r-open subset of a space    is coc-r-connected set, then every 

pair of nonempty coc-r-open subsets of   have a nonempty intersection. 

Proof: 

     Suppose     are disjoint coc-r-open subsets of  , since     is coc-r-

open set and     are coc-r-open subsets in    , then     is not coc-r-

connected set which is a contradiction, hence      . 
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Proposition (2.4.20)  

     The coc-r-continuous image of coc-r-connected space is connected. 

  Proof:  

      Let                 be coc-r-continuous, onto function and   be coc-r-    

       connected. To prove   is connected , suppose   is not connected space. 

So,         such that    ,      and        and        ,hence 

                  , then                  . Since   coc-r-continuous, 

then         and         are coc-r-open in   and since   ,     and f is 

onto, then          ,           and                  ,   hence   is 

not coc-r-connected space which is contradiction.                                               

                                            

  Proposition (2.4.21)  

      The     -r-continuous image of coc-r-connected space is coc-r-

connected. 

  Proof: 

     Let                 is      -r-continuous, onto function and    is coc-r- 

connected. To prove   is coc-r-connected , suppose   is a  not coc-r-connected 

space. So,       such that    ,      and        and      are 

coc-r-open sets.                   so                  . Since that   

    -r-continuous hence         and         are coc-r-open in    and since 

that    ,     and f is onto then          ,           and         

         , hence   is not coc-r-connected space which is contradiction, 

hence   is a  coc-r-connected. 
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Chapter three 
On Coc-r-compact, Coc-r- 

lindelof, I-coc-r-lindelof 
spaces
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Introduction 

 

This Chapter is divided into three.sections  . In section one, we.recall the 

concept of coc-r-compact space.and give some.important generalizations 

on this.concept. In section two, we recall.definition, proposition.and 

theorems of coc-r-lindelof.space. In section.three, we introduces 

the.concept of I-coc-r-lindelof.space and we.prove some results on 

this.concept and give the.relation between I-coc-r-lindelof, .coc-r-

lindelof, I-lindelof, and lindelof.space. 
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compact Space-r-3.1 Coc 

We recall.the concept of a compact.space by using coc-r-open.sets and give some 

important generalizations.on this concept and also we prove.some results.on this 

concept. 

 

Definition (3.1.1) [2] 

     A space   is.said to be a compact if every open cover of   has.finite subcover. 

 

Definition (3.1.2) 

     A space   is said to be a coc-r- Compact if every coc-r - open covering of   has a 

finite subcovering. 

 

Examples (3.1.3) 

     The following are straight forward examples of  coc-r- compact  spaces. 

1) Any finite topological space. 

2) Let   {       }   {       }  { } , then    {                }  

{ }, then   is coc-r- Compact  space. 

 

Remark (3.1.4)  

1) Compact           coc-r- compact.  

2) Coc-r- compact          compact. 

 

Examples (3.1.5) 

1) Let      with indiscrete  topology, then     {     }, thus   is Compact 

but   is not coc-r- Compact. 

2) Let   {       }   {       }  { } , then    {                }  

{ }, thus   is coc-r- Compact but   is not Compact. 

 

Proposition (3.1.6) 

If    is   -space, then every Compact space is coc-r- Compact space. 

Proof : 

It is clear to show that, since in   -space every coc-r- open is open set in  . 

Proposition (3.1.7) 

If    is  regular space, then every coc-r- Compact  space is  Compact space. 
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Proof : It is clear 

 

Definition (3.1.8) 

     A subset   of a topological space   is said to be coc-r-Compact relative to   if 

every cover of   by coc-r- open sets in   has a finite subcover of   . The subset   is 

coc-r- Compact iff it is coc-r- Compact as a subspace. 

 

Remark (3.1.9) 

The subset     is coc-r- closed in        iff   closed in ( ,    ). 

  

Proposition (3.1.10) 

1)  A coc-r-closed subset of coc-r-compact  space   is coc-r-compact relative  to   . 

2) In any space, the intersection of coc-r-compact set with a coc-r-closed set is coc-

r-compact. 

3) Every coc-r-compact subset of coc-r-  -space is coc-r-closed set. 

Proof : 

1) Let   be a coc-r-compact space and F be a coc-r-closed subset of   , thus   is 

closed in (     ), since   coc-r-compact space, then (     ) compact  space and by 

using ( Remarks  (1.1.20), (3) ) we will get   is compact relative to (     ) . 

Hence   is coc-r-compact relative to  . 

2) Let   be an coc-r-closed set of   and let   be an coc-r-compact subset of   . Thus 

 ,   are  closed, compact respectively   in (    ) then by using  remarks  (1.1.20), 

(4)      is compact set in (     )   hence     is coc-r-compact set in  . 

3) Let    be a coc-r-  -space and   be a coc-r-compact subset of   , thus   is 

compact in (     ), since   coc-r-  -space, then (     )   -space and by using ( 

Remarks  (1.1.20), (5) ) we will get   is closed set in (     ). Hence   is coc-r- 

closed set in  . 

 

Corollary (3.1.11)  

     Every r-closed of coc-r-compact  space   is coc-r-compact relative to  . 

Proof : It is clear. 
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Proposition (3.1.12) 

     If    is a topological space such that every coc-r-open subset of   is coc-r-

compact relative to  , then every subset is coc-r-compact relative to  . 

Proof: 

     Let   be an arbitrary subset of  , {      } be cover of    by coc-r - open  

subsets, then the family{      } is a coc-r-open cover of  the coc-r-open set 

 {      }. Thus by assumption there is a finite sub 

family {             } which covers   {      } , since      

{      }    {             }, hence   is coc-r-compact. 

 

Theorem (3.1.13) 

     Let   be a subspace in      ,   is coc-r-compact, if    is clopen set, then   is 

coc-r-compact. 

Proof : 

     Let   be a subspace in  , {      } be.cover of    by coc-r-open.subsets of 

  such.that      {      },  since    is coc-r-open in  ,   is clopen set in  , 

then.     is coc-r-open in   for all      ( by using Theorem (1.1.51) ). Thus   

        {      }       {         }  since   is clopen set.in  , 

then   is r-closed, thus   is coc -r-closed, there fore    is coc -r-open in  . Since   

is coc-r-compact, then     {                } , so that          
{                }      {               }    {      : i   
        }, hence   is coc-r-compact. 

  

Theorem (3.1.14) 

     If    is coc-r-compact space, then every r-open covering of   has a finite sub 

covering. 

Proof : It is clear. 

 

Remark (3.1.15) 

     The convers of Theorem (3.1.14) is not true. 

 

Example (3.1.16) 

     In Example (3.1.5), (1), all r-open covers are { ,   }, and it is finite cover of  , 

but   is not coc-r-compact space. 
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Theorem (3.1.17) 

     If   be   -space, then the following statements are equivalent. 

i)   is coc-r-compact. 

ii) Every cover of     by  r- open  subsets has a finite subcover. 

Proof : 

(i)         (ii) It is clear. 

(ii)         (i) 

     Let    be coc-r-open cover of  , then      {     }, since   is   -space, 

thus   is equal to the union of r-open sets in   contained in   for each     ( 

Theorem (1.1.19),(1) ). There fore all  r-open sets in   for each     are r-open 

cover of  , this r-open cover has a finite subcover. Since every element of this a 

finite subcover contained in   for  some    , hence   has a finite subcover. 

 

Theorem (3.1.18) 

     If   is    -space, then the following statements are equivalent. 

i) Every proper r- closed  subset of    is coc-r-compact relative to  . 

ii)   is coc-r-compact. 

iii)   is r-compact. 

Proof : 

(i)         (ii) 

Let {      } be cover of    by r - open subsets of     such that      

{      } . If      ,     then the proof is end, if      ,     then 

  
  is proper r- closed  subset and   

    {       { }}, by the hypothesis 

there exist a finite subfamily {         { }           }, such that   
     

{         { }           } , thus      {            { }   

        }, hence   is coc-r-compact. 

(ii)         (iii) 

Clear, by using Theorem (3.1.17), Definition (1.1.17). 

(iii)         (i) 

Suppose    be proper r- closed  subset of   , then     , let {      } be cover of 

   by r - open subsets of   , since    is  r- closed  subset of   , thus    is  r-open, 

since        {      }    , there fore {     
     } is  r-open cover of    

and   is r-compact, so     {             }    , hence     {      

       }. 
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Definition (3.1.19)[12] 

     Let    is  family.of subset of  , then  .has a finite.intersection property if for.all 

  ,   , … ,      , n   then. {            }    . 

 

Theorem (3.1.20) 

     If   is    -space, then the following statements are equivalent. 

1)   is coc-r-compact. 

2) Every  family {      }  of r-closed subsets of   with finite  intersection 

property then   {      }    . 

3) Every  family   of coc-r-closed subsets of   with  {     }    contains a 

finite subfamily     such that  {     }    . 

4) Every  family   of r-closed subsets of   with  {     }    contains a finite 

subfamily     such that  {     }    . 

Proof : 

(1)         (2) 

Let {      } be family of r-closed subsets of   with finite  intersection property, 

Suppose that  {      }    . Put      
  , then     is  r-open subsets of  , 

thus the family {      } is a r-open cover of  .      

Since   is coc-r-compact, there fore  {      } has a finite subcover {      

       } such that      {              } ( by using Theorem (3.1.17) ), then  

     {   
            }     {              }  , thus  {      

        }    , this is contradiction with a finite  intersection property. Hence  

 {      }    . 

(2)         (3) 

Let   be a family of coc-r-closed subsets of   with an empty intersection, since   is  

  -space, then    
 
for each     ( by using Theorem (1.1.19), (2) ). Thus   

equal to the intersection of r-closed sets in   containing   for each    , there fore 

the intersection of all r-closed sets in   containing   for each     is an empty  

intersection. By using the hypothesis this r-closed family has a finite subfamily with 

an empty  intersection , since every element of  this  finite subfamily containing   

for some     , hence    has a finite subfamily with an empty  intersection. 

(3)         (4) 

It is clear. 
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(4)         (1) 

Let {      } be cover of    by r - open subsets of     such that      

{      }, then {   
     } is family of r-closed subsets of    with an empty  

intersection. By assumption  there exist a finite subfamily such that  {   
    

        }    , so     {   
            }      {             }. 

Hence   is coc-r-compact. 

 

Definition (3.1.21)[3]    

     A space ( ,  ) is.called I-compact  if.every cover    of   by r - closed.subsets of 

the space ( ,  ) contains.a finite subcover   such.that   =  {          }. 

 

Remark (3.1.22) 

Coc-r-compact               I-compact. 

 

Examples (3.1.23) 

1) Let      with indiscrete  topology, then     {     }, thus   is  

I-compact  but   is not coc-r-compact. 

2) Let   {       }   {       }  { }, then  

    {       }  {                    }, thus   is coc-r-compact  but  is 

not I-compact because  {{    }          } is r-closed cover of   but has not a 

finite subcover and  {    }  {   },    . 

 

Definition (3.1.24) [7] 

     A.space ( ,  ) is.called extremally.disconnected if     is  open.for each open.set  

  in  . 

 

Remarks (3.1.25)[7] 

1. A.space       is extremally.disconnected.iff for.all         (   ,    ) with 

     , then.      . 

2. If  a  topological.space   is extremally.disconnected, then.every r-open, r-

closed.in   is open.set. 
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Theorem (3.1.26) 

     If  a  topological space   is extremally.disconnected space, then every coc-r-

compact is I-compact. 

Proof : 

     Let {      } be r-closed  cover of   , then    is closed for each    , thus 

  
  is  r-open for each     ( by using Remarks (1.1.4), (2) and Remarks (1.1.16), 

(4) ). Since    is  r-closed  for each     and    is extremally.disconnected space, 

there fore    is  open set  in    for each     ( by using Remarks (3.1.25), (2) ), so 

   is  r-open, then    is coc- r-open set in    for each    . Since    is coc-r-

compact, thus  the cover {      } has a finite subcover such that       

{             }    {   
           }. Hence     is I-compact. 

 

Theorem (3.1.27) 

     If  a  topological space   is    -space, then every I-compact is coc-r-compact. 

Proof : 

     Let {      } be  r-open  cover of   , then    is open and      is a  r-closed  

set in    for each     ( by using Remarks (1.1.16), (5) ), thus  {       } is r-

closed cover of    and    I-compact, therefor this cover has a finite subcover such 

that      {    
 
          }     {             } . Hence     is coc-r-

compact. 

 

Proposition (3.1.28) 

     If a topological space   is   -space, then every r-closed set of I-compact space is 

coc-r-compact relative. 

Proof : 

     It is clear by using theorem (3.1.27), Corollary (3.1.12). 

 

Definition (3.1.29) [3] 

     A subset   of a topological space   is said to be I-compact relative to   if every 

cover    of   by r- closed  sets in   has a finite subcover   such that      {     

     }. 
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Proposition (3.1.30) 

     If  a  topological space   is extremally.disconnected space, then every r-open set 

of I-compact space is I-compact  relative. 

Proof : 

     Let   be extremally.disconnected space,   be r-open in   and {      } cover 

of    by r-closed subsets of   such that      {       } , then          

{          } , thus      {          } ,    is r-closed. Since     is I-

compact space, there fore the cover {          } has a finite sub cover such 

that      {                    }, since   be e.d  space, so         is open set 

( Remarks (3.1.25), (2) ) for each          , then      {         

        } , thus      {                }    {              }   

 {   
            }. Hence   is I-compact  relative. 

 

Corollary (3.1.31) 

     If a topological space   is extremally.disconnected space, then every r-open set 

of coc-r-compact  space is coc-r-compact  relative. 

Proof : 

     It is clear by using theorem (3.1.26), Proposition (3.1.27). 

 

Theorem (3.1.32) 

     Let        be a co ́-r-continuous function, onto, if   is coc-r-compact then    

coc-r-compact. 

Proof : 

     Let {      } be coc-r-open cover of  , since   is a co ́-r-continuous function, 

then          is  coc-r - open  in   for each     , but            , thus      

                     , since   is coc-r-compact and {           } forms a 

cover of   , there fore the cover {           } has a finite subcover such that  

    {                    },since   onto, so             {              

        }    {              }. Hence   coc-r-compact. 

 

Theorem (3.1.33) 

     Let        be a co ́-r-open  function, bijective, if   is coc-r-compact then    

coc-r-compact. 
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Proof : 

     Let {      } be coc-r-open cover of  , since   is a co ́-r-open function, then 

       is  coc-r - open  in    for each     , but            , there fore   =      

           , so {         } forms a cover of   , since    is coc-r-compact, 

then the cover {         } has a finite subcover such that      {         

        } , thus                {   (      )           }     {      

        }. Hence   coc-r-compact. 

 

Theorem (3.1.34) 

     Let        be a coc-r-continuous function, onto and   be 

extremally.disconnected space, if   is coc-r-compact then    I-compact. 

Proof : 

     Let {      } be r-closed cover of   and    be extremally.disconnected, then 

   is open in   for each     ( Remarks (3.1.25), (2) ), since   is  a coc-r-

continuous function, thus         is  coc-r - open  in   for each     , but     

       ,  thus                           , since   is coc-r-compact and 

{           } forms a cover of   , there fore the cover {              } has a 

finite subcover such that    {                    }, since   onto, so      

     { (        )           }    {              }      {   
    

        }. Hence   I-compact. 
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lindelof Space-r-3.2 Coc 

We recall.the concept of a lindelof.space by using coc-r-open.sets and give some 

important generalizations.on this concept and also we prove.some results.on this 

concept. 

 

Definition (3.2.1) [2]  

     A space   is.said to be a lindelof.if every open.cover of   has a countable.sub 

cover. 

 

Definition (3.2.2) 

     A space   is said to be a coc-r- lindelof if every coc-r - open covering of   has a 

countable subcovering. 

 

Examples (3.2.3) 

     The following are straight forward examples of  coc-r- lindelof spaces. 

1) Let         {       }  { } , then      {                 }  

{ }, thus   is coc-r-lindelof. 

2) ( The sorgenfrey line S ) is   with the topology generated by base   

{          } is  lindelof,   -space and regular space, then       , thus     is  

coc-r- lindelof ( lindelof ). 

 

Remark (3.2.4)  

1) Lindelof           coc-r- lindelof.  

2) Coc-r- lindelof          lindelof. 

 

Examples (3.2.5) 

1) Let      with indiscrete  topology, then     {     }, thus   is lindelof but 

  is not coc-r- lindelof. 

2) Let         {       }  { } , then      {                 }  { } , 

thus   is coc-r- lindelof but   is not lindelof. 

 

Proposition (3.2.6) 

     If    is   -space, then every lindelof space is coc-r- lindelof space. 

Proof : It is clear. 



 

84 

 

Proposition (3.2.7) 

     If    is  regular space, then every coc-r- lindelof space is  lindelof space. 

Proof : It is clear 

 

Proposition (3.2.8) 

     Every coc-r- compact  space is coc-r- lindelof space. 

Proof : It is clear. 

 

Remark (3.2.9) 

     The convers of Proposition (3.2.8) is not true. 

 

Example (3.2.10) 

     The sorgenfrey line S    -space and regular space, then       , thus    is  coc-r- 

lindelof ( lindelof ) but is not compact (coc-r- compact ). 

 

Definition (3.2.11)  

     A space   is said to be countably coc-r- compact if every countable coc-r-open 

cover  of    has a finite subcover. 
 

 

Theorem (3.2.12) 

     A space   is coc-r- compact if and only if   is coc-r- lindelof and countably coc-

r- compact. 

Proof : It is clear. 

 

Definition (3.2.13) 

     A subset   of a topological space   is said to be coc-r- lindelof relative to   if 

every cover of   by coc-r- open sets in   has a countable subcover of  . 

The subset   is coc-r- lindelof iff it is coc-r- lindelof as a subspace. 

 

Proposition (3.2.14) 

     A coc-r-closed subset of coc-r- lindelof space   is coc-r- lindelof relative  to   . 

Proof : 

     Let   be coc-r-closed and {      }  be coc-r-open cover of   such that 

    {      }, then        {         } and    is coc-r-open in  , 
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thus {         }  forms cover of   and   is coc-r- lindelof, there fore this 

cover has a countable subcover such that     {          } , so      

{         }    {       }. Hence   is coc-r- lindelof relative  to   . 

 

Corollary (3.2.15)  

     Every r-closed of coc-r- lindelof space   is coc-r- lindelof relative to  . 

Proof : It is clear.  

 

Theorem (3.2.16) 

      Let   be subspace of       and   be coc-r- lindelof space, if    clopen set in  , 

then   coc-r- lindelof. 

Proof : 

     Let   be a subspace in  , {      } be.cover of    by coc-r-open.subsets of 

  such.that      {      },  since    is coc-r-open in  ,   is clopen set in  , 

then.     is coc-r-open in   for all      ( by using Theorem (1.1.51) ). Thus   

        {      }       {         }  since   is clopen set.in  , 

then   is r-closed, thus   is coc -r-closed, there fore    is coc -r-open in  . Since   

is coc-r-lindelof, then     {          } , so that          

{          }      {         }    {       }, hence   is coc-

r-lindelof.     

 

Theorem (3.2.17) 

     If a topological space   is a countable union of clopen coc-r- lindelof subspace 

then   is a coc-r- Lindelof space. 

Proof : 

     Suppose     {       } when    is a clopen coc-r- lindelof subspace for 

each    . Let    be a cover of    by coc-r-open subsets, since    clopen set in   

for each    . Then for each     the family {        } is a cover of    

by coc-r-open subsets of     , thus we find a countable subfamily    of    such that 

     {         } for each    . Put     {      }, there fore   is 

a countable subfamily of   such that     {      }    { {       

  }     }    {     }. Hence   is a coc-r- lindelof space. 
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Theorem (3.2.18) 

     If   be   -space, then the following statements are equivalent. 

i)   is coc-r- lindelof. 

ii) Every cover by r- open  subsets has a countable subcover. 

Proof : 

(i)         (ii) It is clear. 

(ii)         (i) 

Let    be coc-r-open cover of  , then      {     }, since   is   -space, thus 

  is equal to the union of r-open sets in   contained in   for each      ( Theorem 

(1.1.19), (1) ). There fore all  r-open sets in   for each     are r-open cover of  , 

this r-open cover has a countable subcover. Since every element of this a countable 

subcover contained in   for  some    , hence   has a countable subcover. 

 

Definition (3.2.19) 

     A space   is said to be r - lindelof if every r - open covering of   has a countable 

sub covering. 

 

Theorem (3.2.20) 

     If   is    -space, then the following statements are equivalent. 

i) Every proper r- closed  subset of   is coc-r- lindelof relative to  . 

ii)   is coc-r- lindelof. 

iii)   is r- lindelof. 

Proof : 

(i)         (ii) 

Let {      } be cover of    by r - open subsets of     such that      

{      }. If      ,     then the proof is end, if      ,     then   
  is 

proper r- closed  subset and   
    {       { }}, by the hypothesis there 

exist a countable subfamily {         { }     } , such that   
     

{         { }     }, thus      {            { }     }, hence 

  is coc-r- Lindelof. 

(ii)         (iii) 

Clear, by using Theorem (3.2.18), Definition (3.2.19). 

(iii)         (i) 

Suppose    be proper r- closed  subset of   , then     , let {      } be cover of 

   by r - open subsets of   , since    is  r- closed  subset of   , thus    is  r-open, 
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since        {      }    , there fore {     
     } is  r-open cover of    

and   is r-lindelof, so     {        }    , hence     {        }. 

 

Definition (3.2.21) [12] 

     Let    is  family.of subset of  , then   has.a countable intersection.property if 

 {      }    such.that       for each    . 

 

Theorem (3.2.22) 

     If   is    -space, then the following statements are equivalent. 

1)   is coc-r- lindelof. 

2) Every  family {      } of r-closed subsets of   with a countable  intersection 

property then   {      }    . 

3) Every  family   of coc-r-closed subsets of   with  {     }    contains a 

countable subfamily     such that  {     }    . 

4) Every  family   of r-closed subsets of   with  {     }    contains a 

countable subfamily     such that  {     }    . 

Proof : 

(1)         (2) 

Suppose that {      }  family of r-closed subsets of   with a countable 

intersection property, let  {      }    . Put      
  , then     is  r-open 

subsets of  , thus the family {      } is a r-open cover of  . Since   is coc-r-

Lindelof, there fore  {      } has a countable subcover {       } such that 

     {        }  ( by using Theorem (3.2.18) ), then       {   
     

  }    {        }   , thus  {       }    , this is contradiction with a 

countable intersection property. Hence   {      }    . 

(2)         (3) 

Let   be a family of coc-r-closed subsets of   with an empty intersection, since   is  

  -space, then    
 
for each     ( by using ( Theorem (1.1.19),(2) ) 

). Thus   equal to the intersection of r-closed sets in   containing   for each    , 

there fore the intersection of all r-closed sets in   containing   for each     is an 

empty  intersection. By using the hypothesis this r-closed family has a countable 

subfamily with an empty  intersection , since every element of  this  a countable 

subfamily containing   for some     , hence    has a countable subfamily with an 

empty  intersection. 
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(3)         (4) It is clear. 

(4)         (1) 

Let {      } be cover of    by r - open subsets of     such that      

{      }, then {   
     } is family of r-closed subsets of    with an empty  

intersection. By assumption  there exist a countable subfamily such that  

{   
      }    , so       {   

     }      {       }. Hence   is 

coc-r- lindelof. 

 

Definition (3.2.23) [17] 

     A space ( ,  ) is.called I-lindelof if.every cover    of   by r - closed.subsets of 

the space ( ,  ) contains a.countable subcover   such that   =  {          }. 

 

Remarks (3.2.24) 

i. I- compact             I- lindelof. [17] 

ii. I- lindelof             I- compact. [17] 

iii. coc-r- lindelof               I- lindelof. 

 

Examples (3.2.25) 

1) Let      with indiscrete  topology, then     {     }, thus   is  

I- Lindelof but   is not coc-r- Lindelof. 

2) Let       {       }  { }, then  

    {       }  {                    }, thus   is coc-r- Lindelof but  is 

not I-Lindelof because  {{    }          } is r-closed cover of   but has not a 

countable subcover and  {    }  {   },    . 

 

Theorem (3.2.26) 

      If  a  topological space   is extremally.disconnected space, then every coc-r-

lindelof is I- lindelof. 

Proof : 

      Let {      } be r-closed  cover of   , then    is closed for each    , thus 

  
  is  r-open for each     ( by using Remarks (1.1.4), (2) and Remarks (1.1.16), 

(4)). Since    is  r-closed  for each     and    is extremally.disconnected space, 

there fore    is  open set  in    for each     ( by using Remarks (3.1.25), (2) ), so 

   is  r-open, then    is coc- r-open set in    for each    . Since    is coc-r-
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lindelof, thus  the cover {      } has a countable subcover such that       

{             }    {   
           }. Hence     is I- lindelof. 

 

Theorem (3.2.27) 

      If  a  topological space   is    -space, then every I-lindelof is coc-r-lindelof. 

Proof : 

      Let {      } be  r-open  cover of   , then    is open and      is a  r-closed  

set in    for each     ( by using remarks (1.1.16),(5) ), thus  {       } is r-

closed cover of    and    I-lindelof, there for this cover has a countable sub cover 

such that      {    
 
    }     {       }. Hence    is coc-r-lindelof . 

 

Theorem (3.2.28) 

     Let        be a co ́-r-continuous function, onto, if   is lindelof,   -space then  

  coc-r- lindelof. 

Proof : 

     Let {      } be coc-r-open cover of  , since   is a co ́-r-continuous function, 

then          is  coc-r - open  in   for each     , but            , thus      

                     , since   is lindelof,   -space and {           } forms 

a cover of   , then the cover {           } has a countable subcover such 

that     {              }, since   onto, so             {              

 }    {        }. Hence   coc-r- lindelof. 

 

Theorem (3.2.29) 

     Let        be a coc-r-open function, bijective, if   is coc-r-lindelof then    

lindelof. 

 

Proof : 

     Let {      } be open cover of  , since   is a coc-r-open function, then        

is  coc-r - open  in    for each     , but            , there fore   =        

         , so {         } forms a cover of   , since    is coc-r- lindelof, then 

the cover {         } has a countable subcover such that      {         

 } , thus                {   (      )     }     {        } . Hence    

lindelof. 
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Theorem (3.2.30) 

      Let        be a coc-r-open function, bijective and   be 

extremally.disconnected space, if   is coc-r- lindelof then    I- lindelof. 

Proof : 

      Let {      } be r-closed cover of   and    be extremally.disconnected, then 

   is open in   for each     ( Remarks (3.1.25), (2) ), since   is a coc-r-open 

function, then        is  coc-r - open  in    for each     , but            , there 

fore   =                 , so {         } forms a cover of   , since    is coc-

r- lindelof, then the cover {         } has a countable subcover such that     

 {          } , thus               {   (      )     }     {      

  }    {   
      }. Hence   I- lindelof. 
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3.3 On I-coc-r-lindelof spaces   

We recall.the concept of a I-lindelof.space by using coc-r-open.sets and give some 

important generalizations.on this concept and also we prove.some results.on this 

concept. 

 

Definition (3.3.1)  

      A space ( ,  ) is called a I- coc-r - lindelof  if every cover    of   by coc-r - 

regular closed subsets of the space ( ,  ) contains a countable subcover   such that 

  =  {            }. 

 

Examples (3.3.2) 

      The following are straight forward examples of  I- coc-r - lindelof spaces. 

1) Let   {       }   {       }  { }, then 

    {                }  { }, since all coc-r - regular closed subsets of  

the space ( ,  ) are   ,  , thus   is I- coc-r – Lindelof. 

2) Let   {       }   {    { } {   } {     }}, then     {     }. 

Thus   is I- coc-r - lindelof. 

 

Theorem (3.3.3) 

      The following statements are equivalent for a space ( ,  ). 

i)   is a I- coc-r - lindelof. 

ii) Every cover {      } of    by coc-r-  - open  subsets contains a countable 

subcover  such that 

  =       

     

. 

iii) Every family  {      } of    by coc-r - regular open subsets with empty 

intersection  contains a countable subfamily  such that 

       

  
   . 

Proof : 

(i)         (ii) 

Let {      } be cover of    by coc-r-  - open subsets, then    

  
   ( ,    ), 

(by using Proposition (1.2.14), (4) ) for all    . Thus {    

  
    } forms cover 
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of  , since   is I- coc-r - lindelof, there fore {    

  
    } has a countable  

subcover  such that   =        

     

. 

(ii)         (iii) 

Let  {      } be a family of  coc-r - regular open subsets of    with empty 

intersection. Since     
    ( ,    ) for all    , by using (Remarks (1.2.15), (2) 

) we get    
    ( ,    ) for all    . Since            , then   =        

 , 

thus  {  
     }  is cover of   . By assumption,  {  

     }  has a countable  

subcover  such that   =         
 
     

=         
    

    . There fore     

       
   

  

        

  
. 

(iii)        (i) 

Let {      } be cover of    by coc-r - regular closed  subsets of  , then   = 

        , thus           
 . Since       ( ,    ), there fore    

    ( ,    ) for 

all    , by assumption The family {  
     } has a countable subfamily  such 

that           
 
  

 Then   =         
 
  

           
   , hence   is I- coc-r 

- lindelof. 

 

Definition (3.3.4)    

A space ( ,  ) is called I- coc-r - Compact  if every cover    of   by coc-r - regular 

closed subsets of the space ( ,  ) contains a finite subcover      such that 

  =  {            }. 
 

Remark (3.3.5) 

Every I- coc-r - Compact  space is I-coc-r-Lindelof but the convers is not true in 

general, as the following example shows. 

 

Example (3.3.6) 

Let   {       }   {     } , then     {     } , since (  ,     ) is 

desecrate topology, then       ( ,    ) for every    ,   is  a countable  set, thus 

    is I-coc-r-Lindelof, but {{ }    } is a cover of    such that { }    ( ,    ), 

but it has not a finite subcover, hence   is not  I- coc-r - Compact. 
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Remark (3.3.7) 

      Every coc-r-lindelof space is not necessary to be I-coc-r-lindelof, as the 

following example. 

 

Example (3.3.8) 

      Let   {       }   {       }  { }, then  

    {       }  {                    } ,  thus   is coc-r-lindelof space 

but the cover {  {         }}  {{ }    }  of    by coc-r - regular closed  

subsets is a countable cover but              { }    {       }     { }. 

 

Definition (3.3.9) 

      A space ( ,  ) is called coc-r - extremally disconnected (coc-r-e.d) if   
  

is  

coc-r-open for each coc-r-open   in  . 

 

Proposition (3.3.10) 

      If        ,   is coc-r-open, then    
  

  . 

Proof : 

      Let    
  

  , then there exist      
  

, since        and   coc-r-

open, thus    , so    ́   and      { }   . There fore       , this is 

contradiction, hence    
  

  . 

  

Proposition (3.3.11) 

      A space   is  coc-r- extremally.disconnected iff  for  all        ( ,    ) with 

     , then  

 
  

  
  

  . 

Proof : 

      Let   be  coc-r- extremally.disconnected and        ( ,    ) with      . 

Since      (  ,     ), then   is coc-r-open, thus    
  

  , (By using  

Proposition (3.3.10) ). Since   is coc-r-extremally.disconnected and    

   (  ,     ), there fore   
  

 is coc-r-open in  ,so  
  

  
  

  , by using 

Proposition (3.3.10). Conversely : Let   be coc-r-open, then   
  

   ( ,    )( By 
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using  Proposition (1.2.14), (1) ), thus    
   

    ( ,    ), since   
  

 is coc-r-

closed , there fore  
     

   ( ,    ), (Proposition (1.2.14), (2)), since  
   

 

 
     

  , by using assumption we get    
   

  

   
     

  

   , then   
  

 

   
   

  

   , so   
  

  
     

, then   
  

is coc-r-open. Hence   is  coc-r- 

extremally.disconnected. 

 

Proposition (3.3.12) 

     If    is coc-r-extremally.disconnected,     such that      ( ,    ), then    

coc-r-open. 

Proof : 

     Let     ( ,    ), then        
  

, since   is  coc-r-extremally.disconnected, 

thus      
  

is coc-r-open, hence    coc-r-open. 

 

Proposition (3.3.13) 

     Every I-coc-r-lindelof  space  is  coc-r- extremally.disconnected. 

Proof : 

     Let   be I-coc-r-lindelof  space. Suppose that   is not coc-r- 

extremally.disconnected, then there is        ( ,    ) such that        , but 

 
  

  
  

  . Then there is    
  

  
  

, since         ( ,    ), thus       

  ( ,    ), there fore {     }  forms a cover of   , since   is I-coc-r-lindelof  space, 

so               
. Let        

, but    
  

, then          . Since 

            , this is contradiction, thus  
  

  
  

  . Hence   is  coc-r- 

extremally.disconnected (By using Proposition (3.3.11) ) 

 

Remark (3.3.14) 

     The convers of  Proposition (3.3.13) is not true in general, as the following 

example shows. 
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Example (3.3.15) 

     Let      with indiscrete  topology, then     {     }, then   is  coc-r- 

extremally.disconnected. Since { }    ( ,     ) for each    , since the cover 

{{ }    } of    has not a countable  subcover  such that       { }   . 

 

Theorem (3.3.16) 

      Every coc-r-lindelof, coc-r-extremally.disconnected space  is I-coc-r-lindelof  

space. 

Proof : 

      Let  {       } be cover of   ,      ( ,    ) for all    , then     is  coc-r-

open for all     (By using Proposition (3.3.12) ). Thus {       } is cover of  

  by coc-r-open  subsets, since   is coc-r-lindelof Space, there fore {       } has 

a countable  subcover  such  that                  
   . Hence     is I-coc-r-

lindelof  space. 

 

Remark (3.3.17) 

1) I-coc-r-lindelof           I-lindelof. 

2) I-lindelof            I-coc-r-lindelof. 

     As the following examples show. 

 

Examples (3.3.18) 

1) Let   {       }   {    { } {   } {     }}, then     {     }. 

Thus   is I- coc-r - lindelof, since {     }, {   } are r-closed cover of   , but  

  {     }    {   }    {   }  { }  {     }, then   is not I-lindelof. 

2) Let      with indiscrete  topology, then     {     }, thus   is  

I-lindelof  but   is not I-coc-r-lindelof. 

 

Definition (3.3.19)     

     A space ( ,  ) is called   - coc-r - lindelof if every cover     of   by coc-r - 

regular closed subsets of the space ( ,  ) contains a countable  subcover   such that  

  =  {         }. 
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Remark (3.3.20) 

     Every I- coc-r - lindelof space is  - coc-r - lindelof but the convers is not true in 

general, as the following example shows. 

 

Example (3.3.21) 

     Let   {       }   {       }  { }, then  

    {       }  {                    } ,  thus   is  - coc-r - lindelof, 

since    {       } is  coc-r-open in    but  
  

 {         } is not coc-r-open in 

 , there fore   is not coc-r-extremally.disconnected, hence   is not I- coc-r - lindelof 

(By using the convers of Proposition (3.3.13) ). 

 

Theorem (3.3.22) 

     A space   is  I-coc-r-lindelof if and only if it is  a coc-r-extremally.disconnected 

and   - coc-r - lindelof space . 

Proof : 

     As  necessity is clear, we prove only sufficiency. 

Let  {      } be cover of    by coc-r - regular closed  subsets, since   is a coc-r- 

extremally.disconnected, then     is coc-r-open for each     (By using  

Proposition (3.3.12) ), thus      
      . Since    is   - coc-r-lindelof space, there 

fore {      } has a countable subcover such that   =        =        
      , 

hence   is  I-coc-r-lindelof. 

 

Remark (3.3.23) 

     A space   is said to be     -r-regular space  if and only if  ( ,    ) is regular 

space. 

 

Proposition (3.3.24) 

      Let   be      -r-regular space, if   is coc-r-open then      ( ,    ). 

Proof : 

      Let   is coc-r-open in  , since   is      -r-regular space, then for each      

there exists an coc-r-open set    such that         

   
   ( By using 
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Proposition (2.3.13) ) . Thus      {   

   
    } , there fore  

     

    

       

   
 

     

           

   
           . Hence      ( ,    ). 

 

Remark (3.3.25) 

      If    is     -r-regular space,   is coc-r-closed  then      ( ,    ). 

Proof : It is clear. 

 

Theorem (3.3.26) 

      If    is coc-r-extremally.disconnected,     -r-regular  space, then the following 

statements are equivalent. 

1)   is   - coc-r - lindelof. 

2)   is  I-coc-r-lindelof. 

3)   is  coc-r-lindelof. 

Proof : 

(1)         (2)  

It is clear, by using Theorem (3.3.22). 

(2)         (3) 

Let  {       } be cover of    by coc-r-open  subsets, since   is     -r-regular 

space, then by using Proposition (3.3.24) we get       ( ,    ) for each    . 

Thus   

  
   ( ,    ) for each    , there fore {   

  
    } forms a cover of 

  , since    is I-coc-r-lindelof, there fore {   

  
    } has a countable  subcover  

such  that           

     

, since       ( ,     ) for each    , so    

        . Hence   is coc-r-lindelof. 

(3)         (1) 

It is clear by using  Theorem(3.3.16) and  Remark (3.3.20). 

 

Remarks (3.3.27) 

1) If    is   -space (     regular space ), then every coc-r-closed is r-closed. 

2) If    is   -space, then   is extremally.disconnected if and only if   is coc-r- 

extremally.disconnected. 

3) If    is   -space, then   is regular space if and only if   is     -r-regular space. 



 

98 

 

Proof : 

1) Let     be coc-r-closed, since   is   -space, then   is   -space, thus   is 

closed set in  , there fore   is r-closed (   is regular space ). 

(2), (3) It is clear, since   is   -space,  then      . 

 

Theorem (3.3.28) 

      If    is   , extremally.disconnected space, then the following statements are 

equivalent. 

1)   is coc-r-lindelof. 

2)    is I-lindelof. 

3)    is lindelof. 

4)    is I-coc-r-lindelof. 

Proof : 

(1)         (2) 

Since   is extremally.disconnected, then     is I-Lindelof ( Theorem (3.2.26) ) 

(2)         (3) 

Let  {      } be open cover of   , since   is   -space, then   is regular   space, 

thus    is r-open in   (Proposition (1.1.21) ) for each    . Since    is open in  , 

there fore    is r-closed ( Remarks (1.1.16), (5) ) for each    . Then {      } 

forms a cover of   , since    is I-lindelof, there fore {      } } has a countable  

subcover  such  that           

 
         ,hence    is lindelof space. 

(3)         (4) 

Let  {       } be cover of    by coc-r - regular closed subsets, then    is coc-r-

closed in  , then    is r-closed for each     (By using  Remarks (3.3.27), (1) ), 

thus    is open for each     (By using  Remarks (3.1.25), (2) ), there fore { 

      } forms a cover of   , since    is lindelof, so {       } has a countable  

subcover  such  that             ,since     is   -space, then    coc-r-open in    

for each    , thus          
      , hence    is I-coc-r-lindelof. 

(4)         (1) 

It is clear by using ( Remarks (3.3.27), (2), (3) )  and  Theorem (3.3.26). 

 

Theorem (3.3.29) 

      Let        be a co  ́ -r-continuous function, onto and (  ,    ) be coc-r- 

extremally.disconnected space, if    is coc-r-lindelof, then   is  I-coc-r-lindelof. 
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Proof : 

      Let  {      } be cover of    by coc-r - regular closed  subsets, since   is a 

coc-r-extremally.disconnected, then     is coc-r - open in   for each      (By 

using  Proposition (3.3.12) ), since   is  a co ́-r-continuous  function, thus          

is  coc-r - open  in  , but            , there fore   =                      , so 

{           } forms a cover of   , since    is coc-r-lindelof, then {        

   } has a countable  subcover  such that                  , since   onto, thus 

     =                     =        =        
   , hence   is I-coc-r-lindelof. 

 

Theorem (3.3.30)  

      Let        be a co  ́ -r-open  function, bijective and (  ,    ) be coc-r- 

extremally.disconnected space, if    is coc-r-lindelof, then   is  I-coc-r-lindelof. 

Proof : 

      Let  {      } be cover of    by coc-r - regular closed  subsets, since   is a 

coc-r-extremally.disconnected, then     is coc-r - open in   for each      (By 

using  Proposition (3.3.15) ), since   is  a co ́-r-open  function, thus         is  coc-r 

- open  in   , but            , there fore   =                 , so {        

 } forms a cover of   , since    is coc-r-lindelof, then {          } has a 

countable  subcover  such that                 , thus  =          

                =        =        
      , hence   is I-coc-r-lindelof. 

 

Theorem (3.3.31) 

      Let        be a co ́-r-continuous, co ́-r-open  function, onto and        -r-

regular space, if    is I-coc-r-lindelof, then   is also. 

Proof : 

      Let  {      } be cover of    by coc-r - regular closed  subsets, then    
  

  (     )  thus    
  coc-r - open in   for each     , since   is a co ́-r-continuous 

function, there fore        
   is  coc-r - open  in    for each     , so 

        
               is  coc-r - closed  in     for each     , since        -r-

regular space, then          (     ) (By using  Remark (3.3.25) ), since     

       , thus   =                      , there fore {           } forms a 

cover of   , since    is I-coc-r-lindelof space, then {            } has a 

countable  subcover  such that                    
   , thus   =        



 

100 

 

                
                        

    =        
   , hence   is I-coc-r-

lindelof. 

 

Definition (3.3.32) 

      Let       be a function of space   into space     then   is called   - coc-r -  -

closed  function if for each      and for each        with         , there exist  

 -open set   such that    ,         . 

 

Definition (3.3.33) 

      A space ( ,  ) is called  coc-r - P- space  if  the  countable union of  coc-r - 

closed subsets  is  coc-r - closed. 

 

Definitions (3.3.34) [9]  

i. A space ( ,  ) is.called rc- lindelof.if every cover.of X by regular.closed subsets 

of the.space ( ,  ) contains a.countable subcover   

ii. A space   is.said to be countably nearly compact if every.countable open cover    

of (X ,T) contains.a finite.subfamily     such.that X = ∪{int(cl(U)) : U ∈   }. 

 

Proposition (3.3.35) [9] 

      A space ( ,  ) is.called rc- lindelof.iff every cover.   of    by   - open.subsets 

contains.a countable subcover    such that  

    {       }. 

 

Proposition (3.3.36) [17] 

      Every I- lindelof.space is rc- lindelof.space.  

 

Theorem (3.3.37) 

      Let                    be a  - coc-r -   -closed, super coc-r-open  function, 

with         -coc-r-lindelof for each      and   coc-r-extremally.disconnected, 

coc-r - P- space , if    is I-lindelof, then   is I-coc-r-lindelof. 

Proof : 

      We need  to show  that   is  - coc-r - lindelof. Let    be a cover of    by coc-r-

regular closed  subsets, then for all          forms a cover of        , since        
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 - coc-r-lindelof, thus we find a countable subcover     of    such that          

{       }. Put       {       }, there fore     is union of coc-r-regular closed  

subsets, since     (     ) for each      and since   coc-r- 

extremally.disconnected, so we get     is coc-r - open (By using Proposition 

(3.3.12)) and              for each     . Since    is   -coc-r -   -closed, then 

there is    - open     such that      ,  
  (   )     . 

Now: 

The  family  {       } forms a cover of    by    - open subsets, since   is I- 

lindelof  and By using Proposition (3.3.35), (3.3.36) then the cover {       } 

contains a countable  subcover  such that       {         }. Put      

{          }, it is  clear  that    is a countable  family. Let      and          , 

thus       ,    , there fore      (   ), since   super coc-r-open  function and 

by using Theorem (2.2.33) we get       (   )     (   )
  

     

  
, by using 

remark ((1.2.15),(3) ) and  since   coc-r - P- space, so we get       

  
      

{        }   {     }, then   is  - coc-r - lindelof, hence   is I-coc-r-lindelof  

(By using  Theorem (3.3.22)). 
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The following diagram explains the relationship among  these types of compact 

and lindelof spaces. 

 

I- coc-r – compact          coc-r-compact             Compact 

 

            

     

   I- compact 

            

 

 

   I- Lindelof 

 

 

 

I- coc-r – Lindelof           coc-r –lindelof             Lindelof           
 

 

  Regular space 

    -space 

  extremally.disconnected space 

    -space 

  coc-r-extremally.disconnected space 

      -r-regular space 

  Countably nearly compact 
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 الخلاصة

 

الِذف الأسبسي في ُزا البحث ُْ تْسيغ ّدساسة بؼض أًْاع الفضبءات التبْلْجية هثل  الفضلبءات 

 .  coc-rالوجوْػبت الوفتْحة هي الٌوظ بأستخذام  الوشصْصة ّالليٌذلْف ػي طشيق خْاص الغطبءات

ّفللي ُللزا لقللذ دسسللٌب سللببقب الوفللبُين الوشصللْص ّاللٌللذلْف ّالوت لل   ّبللذيِيبت الف لل  للفضللبءات 

لتؼشيللو ّدساسللة     coc-rالوجوْػللبت الوفتْحللة هللي الللٌوظ  بأسللتخذامالؼولل  سللْف ًْسللغ ُللزٍ الوفللبُين 

 coc-r هللي الللٌوظ  ّالوشصللْص  coc-r هللي الللٌوظ  ّبللذيِيبت الف لل  ّ coc-r الوت لل  هللي الللٌوظ 

 coc-r   ّ  .I-coc-r هي الٌوظ للٌذلْفّا

  coc´-r وانًُط  coc-rيٍ انًُط (انًفخىحت وانًغهقت )ايضا حُاونُا خلال انبحث يفهىو اندوال

 ووضحُا خىاص حهك اندوال. coc´-r ,( coc-rو انًسخًرة يٍ انًُط ) Super coc-r وانًُط 

 :ويا ياحي اهى انُخائج انرئيسيت 

 

  -فأى الؼببسات التبلية تكْى هتكبفئة: فضبء ُبّصدّسف،  ليكي  -1

   coc-r.هي الٌوظ هشصْص يكْى     -أ

 يوتلك غطبء  هٌتَ.   إرا كبى لك  غطبء هفتْح هٌتظن  للفضبء  -ة

 

 -فأى الؼببسات التبلية تكْى هتكبفئة: فضبء ُبّصدّسف،  ليكي   -2

  .في  coc-r هي الٌوظ ك  هجوْػة جضئية فؼلية هغلقة هٌتظوة تكْى هشصْصة - أ

  coc-r.هي الٌوظ هشصْص يكْى    - ة

 .r هي الٌوظ هشصْص يكْى    - ج

 

  ا كاٌ ذا هفاَ غيش هت   جذا   وشايهت و  coc-r يٍ انًُط يسخًرةدانت        ا كاَج ذا -3

 .I انًُط يٍ يرصىص فضاء  فاٌ  coc-r انًُط يٍ يرصىص

 

  ا كاٌ ذا هفاَ غيش هت   جذا    ويخقابهت و  coc-r يٍ انًُط يفخىحتدانت        ا كاَج ذا -4

 .I انًُط يٍ نُدنىف فضاء  فاٌ  coc-r انًُط يٍنُدنىف 
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فلأى الؼبلبسات التبليلة  ،  coc´-r ّهٌلتظن هلي اللٌوظ coc-r غيلش هت ل  جلذا هلي اللٌوظ فضلبء   ليكي  -5

 -تكْى هتكبفئة:

  coc-r -  .فضبء لٌذلْف هي الٌوظ يكْى    - أ

  I-coc-r .فضبء لٌذلْف هي الٌوظ يكْى    - ة

  .coc-r فضبء لٌذلْف هي الٌوظ يكْى     -ج

 

 -فأى الؼببسات التبلية تكْى هتكبفئة: ،ّغيش هت   جذا   فضبء  ليكي  -6

 coc-r. فضبء لٌذلْف هي الٌوظ يكْى    -أ

 .I هي الٌوظ فضبء لٌذلْف يكْى    -ة

 فضبء لٌذلْف. يكْى    -ج

 .I-coc-r فضبء لٌذلْف هي الٌوظ يكْى    -د

 

 و Super coc-r, ويفخىحت يٍ انًُط    - coc-r -  يغهقت يٍ انًُطدانت        ا كاَج ذا -7

يٍ   و فضاء فضاء غير يخصم جدا    و     نكم   في  coc-r -  لٌذلْف هي الٌوظ        

 . I-coc-r انًُط يٍ نُدنىف فضاء  فاٌ   نُدنىف يٍ انًُط   ا كاٌ ذا هفاَ ، coc-rانًُط 
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 جًهىريت انعراق
 وزارة انخعهيى انعاني وانبحث انعهًي

 جايعت انقادسيت
 انحاسىب وانرياضياثكهيت عهىو 

 قسى انرياضياث

 
 

 بأستخدام  حول بعض خصائص الغطائات
 -coc-rالمجموعةالمفتوحة 

 

  رسالة

نيل وهي جسء من متطلبات  جامعة القادسية  -ية علوم الحاسوب والرياضياتكلمقدمة إلى 

 علوم في الرياضيات  ماجستيردَرَجة 
 
 

 من قبل

 فاضل عطاالله شنيف زكروطي
 

 بإشراف

 م. د.رعد عسيس حسين العبد الله . أ
 

 و 7132هـ                                                       3418

 


