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Abstract: Performance of time-frequency distribution (TFD) based instantaneous frequency estimators for one-component, linear and 

quadratic FM signals is investigated under two models of multiplicative noise: Gaussian and impulsive. The periodogram (which is a 

specific time-frequency distribution (TFD)) of linear and non-linear FM signals has been considered. Two statistical models of 

multiplicative noise (Gaussian, impulsive) are handled. Simulation results show that impulsive noise has less impairment effect than 

Gaussian noise with the same power for instantaneous frequency estimation based on periodogram with multiplicative noise power less 

than 3 dB; however, the periodogram fails at multiplicative noise power more than 3 dB for both models of multiplicative noise 

(Gaussian, impulsive).    
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1. Introduction 

Estimating the instantaneous frequency of FM signals to extract significant information has many Beneficiaries: Communication 

(especially Networks) engineers and biomedical engineers [1]. Practically, there is no noise free signal therefore, the instantaneous 

frequency estimation was major important signal processing problem [2, 3]. Nonstationary signal which their frequency content is 

time-varying found in important application and its important parameter defined by IF, therefore due to this importance these signals 

should be analysis by powerful time-frequency analysis tool and IF estimated by robust and effective accurate method [4, 5]. Since the 

multiplicative noise power is affecting both the amplitude and phase of the signal according to its structural properties, it can be 

considered as most severe degradation noise that affects signal and system [6]. There are many type of multiplicative noise, impulsive 

noise is one of these types that severely causes damage and weakness performance of most important applications such as: image, 

processing and communication system [6, 7]. According to its very high amplitude and short duration characteristic, impulsive noise 

causes great impairments and high error rate during transmission data in power line communication system (PLC) [8]. To reduce impulse 

noise effect in PLC system, powerful, robust and simple implement Orthogonal frequency division multiplexing (OFDM) technique was 

used, because the noise effect is spread over multiple subcarriers due to the discrete Fourier transform at the receiver [9]. In network there 

are two classes of noise: background noise which is modelled as Gaussian noise and impulsive noise that is modelled as 

Poisson-Gaussian noise [9].  

New algorithm was proposed in [10] to alleviate impulsive noise that degrade the power line communication system 

performance using sparse Bayesian learning. Due to important advantage of relay network in wireless communication such as 

self-heading, self- configuration and reliability against failures, simulation of relay wireless channel under impulsive noise was produced 

in [8] to help designer for choosing robust channel and optimum design.  In [11] new effective robust method for estimating the signal 

frequency of sampled sinusoidal signals in present of impulsive noise was proposed using Hampel estimator in order to obtain exact 
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frequency of sampled signal, where the error of estimated frequency was close to the Cramer Rao Bound. Gaussian noise process based 

frequency estimation method of sinusoidal signals under impulse noise was unsuccessful, therefore fractional lower order statistics 

(FLOS) based estimation approach was presented in [12] where noise was modelled as alpha-stable process, this method was robust 

performance especially with high levels of impulsive noise. In order to overtop degeneration performance of DFT estimation method in 

presence of impulsive noise, signal selective carrier frequency estimation algorithm for AM, BPSK, and QPSK signals was proposed in 

[13], as a result this new algorithm was high resistant against noise. In important application such as power quality monitoring, online 

fault detection and speech analysis, new VFF-QRRLM algorithm was proposed in [14] using new variable forgetting factor (VFF) 

schemes to improve QR-decomposition-based recursive least M-estimate (QRRLM) algorithm for recursive frequency/spectrum 

estimation and feature detection of nonstationary signals in impulse noise environment, this algorithm characterized by efficient 

computationally and high accuracy and robustness unlike conventional recursive least squares-based methods. 

 

Few literature focus on multiplicative noise especially when it modelled as impulse process. This paper analyses the effects of impulsive 

multiplicative noise on frequency estimation methods of FM signals. A comparative study on the performance of the TFD under 

impulsive and Gaussian multiplicative noise with different values of power is presented.  

 

The paper is organized as follows: The FM signal model is defined in section 2. In section 3, multiplicative noise models are presented. 

while Section 4 handles IF estimation based on time-frequency distribution. Finally, in section 5 simulation details and results are 

explained. 

 

2. The FM Signal Model   

In this paper the noisy signal is modelled as:  

y(t) = n(t) sin(ϕ(t)) + ϵ(t)                                       (1) 

where n(t) is multiplicative noise, ϕ(t) is the initial phase and ϵ(t) is an additive white Gaussian noise with zero mean and variance 

σa
2; with n(t) and ϵ(t) considered as independent processes. 

First, consider n(t)  as white Gaussian noise with zero mean and variance σm
2. And then n(t) consider as impulsive noise with 

Poisson-Gaussian model. 

Linear frequency modulation (LFM) law of signal model in equation (1) has been modelled as [15]: 

s(t) = e{j2π(fot+ 
α
2

t2)}                                                      (2) 

where α is the linear modulation index, and fo is the initial frequency (in Hertz).  

Quadratic frequency modulation (QFM) signal has also been modelled as follows: 

s(t) = e
{j2π(fot+ 

α
2

t2+
β
3

t3)}
                                              (3) 

where β is the quadratic modulation index of the QFM signal. 

important characteristic of the FM signal was represented by instantaneous frequency [2, 3].  

In order to deal with IF estimation, the analytic associated signal should be considered to avoid aliasing. for a given real signal, s(t), the 

analytic associated signal is [16, 17]: 
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z(t) = a(t)ejθ(t) = s(t) + jℋ[s(t)]                        (4) 

where a(t) is instantaneous amplitude, and ℋ is Hilbert transform of s(t) defined as follows [16]: 

ℋ(f) = {
−j        f ≥ 0
j           f < 0

} = −j ∙ sgn(f)                      (5) 

 

The IF was defined for a given real signal, s(t), as follows [18]: 

fi(t) =
1

2π
 
dθ(t)

dt
                                                               (6) 

where θ(t) is instantaneous phase of real signal s(t), which is modelled in the case of LFM as: 

ϕ(t) = 2π (fot + 
α

2
t2)                                                (7) 

And in the case of QFM is: 

ϕ(t) = 2π (fot + 
α

2
t2 +

G

3
t3)                                   (8) 

According to above equations and using equations (6) and (7), the IF of LFM signal in equation (2) will be: 

fi(t) = fo + αt                                                                (9) 

Using equations (6) and (8) the IF of QFM signal in equation (3) will be:                              

fi(t) = fo + αt + βt2                                                  (10) 

 

3.  Multiplicative Noise Models 

There are different statistical models of multiplicative noise such as: Gaussian, Poisson, Impulsive, non-Gaussian, Rice model, Rayleigh 

model, Hoyt model, and Nakagami model [6]. In this paper Gaussian and impulsive models have been considered.  

Source of noise may be natural source (such as thermal noise) or human-made (physical or industrial) source such as: underwater acoustic 

channels, indoor radio channels, car ignitions, fluorescent light, mechanical switches, breakers, even light switches or breakers, power 

lines [8, 11]. 

Noise in physical source environment cannot be modelled as Gaussian noise because of human -man interference, so it can be modelled as 

impulsive noise [11]. Below a brief description of each model is given. 

 

Gaussian model 

Multiplicative noise that is mostly generated in electrical systems by natural source is Gaussian process which has probability density 

function (pdf) with zero mean and variance (power) σ2 as follows [16]: 

p(n) =
1

σ√2π
e−n2 2σ2⁄  
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Impulsive model 

Impulsive noise is mostly encountered power line communication (PLC) system [7]. 

Impulsive noise can be modelled as [7]: 

ik = bk ∙ gk                                                                    (11) 

Where bk is Poisson process that is modeling the arrival time of impulsive noise at instant k  with parameter λ  which denote the rate of 

unit per second.  

A random variable X is said to be Poisson if its pdf is given by [19]: 

P(X = x) = e−λ
λx

x!
 ;    x = 0,1,2,….. 

ℇ{X} = λ ; var(X) = λ. 

Where P(X = x) is the probability of event of x arrivals in unit time, thereby when X represents the time count of arrival of impulsive 

noise, then it distributed with above Poisson PDF. 

And gk is Gaussian process that is used to model the amplitude of impulsive noise with zero mean and variance (power) σ2, so the total 

power of impulsive noise is [7]:   

np =
σ2

λ
                                                                             (12) 

4. IF Estimation Based On Time-Frequency Distribution 

Although the Fourier transform is most useful adaptive tool for analysis stationary situations, but it no longer a well-adapted for 

nonstationary signal because there is no time information after frequency transformation [20, 21]. 

Frequency modulated (FM) signals are nonstationary signals which their frequency contents are time-varying, so such signals are 

analysed by time-frequency analysis 

only because the FT and correlation methods fails in IF estimation that is represent the important parameters of nonstationary signals [18].   

 Fourier transform of the instantaneous autocorrelation of the analytic associate of the signal represents a time-frequency distributions 

(TFD) that is representing the double transform from the time-domain into the time-frequency domain. The short-time Fourier transform 

(STFT) is the simplest formula of time-frequency distribution (TFD) it is well-known as windowed frequency distribution [16]: 

ρs(t,f) = ∫ s(λ)h(λ − t)e−j2πfλdλ
∞

−∞

 

                                               = FT
λ→f

{s(λ)h(λ − t)}                                        (13) 

where s(λ) is the analytic signal, h(λ − t) is a time window. 

As in [1], [18], [22] and [23] the instantaneous frequency (IF) can be estimated by solving the problem below:  

fî (t) = arg[maxfρz(t , f)];  0 ≤ f ≤ fs 2⁄            (14) 

where z(t) is analytic signal as in equation (4). So the TDF uses for nonstationary signals to identify their variation of time, where in the 

time-frequency distribution denoted by ρ(t,f), the variables t and f are not alternately, but are exist together. The TFD representation is 
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centralized in t and f, so the TFD constant-t cross-section should show the frequency or frequencies exists at time t, and its constant-f 

cross-section should show the time or times at which frequency f is existing [18]. 

In this paper, the periodogram is used to estimate the IF of linear and quadratic FM signals. 

Periodogram is the square magnitude of STFT ( |STFT|2), denoted by Ss
w(t,f) [24]: 

Ss
w(t,f) = |Fs

w(t,f)|2 

= |Fτ→f{s(τ)w(τ − t)}|2 

                                                     = |∫ s(τ)w(τ − t)e−j2πfτdτ
∞

−∞

|

2

                (15) 

5. Simulation Results 

Simulation results of TFD IF estimation of LFM signals 

Linear frequency modulation (LFM) signal is simulated as follows: 

y(t) = n(t) sin {j2π (fot + 
α

2
t2)} + ϵ(t) 

where n(t) is multiplicative zero-mean noise and  ϵ(t) is additive white Gaussian noise (AWGN) with zero mean, α = 0.5 is slope of 

IF low of the signal. 

the simulated signal has total time length L = 10s, the sampling interval is  Ts = 0 ∙ 001s, and the number of samples is given by 

N = [L Ts⁄ ]. The signal amplitude is A = 1 volt, o is angler frequency o = 2fo, where fo = 23Hz. First, MN has been modelled 

as zero-mean Gaussian, then it has been modelled as impulsive processes as per equation (11) and (12) with Poisson parameter λ = 20. 

Monte Carlo simulations were performed with M = 20 realizations. 

 

Because the multiplicative noise power is affecting both the amplitude and phase of the signal, the signal-to-noise ratio (SNR) in the 

presence of both AWGN and MN is defined as follows: 

pnm = (pn + pm) , then 

SNR =
px

pnm

                                                                    (16) 

where px being the signal power, pm being the MN power, and pn is the additive noise power.  

 

The relative squared-error under each SNR and MN power is calculated as follows: 

e = | ((FO − fo) fo)|⁄ 2
                                                (17) 

  

Figures (1)-(3) show IF estimation at mid-time of the LFM signal versus different SNRs for two multiplicative noise models (Gaussian, 

Impulsive) with MN power  pm = −3 dB, 0 dB, and 3 dB, respectively. 
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Figures (4)-(6) show relative mean-squared error (MSE) of IF estimation at mid-time of the LFM signal versus different SNRs for two 

multiplicative noise models (Gaussian, Impulsive) with MN power  pm = −3 dB, 0 dB, and 3dB, respectively. 

Simulation results of TFD IF estimation of QFM signals 

Quadratic frequency modulation (QFM) signal has also been simulated as follows: 

y(t) = n(t) sin {j2π (fot + 
α

2
t2 +

β

3
t3)} + ϵ(t) 

where n(t) is multiplicative zero-mean noise (MN), and  ϵ(t) is additive white Gaussian zero-mean noise; with QFM parameters α=3 

and β = −0.5. Monte Carlo simulations were performed with M = 20 realizations. 

Figures (7)-(9) show IF estimation at mid-time of QFM signal versus different SNRs for two multiplicative noise models (Gaussian, 

Impulsive) with MN power  pm = −3 dB , 0 dB, and 3 dB, respectively. 

Figures (10)-(12) show MSE of IF estimation at mid-time of QFM signal versus different SNRs for two multiplicative noise models 

(Gaussian, Impulsive) with MN power pm = −3 dB , 0 dB, and 3 dB, respectively 

From these figures it can be seen that IF estimation for LFM and QFM signals based on TFD for the case of Impulsive MN model gives 

reasonable results under MN up to MN power of 0 dB more than for the case of Gaussian MN model. For MN power less than 0 dB there 

is little difference between effect of two models, while at high MN power more than 0 dB especially at 3 dB   the estimation algorithm 

holds in case of impulsive noise.  

Figures (13)-(14) show IF estimation at mid-time of QFM signal versus different SNRs for two multiplicative noise models (Gaussian, 

Impulsive) with MN power  pm = 3 dB and λ = 30,10  respectively. 

Figures (15)-(16) show MSE of IF estimation at mid-time of QFM signal versus different SNRs for two multiplicative noise models 

(Gaussian, Impulsive) with MN power  pm = 3 dB and λ = 30,10  respectively. 

Figures (13)-(16) show the effect of Poisson parameter (λ) on IF estimation method based on TFDs, where the IF estimation method 

produced more accurate results at high value of  λ (low arrival rate). 

 

6. Conclusions  

This paper presented a study on the performance of instantaneous frequency (IF) estimation of  linear frequency-modulated (LFM) and 

quadratic FM (QFM) signals using time-frequency analysis (specifically periodogram) by considering two models for multiplicative noise 

(MN): Gaussian, and Impulsive. Although the two considered MN models are not correlated, the MSE of estimated instantaneous 

frequency in case of impulsive noise (at high value of average impulse rate) is lower than the MSE in case of Gaussian noise at 

multiplicative noise power = 3 dB.   

 الخلاصة

التردد. بينت نتائج المحاكاة بان -منتم تحليل أداء تخمين التردد الاني للموجات المضمنة تردديا تحت تاثير نوعين من الضوضاء الضربي )الكوسي والنبضي( باستخدام توزيع الز

ولكن بصورة عامة فان طريقة التخمين المستخدمة في هذا العمل ديسي بيل  3للضوضاء النبضي اقل تاثير مدمر للإشارة مقارنة بالضوضاء الكوسي عند قدرة اقل من 

(periodogram تفشل عندما تكون قيمة الضوضاء الضربي اعلى من )ديسي بيل لكلا النوعين من الضوضاء )الكوسي والنبضي(. 3 
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