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1.Introduction: 

     Let   denote the class of functions analytic and meromorphic in the punctured unit disk    

*      | |   +    * + and let   denote the subclass of   consisting of functions of the form :- 

 ( )         
 
      (          *     +)                                             (1.1) 

which are analytic and meromorphic univalent in the punctured unit disk     

A function     is said to be meromorphically starlike of order   if   

  {
    ( )

 ( )
}    (       * +      )                                        (   ) 
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and a  function     is said to be meromorphically convex of order   if  

  { (  
    ( )

  ( )
)}    (       * +      )                                     (   ) 

        We denote by   ( )  ( ), respectively, the classes of univalent meromorphic 

starlike functions of order   and univalent meromorphically convex functions of order   . 

Similar classes have been extensively studied by Clunie[3], Miller[6] and Atshan[1],[2]. 

Definition(1): A function     is said to be in the class   (   ) if the following 

condition is satisfied:- 

        |

      ( )

   ( )
  

(    ) 
       ( )

   ( )

|                                                                       (1.4) 

2. Coefficient estimates. 

      The following theorem gives a necessary and sufficient  condition for a function   to be in 

the class  (   )  

Theorem(1): Let      . Then    (   ) if and only if   

       ,        -                                     
          (2.1) 

The result is sharp for the function   given by 

      ( )      
       

 ,        -
                                                                                       (2.2) 

Proof: Suppose that the inequality (2.1) holds true and | |   , then we have 

 |      ( )      ( )|   |(    )   ( )         ( )|          

  |     ∑     
 

 

   

|   |(    )    ∑ ,     -   
 

 

   

|    

  ∑      

 

   

(    )   ∑ ,     -   

 

   

  

  ,        -   ,       -    
    , 
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by hypothesis. Thus by maximum modulus principle,    (   )  

Conversely, assume that 

||

      ( )
   ( )

  

(    )  
       ( )

   ( )

||  |
      ( )      ( )

(    )         ( )
|  |

           
  

   

 (    )      ,     -   
  

   

|      

Since   ( )  | | for all  , we have 

   {
             

   

 (    )      ,     -     
   

}                                                                                  (   ) 

We choose the value of   on the real axis and     . Through real values, we obtain 

inequality (2.3). 

Corollary(1): Let    (   ). Then  

 
    

 
       

 ,        -
    (   )                                                                       (   ) 

3.Convex linear Combination. 

      In the next theorem, we show that the class  (   ) is closed under convex linear 

combination. 

Theorem(2): The class  (   ) is closed under convex linear combination. 

Proof: Let   ( )           
 
      and   ( )           

 
      belong 

to the class  (   ), for        

We must show that the function   defined by  ( )     ( )  (   )  ( )   (   )  

Since    and     (   ), then by Theorem(1), we have   ,        -        
   

      ,   ,        -             
   . 

Now,   ( )     ( )  (   )  ( )       [      (   )    ]
 
       

Then 
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∑ ,        -[      (   )    ]

 

   

  ∑ ,        -     (   )∑ ,        -    

 

   

 

   

 

                                                                      (       )  (   )(       )           

Then by Theorem(1), we have  ( )   (   ) and the proof is complete. 

4. Closure Theorem. 

Theorem(3): Let the function    defined by 

   ( )           
 
      (                    ) 

be in The class  (   ) for every          . Then the function   defined by  

 ( )         
 
      (            )  also belongs to the class  (   ), where 

   
 

 
      

 
    

Proof: Since    ( )   (   ), we have  

  ,        -             
    for every          .  

Hence   ,        -     ,        -(
 

 
     )

 
      

      
    

           
 

 
∑(

 

   

∑ ,        -    ) 

 

   

 

                                                          
 

 
 (       )          

    

Therefore, by Theorem(1.1), we have    (   )  

5. Distortion Theorem. 

In the following theorem, we prove distortion bounds associated with the class introduced in 

(1.4). 

 

Theorem(4): If     (   ), then  
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,       -
 | ( )|  

 

 
 

       

,       -
 (  | |     )                          (   )     

The result is sharp for the function   given by (2.2).  

Proof: Let  ( )    (   ). Then by Theorem(1), we get  

                 
 
    

       

,       -
                                                                                                          (   ) 

since  ( )         
 
      ,  

then  | ( )|  
 

| |
    

 
   | |  

 

| |
 | |   

 
    

 

 
 

       

,       -
                             (5.3)       

Similarly  | ( )|  
 

 
 

       

,       -
                                                                                                 (   ) 

From (5.3) and (5.4), we get (5.1) and the proof is complete. 

6.Extreme points. 

       In the next theorem, we obtain extreme points for the class  (   ).  

Theorem(5): Let   ( )      and   ( )      
       

 ,        -
     Then   ( ) in the class 

 (   ) if and only if it can be expressed in the form  ( )       ( )
 
   , where    

  (   ) and       
   . 

Proof: Assume that  ( )       ( )
 
       

    
(       )  

 ,        -
   

     

Then it follows that  
 ,        -

(       )
 
     

(       )

 ,        -
       

     

Therefore    (   ). 

Conversely, assume that    (   )  then by(2.1), we have 

   
       

 ,        -
 (   )  

Setting 

   
 ,        -

(       )
   and         
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Hence,  ( )       ( )
 
       ( )       ( )

 
     

This completes the proof . 

7. Convexity . 

       In the following theorem, we obtain the radius of convexity for the functions class  (   ).    

Theorem(6): Let    (   ). Then   is univalent meromorphic convex of order   

(     ) in the disk | |   , where  

        {
(   ),        -

(     ),       -
}

 
   

  

The result is sharp for the function   given by (2.2).  

Proof: It is sufficient to show that   

|
    ( )

  ( )
  |             | |                                      (   ) 

But  

|
    ( )

  ( )
  |  |

    ( )     ( )

  ( )
|  

  (   )  | |
    

   

      | |    
   

   

Thus, (7.1) will be satisfied if  

                                              
  (   )  | |

    
   

      | |    
   

      

or if   

  ∑
 (     )

   
  | |

      

 

   

                                                (   ) 

Since    (   ), we have   

∑
 ,        -
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Hence, (7.1) will be true if  

 (     )

   
| |    

 ,        -

       
   

or equivalently 

| |  {
(   ),        -

(     ),       -
}

 
   

(   )  

which follows the result. 

8. Neighborhood property. 

Next, we determine  the inclusion relation involving (   ) –neighborhoods. Following the 

earlier works on neighborhoods of analytic functions by Goodman[4], Ruscheweyh[8] and 

Raina and Srivastava[7]but for meromorphic function studied by Liu and Srivastava[5] and 

Atshan[1], 

We define the (   ) –neighborhoods of a function  ( )    by  

    ( )  *     ( )          
        |     |        

   
 
   +           (8.1) 

Definition(8.1): A function  ( )    is said to be in the class  (   )  if there exists a function 

 ( )   (   ) such that 

                           |
 ( )

 ( )
  |      (         )                                                    (8.2) 

Theorem(7): Let  ( )   (   ) and  

                                      
 (       )

          
                                                                                      (8.3) 

Then     ( )   (   )   

Proof: Let  ( )      ( )  Then, we have from (2.44) that  

               ∑  |     |    

 

   

   (   )  

               ∑|     |    

 

   

   (   )  
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Also, since  ( )   (   )  we have from Theorem(1) 

                 
 
    

       

       
   

so that 

 |
 ( )

 ( )
  |  |

 (     )   
   

          
   

|  
 |     | 

   

   |  | 
   

 
 (       )

          
      

Thus, by Definition(8.1),  ( )   (   )  for   given by(8.3). 

This completes the proof. 
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