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Abstract: Performance of FFT frequency estimation of single tones based instantaneous frequency estimators for noisy single-

tone sinusoid signal is investigated under impulsive multiplicative noise with different value of Poisson parameter as well as 

comparative study on the performance of the FFT frequency estimation methods under impulsive, Gaussian and uniform 

multiplicative noise with different values of power is presented. This paper presents simulation of impulsive noise and analysis 

study of its damage effect on FM signal in time domain. Effect of Poisson parameter in damage effect of impulsive noise on FM 

signal has been investigated. Simulation results show that impulsive noise has less impairment effect at high value of Poisson 

parameter. FFT frequency estimation method is the best estimator under impulsive multiplicative noise in terms of minimum 

mean squared estimation error, especially at high value of Poisson parameter. 
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1. Introduction 

In wireless communication systems common kinds of 

noise is impulsive noise, which is modelled as Poisson-

Gaussian model [Ghadimi et al., 2012]. Source of 

impulsive noise is human-made (physical or industrial) 

source such as mechanical switches, even light switches, 

power lines [Ghadimi et al., 2012; Gurubelli et al., 

2014].  Unlike additive noise, which effect amplitude of 

signal, multiplicative noise power is affecting both the 

amplitude and phase of the signal therefore, it can be 

considered as most severe degradation noise that affects 

signal and system [Tuzlukov, 2002]. There are many type 

of multiplicative noise; impulsive noise is one of these 

types that damages signal and weak performance and 
reliability of system especially image and 

communication system in spite of a high signal-to-noise 

ratio. [Tuzlukov, 2002; Al-Mawali et al., 2010]. 

Impulsive noise has very high amplitude (hundred micro-

volts) and short duration so that it causes great 

impairments and high error rate during transmission data 

in power line communication system (PLC) according to 

these features where noise in network is modelled as 

background Gaussian noise and Poisson-Gaussian noise 

(impulsive noise) [Ghadimi et al., 2012; Al-Mawali, 

2011]. Signals in most important applications such as 

communication, biomedical, sonar and radar, are 

nonstationary signals [König, 1996]. Frequency 

modelled (FM) signals are nonstationary signal which 

their frequency content is varying with time and 

defined by instantaneous frequency (IF), therefore IF 

estimation of signal under noise is considered major 

problem in important fields [Cohen, 1995]. 

[Liu et al, 2016] proposed estimation methods to 

estimate carrier frequency of signal under impulsive 

noise, this proposal method exceed the conventional 

DFT method.  

[Gurubelli et al., 2014] proposed effective and robust 

frequency estimator, which estimated exact frequency 

of signal under impulsive noise without iteration 

search.    

 

Few literatures focus on multiplicative noise 

especially when it modelled as impulse process. This 

paper analyses the effects of impulsive multiplicative 

noise on FM signals.  

The paper is organized as follows: The problem 

formulation is defined in section 2. In section 3, 

Methodology and Simulation Experiments are 

presented. In section 4, simulation details and results 

are explained. Finally, In section 5 conclusions are 

presented.  

 

2. Problem Formulation 
In this paper the noisy signal can be modelled as:  

𝑦(𝑡) = 𝑛(𝑡) 𝑠𝑖𝑛(𝜙(𝑡)) + 𝜖(𝑡)                                     (1)                                    
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where 𝑛(𝑡) is multiplicative noise, 𝜙(𝑡) is the initial 

phase and ϵ(t) is an additive white Gaussian noise 

(AWGN) with zero mean and variance σ𝑎
2; with 𝑛(𝑡) 

and 𝜖(𝑡) considered as independent processes. 

First, consider 𝑛(𝑡)  as white Gaussian noise with zero 

mean and variance σ𝑚
2. And then 𝑛(𝑡) consider as 

impulsive noise with Poisson-Gaussian model. 

Linear frequency modulation (LFM) law of signal model 

in equation (1) has been modelled as [Boashash et al., 

1990]: 

𝑠(𝑡) = 𝑒
{𝑗2𝜋(𝑓o𝑡+ 

𝛼

2
𝑡2)}

                                                   (2)                      

where 𝛼  is the linear modulation index, and 𝑓o  is the 

initial frequency (in Hertz).  
                                           
In this paper, Gaussian, impulsive and uniform models 

have been considered. Since impulsive noise sources are 

human -man sources environment, therefore it non 

Gaussian model, so it can be modelled as Poisson-

Gaussian noise [Gurubelli et al., 2014] as bellow: 

 

𝑖𝑘 = 𝑏𝑘 ∙ 𝑔𝑘                                                                       (3)      

Where 𝑏𝑘 is Poisson process that is modeling the arrival 

time of impulsive noise at instant 𝑘  with parameter 𝜆  

which denote the rate of unit per second.  

A random variable 𝑋 is said to be Poisson if its pdf is 

given by [Hogg and Craig, 1978]: 

𝑃(𝑋 = 𝑥) = 𝑒−𝜆
𝜆𝑥

𝑥!
 ;    𝑥 = 0,1,2,…..                          (4) 

ℇ{𝑋} = 𝜆 ; var(X) = 𝜆. 

Where 𝑃(𝑋 = 𝑥) is the probability of event of 𝑥 arrivals 

in unit time, thereby when 𝑋 represents the time count of 

arrival of impulsive noise, then it distributed with above 

Poisson PDF. 

And 𝑔𝑘 is Gaussian process that is used to model the 

amplitude of impulsive noise with zero mean and 

variance (power) 𝜎2, so the total power of impulsive 

noise is [Al-Mawali et al., 2010]:   

𝑛𝑝 =
𝜎2

𝜆
                                                                             (5)   

Gaussian process can be simulated by using probability 

density function (pdf) with zero mean and variance 

(power) 𝜎2 as follows [Hussain et al., 2011]: 

𝑝(𝑛) =
1

𝜎√2𝜋
𝑒−𝑛2 2𝜎2⁄                                                 (6) 

                                                                          

In this paper, uniform noise also consider by using its 

probability density function (pdf) as: 

𝑝(𝑥) =
1

𝑏 − 𝑎
; − < 𝑎 < 𝑏 <  

The mean and variance of this distribution are given by: 

μ = ℇ{𝑋}  =  
𝑎+𝑏

2
;  var = ℇ{(𝑋 − 𝜇)2} =  

(𝑏−𝑎)2

12
  

 

3. Methodology and Simulation 

Experiments 
 

I. Estimation methods 

In this paper, maximum likelihood (ML) 

estimator using Fast Fourier Transform (FFT) 

with interpolated peak estimation based 

frequency estimation is used to estimate 

frequency of noisy signal under three kinds of 

multiplicative noise (Gaussian, Uniform and 

impulsive) where estimated frequency can be 

given by the peak of the Fourier transform occurs 

(Rife and Boorstyn, 1974): 

𝑓𝑀𝐿 = 𝑎𝑟𝑔(𝑚𝑎𝑥|𝑋(𝑓)|)                                               (7) 
Where 𝑓𝑀𝐿 was estimated frequency, arg return the 

index of peak of 𝑋(𝑓) and  𝑋(𝑓) is the Fourier 

transform of the single-tone signal 𝑥(𝑡), computed 

from the sampled version of the input signal 𝑥(𝑛) of 

length 𝑁 by the DFT as: 

𝑋(𝑘) =
1

√𝑁
∑ 𝑥(𝑛)𝑒(−

2𝜋𝑘𝑛
𝑁

)

𝑁−1

𝑛=0

;  0 ≤ 𝑘 ≤ 𝑁      (8)   

II. Signal to noise ratio (SNR) of noisy 

FM signal 
Since the multiplicative noise power is affecting 

both the amplitude and phase of the signal, the 

signal-to-noise ratio (SNR) of noisy FM under effect 

of both AWGN and MN is defined as follows: 

𝑝𝑚𝑛 = (𝑝𝑛 + 𝑝𝑚) , then 

𝑆𝑁𝑅 =
𝑝𝑥

𝑝𝑚𝑛
                                                               (9)        

where 𝑝𝑥 being the signal power, 𝑝𝑚 being the MN 

power, and 𝑝𝑛 is the additive noise power. 

The relative squared-error under each SNR and MN 

power is calculated as follow: 

𝑒 = | ((𝐹𝑂 − 𝑓𝑜) 𝑓𝑜)|⁄ 2                                           (10)                                                 

Where 𝐹𝑂 is estimated frequency and 𝑓𝑜 is actual 

frequency of noiseless signal. 

III. Simulation hypotheses 

We simulated the above algorithms with signal 

model under multiplicative noise (MN) as per 

Equation (1) using MATLAB.  
Linear frequency modulation (LFM) signal is 

simulated as follows: 

𝑦(𝑡) = 𝑛(𝑡) sin {𝑗2𝜋 (𝑓𝑜𝑡 +  
𝛼

2
𝑡2)} + 𝜖(𝑡)      (11) 

where 𝑛(𝑡) is multiplicative zero-mean noise and  

𝜖(𝑡) is additive white Gaussian noise (AWGN) with 

zero mean, 𝛼 = 0.5 is slope of IF low of the signal. 

the simulated signal has total time length 𝐿 = 10s, 

the sampling interval is  𝑇𝑠 = 0 ∙ 001s, and the 

number of samples is given by 𝑁 = [𝐿 𝑇𝑠⁄ ]. The 

signal amplitude is 𝐴 = 1 volt, 𝑜 is angler 

frequency 𝑜 = 2𝑓𝑜, where 𝑓𝑜 = 23Hz. First, MN 

has been modelled as zero-mean Gaussian, then it 

has been modelled as impulsive processes as per 

equation (3) and (4) with Poisson parameter 𝜆 = 20. 

Monte Carlo simulations were performed with 𝑀 =
20 realizations. 

 

4. Simulation results 
From simulation results of implementing maximum 

likelihood (ML) estimator, using Fast Fourier 

Transform (FFT) with interpolated peak estimation 



 

 

using complex single-tone sinusoid affected by 

additive Gaussian and zero mean multiplicative in 

MATLAB. Comparative study of above estimation 

method performance in term of mean square error 

(MSE) using three models of multiplicative noise 

(Gaussian, impulsive and uniform) is present with 

different value of Poisson parameter as shown in 

figures (13-18). 

Effect of impulsive noise on FM signal in time 

domain with different value of arrival time 𝜆 is 

shown as in figures (1-12) 
 

Figures (1)-(4) show one realization of impulsive noise 

with different value of 𝜆 (Poisson parameter) in time 

domain. 

Figures (5)-(8) show noisy FM signal under additive 

Gaussian noise and multiplicative impulsive noise with 

different value of 𝜆 (Poisson parameter) in time domain. 

 Figures (9) and (10) show one realization of Gaussian 

noise at power = −3dB and 3dB respectively. 

Figures (11) and (12) show noisy FM signal under 

multiplicative Gaussian noise at power = −3dB and =
3dB respectively in time domain.  

It is clear that impulsive noise has less destructive effect 

at high value of   𝜆. Since impulsive noise is modelled as 

Poisson-Gaussian representation, it clear from results in 

figure (1)-(4) that amplitude of impulsive noise increase 

and be more damage at high power of Gaussian noise. 
Nevertheless, at low value of 𝜆 and high power of 

Gaussian noise the impulsive noise effect approaches to 

the Gaussian noise as evidenced by simulation results in 

figures (1)-(12). 

 

Figures (13)-(15) show the estimated frequency versus 

SNR using interpolated FT peak for various 

multiplicative noise models (Gaussian, impulsive and 

uniform) with different powers and 𝜆 = 30. It is clear 

that FT method hold at SNR=0 dB in case of impulsive 

noise with  𝑝𝑚 = 30 while in case of uniform and 

Gaussian noise it hold at SNR more than10 dB. 

  

Figures (16)-(18) show the estimated frequency versus 

SNR using interpolated FT peak for various 

multiplicative noise models (Gaussian, impulsive and 

uniform) with different powers and 𝜆 = 3.  

Note that under Impulsive noise better frequency 

estimate is obtained at lower SNR under the same 

multiplicative noise power especially at high value of 

Poisson parameter 𝜆 (low value of arrival time of 

impulse),  high signal-to-noise ratios and  𝑝𝑚 = 30. 

 

5. Conclusions  

This paper presented a study on the impairment effect of 

Impulsive multiplicative noise (MN). Poisson parameter 

of impulsive noise is important factor that effect on 

damaged effect of impulsive noise on signals as well as 

on performance of frequency estimation method where 

the low value of Poisson parameter increase the severe 

effect of noise and damage of signal, thereby impulsive 

noise effect be closed to Gaussian noise. Impulsive 

noise is less destructive than Gaussian or uniform noise 

with the same power and high value of Poisson 

parameter.    
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Fig. 1.   Time domain representation of one realization of impulsive 

noise with 𝜆 = 5.  

Fig. 5.  Noisy FM signal under impulsive noise with 𝜆 = 5 and Gaussian 

noise power = − 3. 
Fig. 2. Time domain representation of one realization of impulsive noise 

with 𝜆 = 30. 

Fig. 6. Noisy FM signal under impulsive noise with 𝜆 = 30 and 

Gaussian noise power =  −3. 
Fig. 3.  Time domain representation of one realization of impulsive noise 

with 𝜆 = 30. 

Fig. 4.   Time domain representation of one realization of impulsive 

noise with 𝜆 = 5.  

 



 

 

 

  

Fig. 9. Time domain representation of one realization of Gaussian 

noise at power =  −3 dB.  

 

Fig. 11. Noisy FM signal under Gaussian noise at power =  −3dB. 

 

Fig. 10.  Time domain representation of one realization of Gaussian 

noise at power =  3 dB.. 

 

Fig. 12.  Noisy FM signal under Gaussian noise at power =  3dB. 

 

Fig. 7. Noisy FM signal under impulsive noise with 𝜆 = 30 and 

Gaussian noise power =  3dB. 

Fig. 8. Noisy FM signal under impulsive noise with 𝜆 = 5 and 

Gaussian noise power =  3. 

 



 

 

 

Fig. 13. Interpolated FT peak method for various multiplicative 

noise models.with power = −30dB and 𝜆 = 30. 

Fig. 14. Interpolated FT peak method for various multiplicative 

noise models.with power = 0dB and 𝜆 = 30. 

Fig. 15. Interpolated FT peak method for various multiplicative 

noise models.with power = 30dB and 𝜆 = 30. 

Fig. 16. Interpolated FT peak method for various multiplicative 

noise models.with power = −30dB and 𝜆 = 3. 

Fig. 17. Interpolated FT peak method for various multiplicative 

noise models.with power = 0dB and 𝜆 = 3. 

Fig. 18. Interpolated FT peak method for various multiplicative 

noise models.with power = 30dB and 𝜆 = 3. 


