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Abstract

This paper presents a study on the performance of instantaneous frequency es-
timators of mono-component FM signals, including a single-tone sinusoid, under
additive white Gaussian noise (AWGN) with different kinds of multiplicative noise.
For single-tone signals, two main estimators are considered: maximum likelihood
(ML) estimator using Discrete Fourier Transform (DFT) with interpolated peak es-
timation, and autocorrelation method. For linear and non-linear FM signals, peak
of a specific time-frequency distribution (TFD), the periodogram, has been con-
sidered. Three statistical models of multiplicative noise are analyzed (Gaussian,
Rayleigh, uniform). Simulation results showed that Rayleigh noise is less destruc-
tive than Gaussian or uniform noise with the same power; also, DFT is still better
than correlation for IF estimation in terms of error and robustness against all noise
models.
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1. Introduction

Frequency estimation appears in a wide range of engineering applications, e.g. in com-
munications, radar, radio frequency identification and resonance sensor systems [1, 2].
Noise is a major problem in signal processing, and the type of noise (its statistical model)
is a major factor that affects the performance of frequency estimation methods [3]. There
are different kinds of noise encountered in application. According to its structural prop-
erties, noise can be additive, phase, and multiplicative [3]. According to its model, it can
be Gaussian, Poisson, impulsive, non-Gaussian, among other models [3]. Many areas of
signal processing suffer from multiplicative noise, i.e., noise that affects the amplitude of
the signal. For example, in time-selective fading in communication channels, amplitude
variations are usually modeled as Rayleigh or Rician distributed [4]. There are various
methods for estimating the frequency and phase of sinusoidal signals, however, these
methods widely differ in performance, especially in regards to accuracy and computa-
tional complexity [1, 2, 5]. A comparative study of different FFT estimation methods
for the problems of detecting and measuring the frequency of a single tone in additive
white noise have been presented in [6].

An important kind of sinusoidal signals is single-tone sinusoids, which are widely
used as information carriers [7]. Using discrete Fourier transform (DFT) of the collected
samples is a common method for frequency estimation [8], however, it is a costly method
as one should first calculate a large number of DFT samples. On the other hand, using
a few autocorrelation samples is more efficient in computation but less accurate [9, 10].

To achieve extra benefits for frequency estimation algorithms have been proposed in
[11, 12] that use higher-order autocorrelation lags. Lei Zhu and Ji-Hong Shen in [13]
proposed a new formulation of frequency estimation using the linear prediction (LP)
property and high lags autocorrelation of sinusoidal signals enjoys low computational
complexity because it only need the autocorrelation coefficients and its unwrapping
processing. Ubolkosold [14] presented an estimator that relies on the nonlinear least-
squares (NLS) principle in conjunction with the summation-by-parts formula. This
estimator is simple and robust to the lack of information on the form of the correlation of
the multiplicative noise. In [15], a comprehensive analysis of frequency estimation in the
presence of multiplicative and additive noise both in time domain and frequency domain
was provided, the multiplicative noise is assumed to be circular Gaussian process.

In many application, estimation of the instantaneous frequency of a nonstationary
signal is important. Instantaneous frequency of nonstationary signals can be described
by time-frequency distributions, such as the Wigner-Ville distribution (WVD) [16].
Boashash [17] developed the concept of instantaneous frequency (IF) and discussed
different estimation methods based on time frequency distributions. The definition of IF
has further been improved in [18].

Despite its important effects, there have been only a few works on multiplicative
noise due its difficult modeling and analysis. This paper analyzes the effects of different
statistical models of multiplicative noise (Gaussian, Rayleigh and uniform distribution)
on frequency estimation methods of mono-component single-tone as well as FM signals.
A comparative study is presented on the performance of the above frequency estimation
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methods (DFT, correlation, and TFD) under different models of multiplicative noise with
different values of power.

The paper is organized as follows: The single-tone signal model is defined in Sec-
tion 2. In Section 3, IF definition and FM signal model are presented. In Section 4,
multiplicative noise models are presented. Section 5 presents frequency estimation
methods based on spectral domain (Fourier transform), while Section 6 presents fre-
quency estimation based on the signal autocorrelation. In Section 7, IF estimation based
on time-frequency distribution is handled. Finally, in Section 8 simulation details and
results are explained.

2. The Single-Tone Signal Model under Gaussian Noise

The single-tone noisy sinusoid model is given by:

y(t) = n(t) · cos(ωot + φo) + ε(t) (1)

where n(t) is multiplicative noise, ωo is the frequency of the signal, φo is the initial phase
and ε(t) is an additive white Gaussian noise with zero mean and variance σ 2

a; with n(t)

and ε(t) considered as independent processes. First, consider n(t) as white Gaussian
noise with zero mean and variance σ 2

m. Without loss of generality consider φo = 0. It
can be shown that the product n(t) · cos(ωot) is Gaussian with zero mean and variance
σ 2

m.

Proof. Consider the signals u(t) = n(t)ejωot and v(t) = n(t)e−jωot . Their autocorrela-
tions are given by:

Ru(τ) = E{u(t)u∗(t + τ)}
= E{n(t)n(t + τ)ejωote−jωo(t+τ)}
= E{n(t)n(t + τ)e−jωoτ }
= E{n(t)n(t + τ)}E{e−jωoτ } [Independent]
= Rne

−jωoτ

where E is the statistical expectation functional. Similarly: Rv(τ) = Ru(τ)e+jωoτ .

Since cos(ωot) = 1

2
(ejωot + e−jωot ) [Euler], then

Ry(τ) = ejωot
1

2
[Ru(τ) + Rv(τ)] = Rn(τ) cos(ωoτ).

Since n(t) is wide-sense stationary (WSS), then Rn(τ) = η

2
δ(τ ); hence, Sn(f ) = η

2
,

where
η

2
is a constant that represents the double-sided power spectral density (psd) of

noise, Sn(f ). Note that according to Wiener-Kinchin Theorem (WKT) [7], we have
Sn(f ) = F

τ→f
[Rn(τ)], where F represents the Fourier transformation.
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The psd of the signal y(t) is given by:

Sy(f ) = 1

2
[Sn(f + fo) + Sn(f − fo)] = η

2

Hence, by WKT,

Ry(τ) = η

2
δ(τ ),

which means that y(t) is white noise with the same power σ 2 as n(t). On the other hand,
the autocorrelation of the signal y(t) can be obtained as:

Ry(τ) = η

2
δ(τ ) cos(ωoτ)

= η

2
δ(τ ) cos(0) = η

2
δ(τ )

where the multiplication property of the delta function has been used [7, 19]: x(t)δ(t) =
x(0)δ(t) [on condition that x(t) is continuous at t = 0]. The mean of n(t) is zero, i.e.,
E{n(t)} = 0. Hence,

E{y(t)} = E{n(t) cos(ωot)}
= E{n(t)} · E{cos(ωot)} = 0,

which implies that y(t) has zero mean. �

3. IF and FM Signal Model

Many signals in practice are nonstationary, i.e., with frequency content that varies with
time. Examples are those signals found in speech processing, biomedical applications,
seismology, machine condition monitoring, radar, sonar, telecommunication, and many
other applications [20]. In such signals, the instantaneous frequency (IF) that describes
the variations of the frequency content with time is the most important characteristic of
the signal. In the case of a frequency-modulated (FM) signals, the IF represents the FM
modulation law and is often referred to as simply the IF law [1, 2].

The IF is defined for a given real signal, s(t), as follows [20]:

fi(t) = 1

2π

dθ(t)

dt
(2)

where θ(t) is instantaneous phase of real signal s(t) whose analytic associate is [7, 21]:

z(t) = a(t) · ej θ(t) = s(t) + jH[s(t)] (3)

where a(t) is instantaneous amplitude, and H is Hilbert transform of s(t) defined as
follows [7]:

H(f ) =
{ −j, f ≥ 0

j, f < 0

}
= −j · sgn(f ) (4)
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Hence, in order to deal with IF estimation, the analytic associate is necessary to avoid
aliasing.

In this work, the signal model having linear frequency modulation (LFM) law is [22]:

s(t) = ej2π(fot+ α
2 t2) (5)

where α is the linear modulation index, and fo is the initial frequency (in Hertz).
Using Equation (2), the LFM signal IF will be:

fi(t) = fo + αt (6)

Quadratic frequency modulation (QFM) signal has also been considered in this work
with quadratic IF law as follows:

s(t) = ej2π(fot+ α
2 t2+ β

3 t3) (7)

where β is the quadratic modulation index of the QFM signal, with the quadratic IF law:

fi(t) = fo + αt + βt2 (8)

For FM signals, IF estimation can only be done through time-frequency analysis, as
Fourier and correlation methods fail [20].

4. Multiplicative Noise Models

In signal processing systems, the integrity and quality can be realized by understand-
ing the statistical characteristics of the noise process associated with the system. These
noise processes are generated by electromagnetic or electronic sources. Considering
multiplicative noise, there are different statistical models: Gaussian model, Rice model,
Rayleigh model, Hoyt model, and Nakagami model [3]. In this paper uniform model
has also been considered. A brief description of each model is given below.

Gaussian model
Multiplicative noise that is mostly encountered in electrical systems has Gaussian prob-
ability density function (pdf) with zero mean and variance (power) σ 2 as follows [7]:

p(n) = 1

σ
√

2π
e
− n2

2σ2

Rayleigh model
A random variable X is said to be Rayleigh if its pdf is given by:

p(x) = x

B
e− x2

2B x ≥ 0; B = b2
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where b is a real positive parameter called Rayleigh parameter. This distribution has
mean and variance given by:

E{X} = b

√
π

2
; var(X) = B

4 − π

2
.

Hence, Rayleigh noise has a non-zero mean. The second moment (power) of Rayleigh
noise is given by:

p = E{X2} = 2B

where p denote the power of noise, hence, b =
√

p

2
.

Uniformly-distributed model
A random variable X is said to have uniform distribution on [a, b] if its pdf is given by:

p(x) = 1

b − a
; −∞ < a < b < +∞

The mean and variance of this distribution are given by:

µ = E{X} = a + b

2
; var = E{(X − µ)2} = (b − a)2

12

If the interval is symmetric, i.e., a = −b, then: E{X} = 0; var = power = b2/3.
A uniform random variable r on a symmetric interval [−b, b] can be generated using

a standard uniformly distributed random variable u as follows: r = −b + 2bu Any
standard generator of uniform random variables on [0,1] can be used to simulate u, like
the function rand on MATLAB.

5. Frequency Estimation of Single-Tone in the Spectral Domain

The maximum likelihood (ML) frequency estimator can be given by the frequency where
the peak of the Fourier transform occurs [8]

fML = arg
(
max|X(f )|) (9)

where X(f ) is the Fourier transform of the single-tone signal x(t), computed from the
sampled version of the input signal x(n) of length N by the DFT as:

X(k) = 1

N

N−1∑
n=0

x(n)e− 2πkn
N ; 0 ≤ k ≤ N (10)

Due to the discretization, the actual frequency of the sinusoid may reside between
DFT samples. Since the index of Fourier transform cannot be a non-integer, interpolation
between points near the peak of the DFT can improve the estimation accuracy.
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There are different interpolation methods, below are the mostly used ones.

Quadratic interpolation

In this method a quadratic fit of the form y = a+bx+cx2 is sought within a neighborhood
of the DFT peak max{X(k)} using three sample counts as follows [5]:

K − 1; u1 = |XK−1|
K; u2 = |XK |

K + 1; u3 = |XK+1|

where K = arg
(
max{|X(k)|}) is the count number at the absolute maximum of the

magnitude of DFT. The actual frequency represented by DFT count K will be given by
F = (K · fs)/N , with fs representing the sampling frequency. The maximum point of

the above quadratic is ym = − b

2c
, which gives the frequency interpolation:

u = K + g

g = u3 − u1

2 ∗ (2 ∗ u2 − u1 − u3)

The frequency would be estimated as F0 = u · fs

N
.

Barycentric method

In this method we use the same form (i.e., u = K + g) with the same three points as
above but with a different structure of interpolation as follows [23]:

g = u3 − u1

u1 − u2 + u3

The frequency would be estimated as before using the formula F0 = u · fs

N
.

Quinn’s first estimator

It takes three DFT points as follows [24]:

K − 1; u1 = |XK−1| = r1 + i · v1 (with i = √−1)

K; u2 = |XK | = r2 + i · v2

K + 1; u3 = |XK+1| = r3 + i · v3
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The following quantities should be computed:

R = r2
2 + v2

2;
S = r3 · r2 + v3 · v2

R
;

T = −S

1 − S
;

W = r1 · r2 + v1 · v2

R
;

E = W

1 − W
;

Now in case S > 0 and W > 0 then, g = S; else, g = W ; with the final interpolation

u = K + g; and the frequency estimate of F0 = u · fs

N
.

Quinn’s second estimator
Using the same three points and other parameters of the first estimator as above, the
following steps are applied to get the interpolation [25]:

g = S + W

2
+ H(S2) + H(W 2)

where

H(x) =
1
4 ln(3x2 + 6x + 1) −

√
6

24 ln(x + 1 − √
2/3)

x + 1 + √
2/3

Then the interpolation is u = K + g; with the final frequency estimate of F0 = u · fs

N
.

6. Frequency Estimation Based on Autocorrelation

While the autocorrelation samples can be used to estimate the frequency from the phase
of the available signal’s autocorrelation using a fixed number of lags [9, 10].

The autocorrelation sequence {Ry(m)} of the input signal samples {y(n)} can be
written as follows:

Ry(m) = 1

N − m

N−1∑
n=0

y(n) · y(n − m) (11)

An estimate of the frequency fo of a single-tone sinusoid can be obtained from the
phase angle of the autocorrelation samples {Ry(m)}. By using the minimal order linear
predictor [26], which is a special case of the Pisarenko harmonic decomposer frequency
estimator [27], and avoiding the case of zero lag (m = 0) to get rid of the effect of noise,
the frequency can be estimated as follows:

m · ωo = �[Ry(m)] 〈mod 2π〉 (12)
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m · ωo = �[Ry(m)] + 2kπ (13)

with 0 ≤ k < m; k being an integer. Hence, substituting m = 1 (the first autocorrelation
sample at non-zero lag) in Equation (13) and putting l = 0 will lead to an estimate of
frequency as follows:

ωo = �[Ry(1)] (14)

which is called the minimum order linear predictor [10]. It is shown that the performance
of this linear predictor can be improved by using different correlation lags [28]; also by
choosing more than one correlation coefficient [23].

7. IF Estimation Based on Time-Frequency Analysis

For non-stationary signals with time-varying frequency content (like frequency modu-
lated (FM) signals and biomedical signals), the Fourier transform (FT) cannot reveal
the time-varying characteristics of the signal (like the IF law) due to the time-averaging
process (time-integration) in the FT. In this case there is a need for time-frequency anal-
ysis. A time-frequency distributions (TFD) is a double transform from the time-domain
into the time-frequency domain representing the Fourier transform of the instantaneous
autocorrelation of the analytic associate of the signal. The simplest formula of time
-frequency distribution (TFD) is windowed frequency distribution called the short-time
Fourier transform (STFT) [7]:

ρs(t, f ) =
∫ +∞

−∞
s(λ)h(λ − t)e−j2πf λdλ = F

λ→f
{s(λ)h(λ − t)} (15)

where s(t) is the analytic signal, h(t) is a time window. By solving the optimization
problem below, the instantaneous frequency (IF) can be estimated as mentioned in [18,
20, 29, 30]:

f̂i(t) = fML = arg
(
max

f
{ρz(t, f )}); 0 ≤ f ≤ fs

2
(16)

where z(t) is analytic signal as in Equation (3). So the TDF is a revealing representation
of the non-stationary signal because it shows the distribution of signal’s energy over two-
dimensional domain: the time-frequency space. In this work, the periodogram (which
is |STFT|2) is used to estimate the IF of linear and quadratic FM signals.

8. Simulation Results

DFT estimation of single-tone frequency The above algorithms using relevant signal
models with additive white Gaussian noise (AWGN) and multiplicative noise (MN)
using MATLAB. For single-tone sinusoid, the simulated signal has total time length
L = 70s, the sampling interval is Ts = 0.001s, and the number of samples is given by

N = [ L

Ts

]. The signal amplitude is A = 1 volt, ωo is angler frequency ωo = 2πfo,
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where fo = 23 Hz. MN is modelled as zero-mean Gaussian, Rayleigh, and uniform
processes. Monte Carlo simulations were performed with M = 20 realizations.

The signal-to-noise ratio (SNR) in the presence of both AWGN and MN is defined
as follows:

SNR = pxr

pn

(17)

where pxr = (px + pm), px being the signal power, pm being the MN power, and pn is
the additive noise power. This is so because the multiplicative noise power is affecting
both the amplitude and phase of the signal.

The relative squared-error under each SNR and MN power is calculated as follows:

e =
∣∣∣∣Fo − fo

fo

∣∣∣∣
2

(18)

Figures (1)–(3) show the autocorrelation of Gaussian, uniform and Rayleigh processes
respectively. It is clear that the autocorrelation function of Gaussian and uniform pro-
cesses are weighted delta function in the lag domain, meaning that their samples (in the
time domain) are uncorrelated with each other. On the other hand, the Rayleigh noise
process is correlated with a maximum at τ = 0. This fact will argue for the smaller error
encountered under Rayleigh noise as shown in the Figures (4)–(15). Figures (4)–(6)
show the estimated frequency versus SNR using interpolated FT peak for various mul-
tiplicative noise models with different powers. Note that under Rayleigh noise better IF
estimate is obtained at lower SNR under the same multiplicative noise power.

Note that in cases where the method succeeds in lowering MSE as SNR increases,
the curve of MSE goes to a specific asymptote representing a lower bound on error called
the Cramer-Rao Bound (CRB) [4].

Figures (7)–(9) show the estimated frequency versus SNR using autocorrelation
method for various multiplicative noise models and powers. It is clear that under high
MN power this method fails, though better results are obtained under Rayleigh noise due
to its inter-correlated structure.

Simulation results of TFD IF estimation of FM signals Linear frequency modulation
(LFM) signal is simulated as follows:

y(t) = n(t) · sin
{

2π
(
fot + α

2
t2

)}
+ ε(t) (19)

where n(t) is multiplicative zero-mean noise and ε(t) is additive white Gaussian noise
(AWGN) with zero mean, α = 0.5 is slope of IF law. Figures (10)–(12) show relative
mean-squared error (MSE) of IF estimation at mid-time of the LFM signal versus different
SNRs with MN power = −30 dB, 0 dB, and 10 dB, respectively. Quadratic frequency
modulation (QFM) signal has also been simulated as follows:

y(t) = n(t) · sin

{
2π

(
fot + α

2
t2 + β

3
t3

)}
+ ε(t) (20)

where n(t) is multiplicative zero-mean noise (MN), and ε(t) is additive white Gaussian
zero-mean noise; with QFM parameters α = 3 and β = −0.5. Monte Carlo simulations
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were performed with M=20 realizations. Figures (13)–(15) show MSE of IF estimation
at mid-time of QFM signal versus different SNRs with MN power = −30 dB, 0 dB,
and 10 dB, respectively. From these figures it can be seen that IF estimation for LFM
and QFM signals based on TFD gives reasonable results under MN up to MN power of
0 dB for the cases of Gaussian and uniform MN models, while it will hold for higher
power values in case of Rayleigh model. Figures (16)–(18) show the MSE of estimated
frequency versus different SNRs with MN power = −30 dB for three various multiplica-
tive noise models (Gaussian, Uniform and Rayleigh) respectively, using interpolated FT
peak frequency and autocorrelation estimation method. Figures (19)–(21) show the MSE
of estimated frequency versus different SNRs with MN power =0 dB for three various
multiplicative noise models (Gaussian, Uniform and Rayleigh) respectively, using inter-
polated FT peak frequency and autocorrelation estimation method. Figures (22)–(24)
show the MSE of estimated frequency versus different SNRs with MN power=30 dB
for three various multiplicative noise models (Gaussian, Uniform and Rayleigh) respec-
tively, using interpolated FT peak frequency and autocorrelation estimation method. It
is very clear that these methods with Gaussian and uniform multiplicative noise failed
at high power of MN noise especially at pm = 30 dB. Also it is shown that interpolated
FT method is more accurate as compared with the autocorrelation method under all MN
models.

9. Conclusions

This paper investigates the performance of instantaneous frequency (IF) estimation of
mono-component sinusoidal signals under additive Gaussian noise while affected by
multiplicative noise (MN). DFT and correlation methods are used for single-tone signals,
while time-frequency analysis (specifically periodogram) has been used to estimate IF
laws of linear frequency-modulated (LFM) and quadratic FM (QFM) signals. Three
models for multiplicative noise have been considered: Gaussian, uniform, and Rayleigh.
As Rayleigh process is correlated, performance under Rayleigh MN is better for all
signals and methods. However, the situation is more severe in case of FM signals, where
IF estimation using the periodogram fails at lower MN powers than those in single-tone
signals. This is due to the principal role of phase in representing information held by FM
signals, and the fact that MN has more damaging effect on phase than on magnitude.
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