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وتقدير شكر  
 

الحمد لله المعلم بالق لم والشكر له على ما جاد وانعم والصلاة والسلام  
ه وسيد المرسلين محمد)صلى الله عليه  واله وسلم(على نبي  

  وبعد... ف لا يسعنا ونحن نختم هذا العمل  الا ان نخط كلمات صغيرة في
حجمها لكنها كبيرة فيما تحمله من معاني الشكر والامتنان الى كل  

في   ذي فضل اسهم بجهد او مشورة او دعم في انجاز هذا البحث  
)مشرف    الدكتور علاء كامل جابرالى    الجزيلالشكر  اتقدم ب البداية

والذي امدنا بالنصح والمشورةوتفضل علينا بالاشراف   ذيالبحث( وال
 على البحث ليضهربشكله المتكامل.

ونقدم شكرنا وامتناننا لاساتذتنا الاف اضل لجهودهم البناءة في ارواء  
 ظمأنا الى معين العلم والمعرفة.

الدراسة والى الاصدق اء الذين  كما نقدم شكرنا الى كل الزملاء في  
وعونهم ودعائهم.امدونا بدعمهم    

وختاما نسأل الله العلي القدير ميسر الامور ومفرج الهموم ان نكون قد  
.وفقنا فيما قدمناه في هذا البحث  

 
 
 سهير
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 الاهداء
  والى (وسلم واله عليه الله صلى) محمد الكريم رسولنا الى
 (السلام عليهم) والزمان العصر صاحب والى الاطهار آله
 من منسوجة بخيوط سعادتي حاكت من الى العطاء لايمل الذي الينبوع الى
  قبلها

 العزيزة امي
 بشئ يبخل لم الذي والهناء بالراحة لانعم وشقى سعى من الى

 العزيز ابي
  العلم في عبارات واحلى درر من وكلمات ذهب من حروف ا علمونا من الى

 حروف ا علمهم صاغونا من
 الكرام اساتذتي

  الطريق نشق ونحن سويا سرنا من الى عروقي في يجري حبهم من الى
 وزميلاتي زملائي

 
 سهير
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Abstract 

 

In this paper, the homotopy  perturbation method (HPM) which doesn’t 

small parameter is applied to solve the linear and nonlinear differential 

equations. The HPM deforms a difficult problem into a simple problem 

which can be easily solved. It is implemented with appropriate initial 

conditions. Comparison of the applied methods with exact solutions reveals 

that the method is tremendously effective. 
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Introduction 

The homotopy perturbation method (HPM) was first proposed by the 

Chinese mathematician Ji-Huan He. Unlike classical techniques, the 

homotopy perturbation method leads to an analytical approximate and exact 

solutions of the nonlinear equations easily and elegantly without 

transforming the equation or linearizing the problem and with high accuracy, 

minimal calculation, and avoidance of physically unrealistic assumptions. As 

a numerical tool, the method provides us with a numerical solution without 

discretization of the given equation, and therefore, it is not effected by 

computation round-off errors and one is not faced with the necessity of large 

computer memory and time. This technique has been employed to solve a 

large variety of linear and nonlinear problems. 

In the present study, homotopy perturbation method has been applied to 

solve the parabolic equations. The numerical results are compared with the 

exact solutions. It is shown that the errors are very small. However, recently, 

Adomian decomposition method has was applied for approximating the 

solution of the parabolic equations. 
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1.1 Introduction 

In this chapter we will discuss the partial differential equations, linear or 

nonlinear, homogeneous and inhomogeneous. In section 1.2 we introduce 

the definition of a PDE, in section 1.3 we will discuss the order of a PDE, 

the linearity property introduce in section 1.4, the homogeneous and 

inhomogeneous PDEs  in section 1.5, the solution of a PDE discuss in 1.6, 

in 1.7 we introduce the initial and boundary conditions. 

 

1.2 Definition of a PDE 

       A partial differential equation (PDE) is an equation that contains the 

dependent variable (the unknown function), and its partial derivatives. It is 

known that in the ordinary differential equations (ODEs), the dependent 

variable u = u(x) depends only on one independent variable x. Unlike the 

ODEs, the dependent variable in the PDEs, such as u = u(x,t) or u = u(x,y,t), 

must depend on more than one independent variable. If u = u(x,t), then the 

function u depends on the independent variable x, and on the time variable 

t. However, if u = u(x,y,t), then the function u depends on the space 

variables x,y, and on the time variable t. [13] 

Examples of the PDEs are given by  

ut = kuxx       ………………………………………………………………. 

(1.1) 

ut = k(uxx +uyy) ……………………………………………………………. 

(1.2) 

ut = k(uxx + uyy + uzz) …………………………………………..…….... 

(1.3) 

that describe the heat flow in one dimensional space, two dimensional 

space, and three dimensional space respectively. In (1.1), the dependent 

variable          u = u(x,t) depends on the position x and on the time variable 

t. However, in (1.2), u = u(x,y,t) depends on three independent variables, 
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the space variables x,y and the time variable t. In (1.3), the dependent 

variable u = u(x,y, z,t) depends on four independent variables, the space 

variables x,y, and z, and the time variable t.  

Other examples of PDEs are given by 

utt = c
2
uxx   ………………………………………………………………… 

(1.4) 

utt = c
2
(uxx+uyy) …………………………………………………………… 

(1.5) 

utt = c
2
(uxx+uyy+uzz) ……………………………………………………….. 

(1.6) 

that describe the wave propagation in one dimensional space, two 

dimensional space, and three dimensional space respectively. Moreover, 

the unknown functions in (1.4), (1.5), and (1.6) are defined by u = u(x,t), u 

= u(x,y,t), and u = u(x,y, z,t) respectively. 

1.3 Order of a PDE 

The order of a PDE is the order of the highest partial derivative that 

appears in the equation. For example, the following equations 

ux−uy = 0, 

uxx −ut = 0      

………………..……………………………………………(1.12) 

uy−uuxxx = 0        

are PDEs of first order, second order, and third order respectively. 

Example 1 : The order of the following PDEs: 

(a) ut = uxx+uyy  

The highest partial derivative contained in this equation is uxx or uyy. 

The PDE is therefore of order two. 

(b) ux+uy = 0 

The highest partial derivative contained in this equation is ux or uy. 

The PDE is therefore of order one. 
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(c) u4
uxx+uxxy = 2 

The highest partial derivative contained in this equation is uxxy. The 

PDE is therefore of order three. 

(d) uxx +uyyyy = 1 

The highest partial derivative contained in this equation is uyyyy. The 

PDE is therefore of order four. 

1.4 Linear and Nonlinear PDEs 

Partial differential equations are classified as linear or nonlinear. A partial 

differential equation is called linear if: 

(1) the power of the dependent variable and each partial derivative 

contained in the equation is one, and 

(2) the coefficients of the dependent variable and the coefficients of each 

partial derivative are constants or independent variables. However, if any 

of these conditions is not satisfied, the equation is called nonlinear. [13] 

Example 2 : The Classify of the following PDEs as linear or nonlinear: 

(a) xuxx+yuyy = 0 

The power of each partial derivative uxx and uyy is one. In addition, 

the coefficients of the partial derivatives are the independent 

variables x and y respectively. Hence, the PDE is linear 

(b) uut +xux = 2 

Although the power of each partial derivative is one, but ut has the 

dependent variable u as its coefficient. Therefore, the PDE is 

nonlinear. 

(c) ux+√u = x 

The equation is nonlinear because of the term √u. 

(d) urr+
 

 
   

 

  
           

The equation is linear because it satisfies the two necessary 

conditions. 

1.4.1 Some Linear Partial Differential Equations 
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As stated before, linear partial differential equations arise in many areas of 

scientific applications, such as the diffusion equation and the wave 

equation. In what follows, we list some of the well-known models that are 

of important concern:  

1. The heat equation in one dimensional space is given by 

                                  ut = kuxx   ………………………………………….. 

(1.13) 

where k is a constant. 

2. The wave equation in one dimensional space is given by 

                                 utt = c
2
uxx  

……………………………………………(1.14) 

where c is a constant. 

3. The Laplace equation is given by 

                               uxx+uyy = 0  …………………………………………… 

(1.15) 

4. The Klein-Gordon equation is given by 

                                 
2
u− 

 

  
 utt = 

2
u   

……………………………………(1.16) 

where c and  are constants. 

5. The Linear Schrodinger’s equation is given by 

                          iut +uxx = 0 , i =√−1   

……………………………………..(1.17) 

6. The Telegraph equation is given by 

                        uxx = autt +but +cu      ……………………………………. 

(1.18) 

where a,b and c are constants. It is to be noted that these linear models and 

others will be studied in details in the forthcoming chapters. 

1.4.2 Some Nonlinear Partial Differential Equations 
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     It was mentioned earlier that partial differential equations arise in 

different areas of mathematical physics and engineering, including fluid 

dynamics, plasma physics, quantum field theory, nonlinear wave 

propagation and nonlinear fiber optics. In what follows we list some of the 

well-known nonlinear models that are of great interest: 

1. The Advection equation is given by 

                            ut +uux = f (x,t)  ………………………………….(1.19) 

2. The Burgers equation is given by 

                         ut +uux =uxx  

…………….……………………………….(1.20) 

3. The Korteweg de-Vries (KdV) equation is given by 

                        ut +auux+buxxx = 0         ………………………………….. 

(1.21) 

4. The modified KdV equation (mKdV) is given by 

                        ut −6u
2
ux+uxxx = 0 ………………………………………… 

(1.22) 

5. The Boussinesq equation is given by 

                     utt −uxx+3(u
2
)xx −uxxxx = 0     ………………………………. 

(1.23) 

6. The sine-Gordon equation is given by 

                   utt −uxx = sinu        …………………………………………. 

(1.24) 

7. The sinh-Gordon equation is given by 

                  utt −uxx = sinhu ……………………………………………… 

(1.25) 

8. The Liouville equation is given by 

                 utt −uxx = e
±u

     ………………………………………………. 

(1.26) 

9. The Fisher equation is 
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                 ut = Duxx+u(1−u)    ………………………………………. (1.27) 

10. The Kadomtsev-Petviashvili (KP)equation is given by 

               (ut +auux+buxxx)x+uyy = 0    …………………………. (1.28) 

11. The K(n,n)equation is given by 

                ut +a(un)x +b(un)xx = 0, n > 1    …………………………. (1.29) 

1.5 Homogeneous and Inhomogeneous PDEs 

      Partial differential equations are also classified as homogeneous or 

inhomogeneous. A partial differential equation of any order is called 

homogeneous if every term of the PDE contains the dependent variable u 

or one of its derivatives, otherwise, it is called an inhomogeneous PDE. 

This can be illustrated by the following example. 

 

Example 3. The classify of the following partial differential equations as 

homogeneous or inhomogeneous: 

(a) ut = 4uxx 

The terms of the equation contain partial derivatives of u only, 

therefore it is a homogeneous PDE. 

(b) ut = uxx+x 

The equation is an inhomogeneous PDE, because one term contains 

the independent variable x. 

(c) uxx+uyy = 0  

The equation is a homogeneous PDE. 

(d) ux+uy = u+4 

The equation is an inhomogeneous PDE. 

 

 

1.6 Solution of a PDE 

A solution of a PDE is a function u such that it satisfies the equation under 

discussion and satisfies the given conditions as well. In other words, for u 



9 

 

to satisfy the equation, the left hand side of the PDE and the right hand side 

should be the same upon substituting the resulting solution. This concept 

will be illustrated by examining the following examples. Examples of 

partial differential equations subject to specific conditions will be examined 

in the coming chapters. 

 

Example 4. To show that u(x,t) = sinx e
−4t

 is a solution of the following 

PDE 

                                    ut = 4uxx    ………………………………………. 

(1.30) 

we have  

Left Hand Side (LHS)= ut = −4sinxe
−4t

 

Right Hand Side (RHS)=4uxx = −4sinxe
−4t

=LHS 

 

Example 5. To show that u(x,y)=sinx siny+x
2
 is a solution of the following 

eq. 

                                    uxx = uyy+2   ……………………………………. 

(1.31) 

we have 

Left Hand Side (LHS)= uxx = −sinx siny+2 

Right Hand Side (RHS)=uyy+2 = −sinx siny+2=LHS 

Example 6. To show that u(x,t) = cosxcost is a solution of the following 

PDE 

                                   utt = uxx  

………………………………………….(1.32) 

we have 

Left Hand Side (LHS)= utt = −cosx cost 

Right Hand Side (RHS)=uxx = −cosx cost=LHS 

Example 7. To show that 
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(a) u(x,y) = xy 

(b) u(x,y) = x
2
y

2
 

(c) u(x,y) = sin(xy) 

are solutions of the equation 

                               xux−yuy = 0   ………………………………………. 

(1.33) 

we have 

 (a) u = xy, ux = y, uy = x, 

              xux−yuy = xy−yx=0 

(b) u = x2y2, ux = 2xy2, uy = 2x2y, 

            xux−yuy = 2x2y2−2x2y2=0 

(c) u = sin(xy), ux = ycos(xy), uy = xcos(xy), 

           xux−yuy =  xycos(xy)- yxcos(xy)=0 

1.7.1 Boundary Conditions 

     As stated above, the general solution of a PDE is of little use. A 

particular solution is frequently required that will satisfy prescribed 

conditions. Given a PDE that controls the mathematical behavior of 

physical phenomenon in a bounded domain D, the dependent variable u is 

usually prescribed at the boundary of the domain D. The boundary data is 

called boundary conditions. The boundary conditions are given in three 

types defined as follows: 

1. Dirichlet Boundary Conditions: In this case, the function u is usually 

prescribed on the boundary of the bounded domain.  

2. Neumann Boundary Conditions: In this case, the normal derivative 
  

  
 

of u along the outward normal to the boundary is prescribed.  

3. Mixed Boundary Conditions: In this case, a linear combination of the 

dependent variable u and the normal form 
  

  
 is prescribed on the boundary.  
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It is important to note that it is not always necessary for the domain to be 

bounded, however one or more parts of the boundary may be at infinity. 

This type of problems will be discussed in the coming chapters. 

1.7.2 Initial Conditions 

It was indicated before that the PDEs mostly arise to govern physical 

phenomenon such as heat distribution, wave propagation phenomena and 

phenomena of quantum mechanics. Most of the PDEs, such as the diffusion 

equation and the wave equation, depend on the time t. Accordingly, the 

initial values of the dependent variable u at the starting time t = 0 should be 

prescribed. It will be discussed later that for the heat case, the initial value 

u(t = 0), that defines the temperature at the starting time, should be 

prescribed. For the wave equation, the initial conditions u(t = 0) and ut(t = 

0) should also be prescribed. 
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Chapter Two 
 

 

Homotopy Perturbation Method 
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2.1 Introduction 

In this chapter we will discuss the Homotopy Perturbation Method, first 

we will introduce the basic idea of this method in section 2.2, in section 2.3 

we will apply this method on some examples . 

2.2 The Basic Idea 

To illustrate the basic ideas of this method, we consider the following 

nonlinear differential Equation: 

 ( )   ( )                                                                         (2.1) 

Considering the boundary conditions of: 

 (    
  ⁄ )                                                                                          

(2.2) 

Where   is a general differential operator, B  a boundary operator,  ( ) a   

known analytical function and Γ is the boundary of the domain  . The 

operator   can be generally divided into two parts of    and  , , where   is 

the linear part, while   is the nonlinear one. Eq. (2.1) can, therefore, be 

rewritten as:  ( )   ( )    ( )                                                                                                      

(2.3) 

By the homotopy technique, we construct a homotopy as  (     )   

        which satisfies: 

 (   )=(1- p)[ ( )   (   )      ( )    ( )   ,                  

(2.4) 

Or 

  (   )     ( )     (   )      (   )        ( )      ( )                   

(2.5) 
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Where         is an embedding parameter and    is an initial 

approximation of equation (2.2) which satisfy the boundary conditions. 

Obviously, considering equation (2.4) and (2.5),we will have: 

 (   )   ( )   (  )                                                                     (2.6)  

 (   )   ( )   ( )                                                                      (2.7) 

The changing process of    from zero to unity is just that of   (   ) from 

  ( ) to  ( )  In topology, this is called deformation, and  ( )   (  ) 

and  ( )   ( ) are called homotopy  

According to HPM, we can first use the embedding parameter   as "small 

parameter", and assume that the solution of equation (2.5) and (2.6) can be 

written as a  power series in  : 

                                                                                        (2.8) 

Setting     results in the approximate solution of equation (2.1): 

                                                                                (2.9) 

The combination of the perturbation method and the homotopy method is 

called the homotopy perturbation method, which lessens the limitations of 

the traditional perturbation methods. On the other hand, this technique can 

have full advantages of the traditional perturbation techniques. 

The series (2.9) is convergent for most cases. However, the convergence rate 

depends on the nonlinear operator   (  ) . The following opinions are 

suggested by He:   

1. The second derivative of N (v ) with respect to v must be small 

because the parameter p may be relatively large, that mean  p 1.  

2. The norm of L
1

 N / v must be smaller than one so that the series 

converges. 
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2.3 Application of HPM 

In this section, we demonstrate the main algorithm of homotopy perturbation 

method on linear and nonlinear equations with initial condition, namely we 

consider: 

  

  
 

   

   
  ( )   (   ) (   )        (0, T)                                   (2.10) 

With the initial condition  (   )   ( )                                                (2.11) 

where φ is a function of u. We are looking for the solution satisfying 

Eqations  (2.1) ,(2.2). 

2.3.1 Example 1: 

This problem was used by Hopkins and Wait [12] to provide an example of a 

problem with a nonlinear source term: 

   

  
 

   

   
                (     )          (   )                       (2.12) 

with the initial condition  (   )    (   )   

In this example we have              

    (   )     ( )    (   ) 

we construct the following homotopy: 

  

  
 

   

  
  ( 

   

   
              

   

  
 )                                              

(2.13) 

Assume the solution of  equation (2.13) to be in the form: 

                                                                                   

(2.14) 

Substitution (2.14) into(2.13) and equation the coefficients of like powers   

we get the following set of differential equations: 
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    (           )                                                   (2.15) 

   
   

  
 

    

   
 (    

 

 
  

 )     (        
  

 

  
    

 )      

Solving the above equations, we obtain  

     (   )    

   
 

   
   

   
   

 (   ) 
                                                                                             (2.16) 

   
  

 (   ) 
   

   
(  )     

 (   ) 
   

Therefore from the results we can obtain  

 (   )    (   )  
 

   
 

  

 (   ) 
 

  

 (   ) 
   

(  )     

 (   ) 
    

               (   )    (
 

   
   )    (     )                            (2.17) 

2.3.2 Example 2: 

The problem was used by Lawson and  Et. Al. as the form  

  

  
 

   

   
 (      )   (         ) (   )        (   )    (2. 

18) 

With the initial condition  

 (   )      (  )                                                                                 (2.19) 
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In this example we have 

   ( )  (      )   (   )             ( )      (  ). 

We construct the following homotopy: 

  

  
 

   

  
  (

   

   
 (      )           )  

   

  
)                (2.20) 

Substituting (2.5) into (2.20) and equating the coefficients of like powers  , 

we get following set of differential equations: 

   
   

  
 

   

  
    

   
   

  
 

    

   
 ((      )  (         )  

   

  
                      (2.21)        

    
   

  
 

    

   
  (      )                                                      

   
   

  
 

    

   
 (      )   

Solving the above equations, we obtain  

            
 

  
     (  

 

  )    (  )                                   (2.22) 

    (   )         
 

  
     (  

 

 
)   (  

 

  )    (  )     

(2.23) 

   (   )          
 

  
     (  

 

 
)

  

  
 (  

 

  )   (  

 

  
)    (  )                                                                                            (2.24)   

And so on. Therefore from the equations, we have  

 (   )            
 

  
     (  

 

 
)   (  

 

  )    (  )  

             (   ) [        
 

  
     (  

 

 
)   (  

 

  )]    (  )               
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(   )          
 

  
     (  

 

 
)

  

  
 (  

 

  )   (  

 

  
)    (  )    = (        )    (  )  

2.2.3 Example 3: Firstly, we consider the linear Schr ̈dinger Equation: 

         ,  (   )                                                          (2.25)  

where  (   ) is a complex function and           
According to ( (   )    (    )  ( )   (  )      ( )     ( )  
                  )  a homotopy (     )             can be 

constructed as follows: 

(    )(        )    (        )                 (   )    ,  (2.26) 

where   (   )     (   )     (   ) and                
We now try to get a solution of (2.26) in the form 

 (   )    (   )      (   )       (   )        .                         (2.27) 

Substituting (2.27) into (2.28), and equating the terms with the identical 

powers of p, yields 

             

                      

                                                                                          (2.28) 
. 
. 
. 
                                              

with the following initial conditions: 

  (   )   {
      (  )               

                                    
                                        (2.29) 

The solution of the system (2.29), with the initial conditions (2.30), can be 

easily obtained as follows: 

  (   )         (  )   

  (   )            (  )   

  (   )            (  )   

  (   )   
  

 
       (  )                                                                   (2.31) 

  (   )   
  

 
      (  )   
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  (   )    
   

  
       (  )    

In this manner the other components can be easily obtained. Substituting 

(2.31) into (                             ) yields  

 (   )   (      (  ))          
  

 
    

  

 
   

   

  
           

(2.32) 

Consequently, the exact solution of  (2.25) 

 (   )          (  )                                                               (2.33) 

is readily obtained upon using the Taylor series expansion of        . 

2.3. Conclusion 

In the present study the homotopy perturbation method was applied on 

some periodic equations. The solution has been compared with the exact 

solution. The results show that while the traditional perturbation method 

depends on small parameter assumption, and the obtained results, in most 

cases, end up with a non physical result, the numerical method leads to 

inaccurate results when the equation is intensively dependent on time, while 

He's homotopy perturbation method (HPM) overcomes completely the 

above shortcomings, revealing that the HPM is very convenient and 

effective. 
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