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Introduction




The dynamical system theory is the branch of mathematics
devoted to the motion of system evolved according to simple
ruler. It was developed originally in the 17 th century by newton
to model the motions of their system evolving under the ruler of
his new theory universal gravitation (2). Chaos theory was not
known by this name until 1975 being paper y.Li youk which
include the first use of word chaos in the context of dynamical

system (1).

The goal of our work is study the dynamics and chaotic properties

of the Ikeda map.
This work consists of two chapters:
In chapter one we recall the Basic definition which we needed.

And in chapter two we studied some properties of Ikeda map and

proved properties chaotic of Ikeda

Abstract




In the work we infroduced Basic definitions which we
needed through this work we prove some necessary

properties of the lkeda map .and we find chaotic properties

(under some conditions ) of lkeda a map. One of the main

characteristics of chaotic system is that the lkeda map has
sensitive depended on initial condition . we prone this map

has positive lyapunov exponent (under some conditions).




Chapter one

Definition basic
And

some properties of
lkeda map




Definition(1-1)[2]:-

P,
Any p= m]for whichf; (P) = Py,f>(P) = P,, f5(P) = Psis called

Ps
a fixed point.

Definition(1-2)[3]:-

X
Let V be a subset of R%and v, =| y | be any element in V consider
t
F:V—R3a map. Furthermore assume that the first partials of the coordinate

maps f; , f, and f; of F exist at vy, the differential of F at vo is the linear

[ofi(ve)  ofi(vo)

OX
map DF (Vo) defined on R®by :  DF(v,)= ofa(vo) afza(y"o)

OX
8f3(v0) afjg’o)
| OX oy

For all vy in V. The determinant of DF (vo) is called the Jacobian of F at

Vo and is denoted by | = det DF (v).

Definition(1-3) [3]:- :-

Let F: R®> R® be a map and v, eR3. If | F(v,)| < 1then F is
called area contracting at vo, | F(vy)| > 1 then F is called area

expanding at V.

Definition(1-4) [4]:- :-




A map F:R"—>R" is called a diffeomorpism provided it is:

1. One-to-one.

2. Onto.

3.C~

4. its inverse F1: R">R" is C*.

Definition(1-5) [2]:-:

Suppose that A is a 2x2 matrix. The real number Ais an eigenvalue of A

provided that there is a nonzero v in R 2such that Av=Av. In this case Vv is

an eigenvector of A (relative to A) .

Definition(1-6) [3]:-:-

X X,
Let |y | be a fixed point of F, then |y, | is attracting fixed point. If
t t,

X X X,
and only if then is a disk centered of |y | such that F"|y|—|y, | a5 h—w
t t t,

X Xo Xo
for every | y| in the disk centered of {yo .by contrast {yol is repelling
t to ty




Xo
fixed point if and only if there is a disk centered at {yolsuch that ||F (v
to

XO u XO u
F( ) > <V> - (Yo) , for every (V) in the disk
w to w

u
for which |v | #
w

Proposition(1-7) :-

Ifa+ 1and b # 1 the Ikeda map I, has unique fixed point
Proof:-
By the definition of fixed point we get:

l+axcost—aysint X
axsint+aycost |=|y
t

bt

bt=t since b#1 then t=0 since axsin(t) + aycos(t) =

y then y = 0 therefore 1 4+ axcost — aysint = x .Hencex = %

1

l1-a . .
suchthat a # 1then | o" | is the fixed point m
0

Proposition(1-8) :-




1. Ifa=1, b=1and t # mx then lkeda map has infinite fixed

points.
2
Ifa+0,1, b=1, t#* mmndt #cos‘l(%) then Ikeda map has

infinite fixed points.

Proof:

1. By the definition of fixed point, we get:

xsint+ycost |=|Y

1+ xcost—y sint] [X]
t t

Thent =t , so x sint +ycost =y then x sint = y(1 — cost) since

y (1—cost) y (1—cost)

t # mx therefore x = so 1 +( e ) cost — y sint =

sint

y (1—cost) then sint+y cos t(1—cost)—y sin? t—y+y cost _

0,

sint sint

sint
sint + 2ycost — 2y = 0 thereforey = m then

1

_ 2
x = SO 2 _ 2 'then the fixed point | __sint |, vteR.
2(1-cost) sint 2 2(1—cost)

t

2. By the definition of fixed points, we get:- [ axsint + ay cost
t

=y
t

1 +axcost—aysint [X]

then t=t , soaxsint +aycost=ythen axsint= y—ay cost

sincea # 0,and ¢ = matherefore x = L3230Y o

a sint




y cost (1—a cost)

1— t
y(—fIOS) then
a sint

1+ — ay sint = asint+ ay cost+

sint

1+a?

a’ycos’t—a’ ysint’t—y+aycost=0 since t # cos™! ( 22 )

a sint 1—a cost

therefore y = —————then x = ———— .So lkeda map has infinite
1+a%-2 a cost 1+a?-2a cost

1—a cost

] ] 1+a?-2a cost
fixed points asint VtcRm
1+a%-2 a cost

t

Remark(1-9) :

1.1fa=0,b =1 and t = mathen Ikeda map has infinite fixed point.

2.1fa=0,b # 1 and t # mxthen Ikeda map has unique fixed point.

3Ufa=1,b =1andt = maxthen if mis even number we get lkeda map
has no fixed point and if m is odd number we get Ikeda map have infinite
fixed points.

4.1fa # 1,b = 1 and t = mathen Ikeda map has infinite fixed points.
5.1fa+1,b # 1andt = mxthenif m is even number we get Ikeda map
has unique fixed point and if m is odd number we get Ikeda map has
unique fixed point.

6.1fa=1,b # 1 and t # mathen Ikeda map has no fixed point.
7.1fa=1,b # 1and t = mx then Ikeda map has no fixed point.

proof:

By the definition of fixed point we get :

X1 [1
1. Io,lelO] , It is easy to show lo; has infinite fixed point .
td Lt

'Y




. lop y]=l0] , It is easy to show lo, has unique fixed point .

1+x
. since a=1andb =1,t = mxthen I, ]—[ ] If m is even
X1 [1+x
number then I1,1H= y therefore 1;; has no fixed point and If
t t

m is odd number then

1—x
Il,lly]:[ —y ] therefore t = t, so y = —ythen2y = 0 therefore y =

0.And x =1 — x then 2x = 1 therefore
X :i . hence is a fixed point of Ikeda map, hence l,, have

infinite fixed points .

X1 [1+ax X1 [1+ ax
4. since a # 1 and b = 1 then Ia,lly]:[ J_ray] ,If Ia’lH: ay
t t t t

thent =t soy=aythen y—ay =20 therefore y=0 sox =

1+ a x thenx(1 — a) = 1 hence x:ﬁ then llaa‘is a fixed point ,

hence I, have infinite fixed point .and if

1—ax
111] [—ay]then t=tsoy = —ay therefore y = 0sox =

1

1— ax then xzﬁ hence 16“ is a fixed point , hence

'Y




l.o have infinite fixed points.

X1 [1+ ax
.since a#1,b+1andt = mxrthen Ia’sz[ +tay ] , If mis even
t bt
X1 [1+ ax
number then Ia,lly]: ay |thenbt =t, thereforet=0soy=ay
t bt

then y —ay = 0so y = Otherefore x = 1 + a x then

1

x(1—a)=1, hence xzithen lao| o | is a fixed point , hence
0

l.» have unique fixed point.

X1 [1—ax
If mis odd even then Ia,lly]:[ —ay ] sot=btthent =0s0y =
t bt

—ay then y(1+ a) = 0 therefore y =0,s0 x =1 —ax then x +

1

ax = 1 thereforex= ﬁthen 16a Is the fixed point , hence l,p is the
0
unique fixed point.

X

6. If a=1 and b#1 then Iy (y) , It is easy to show | 5, has no
t

fixed point
7. Similarity prove (6) m

proposition(1-10) :-

The Jacobian of Ikeda map Iy, isab.

V¢




Proof:
The differential matrix of lkeda is

G\

ot
of

_ 2

Dla,b(vo )_ ot

3 acost —asint —axsint—aycost

=|asint acost axcost—aysint then
0 0 b

acost —asint
) ] = ba’l
asint acost

l=dang(%)=bda[

Proposition (1-11) :-

Let I, be the Ikeda map :-
(1) lap is area contracting map if |a| < 1 and |b| < 1.
(2) lap is area expanding map if :-

(mm>Lb¢OmdM2>ﬁm

1

|lal?

(ii)|a| > 1 and || >

Proof:-

1) If|a] <1and |b| < 1then|J| = |ba?| <1 so the Jacobian of Ikeda

map is least than 1 so from definition area contracting.

2)




X
i. If b = Osince ] = |det(D1,,| y || =|a%b|=|al3|b|, by hypothesis
t

|b| > 1 and so J>ﬁ .|b| > 1Then I,pis an area expending map.

Ii. Similarity proof (i) m

Proposition (1-12) :-

If a = 0,b # 0 then I,y is onto.

Proof:-
Case(1):-If t # (> +m)m, meZ

v v l+axcost—aysint
Let |w| be any element in R® such that |w|=| axsint+aycost |.
S S bt

Then v = 1 + axcost — aysint,sincea # 0 and t # (m + %)71 then

v—1+aysint .
X = Tosyt sow = axsint + aycost then

v—1+ aysint © + © th
w=a sin a ycos erefore
acost Y /

w = vtan(t) — tan(t) + (aysin(t)tan(t)) + aycos(t)Then

w — v tan(t) + tan(t) = y (a tan(t) sin(t) + a cos(t)) therefore

S

wovtan®+tan(t) o e = s since b # 0 therefore ¢ = -

y= (aytan(t)sin(t)+acos(t))




w—vtan(%)+tan(
/ V‘“<tan(%) sin(3

cos(t)

X \
then there exist | w-vtan(g)+tan( (g |eR3 such that Ia’bM{W} then

b b
t S

\ (atan(%)sm%gmcos( ) /

l.p IS ONto.
Case(2):-

Vv
If=0,b#0andt=(m+ %)n. Let |w| be any element in R® such that
S

],s=bt then t=%so w = xasincea¢0thenx=% S0

v =1-aythen y = 1;—” such that a#0 there exists

Proportion (1-13) :-

The Ikeda map is C*

Proof:-

2
Note that ¥Y_, oo ’ o'y, t)
OX aXZ

w:oFor all ne Nandn >2.




2
%’y’t)z—asint—aycost,w:—axcostﬁﬁysint, For all neN,M:asint
X

2 n
,sz’y’%o ...,ww For all neN and n>2..., 2200 _ oo
OX ox" oy

n
—afg(;;’y’t):o For all neN and n>2 . afz(gt’y’t)=axcost—aysint ,

d%f,(x,y,1)

v =—axsint—aycost For all neN

a"f5(x,y,1)
: n

-0 for all ne N

and n>2.Then the partial derivatives exist and are continuous then I, is

C”’nm

Proposition (1-14) :-

If a # 1 and b # 1 then the eigenvalues of Ikeda map at the fixed

p0|nt .S /11’2 =aq, /13 = b
Proof :-
a-A 0 0

Det(DIab(v)M)de{ 0 a-A 0 }= (a-Afa-4)fb-4)=0 Then 4, =
0 0 b-

a,/l3=b.

Proposition(1-15) :-

Let I, be Ikeda map and a#0 , b#0 then




1.If |a| < 1 and |b| < 1 then the fixed point of Ikeda map is attracting

fixed point.

2. If |a] > 1 and |b| > 1 then the fixed point of Ikeda map is repelling

fixed point

3.If |a| > 1 and |b| < 1 then the fixed point of Ikeda map is saddle fixed

point.

4.1f |a| < 1 and |b| > 1 then the fixed point of Ikeda map is saddle fixed

point.

Proof:-

By propositions (1-14) and definition (1-5 )then the proposition

satisfiedm




Chapter two

Properties chaotic of Ikeda map




2-1 Sensitive Dependence on Initial Condition of

lkeda Map.-

Chaos is character ited by a sensitive dependence of system
dynamical variables on the initial conditions . trajectories
starting with slightly different initial conditions locally diverge
from each other at an exponential rates to provide a rigorous
characterization as well as a way of measuring sensitive

dependence on initial conditions.

Definition (2-2-1):-

Let (X,d) be a metric space .A map f: (X,d) -»(X,d) is said to be
sensitive dependence on initial conditions if there exit € > 0 such
that for any x, € x and any open set UC X containing x, there exists

yo € Uand ne Z*such that

d(f™(xg), f"(yy)) >€ that is 3€e>0,Vvx,>0,3y €By(x),Ane
N, d(f"(x0), f* (o)) > € .

now , we draw some figures to The lkeda map to show or approve

the sensitivity dependence to initial condition




Figure( 1.2) a=-1.012, b = 0.1 with initial points (1.7,1.3,1.2) and (1.8,1.4,1.2)

Figure(1.3) a = -1.01, b = 0.91 with Figure(1.4) a=-1, b =-1.009 with initial
initial point (1.7,1.3,1.2) and (1.8,1.4,1.2) point (1.7,1.3,1.2) and (1.8,1.4,1.2)

0 Sensitive Dependence on Initial Condition of Ikeda Map:-




The sensitive dependence on initial conditions is one of the basic
ideas in several definitions of chaos, for example Gulick defined the map
as chaotic if it satisfies sensitive dependence on initial condition or has

positive Lyapunov exponent .

2-2The lyapunov Exponents of Ikeda map:

The Lyapunov exponents give the average exponential rate of
divergence or convergence of nearly orbital in the phase - space .in
system exhibiting exponential orbital divergence, small initial
differences which we may not be able to resolve get magnified
rapidly leading to less of predictability any system containing at
least one positive Lyapunov exponent and it is defined to be chaotic
with the magnitude of the exponent reflecting the time scale on

which dynamics system become unpredictable.

Definition (2-2-1)[3]

Let F: X->X be continuous differential map, where X is any metric

space. Then all x in X in direction V the Lyapunov exponent was

defined of a map F at X by L(x,v)= lim % In|| DEv|| whenever the
n—->0oo

limit exists in higher dimensions for example in R™ the map F will

have n Lyapunov exponents, say




L (x,v1),L3(x,v,), ..., L (x, v,), for a maximum Lyapunov exponent

that is
Li(x,v) = Max {LJl—r(x, V1), L%r(x, vz),L;—’(x, V3), ..., LE(x, vn)} ,

where v=(v, ,v,,...,,)

Proposition (2-2-2):-

Let I,p: R®—R3 be the lkeda map if either |aj>1 or |b|>1 then the

Ikeda map has positive Lyapunov exponents.
Proof:-

If |aj<1l and |b|>1 by proposition |Aio|=[a] , if Ja|<1l since

X X
X12 <y>,v1,2 = lim =In| | DIy, <y>,V1,2 |<0 ,but If o1

n—>oo

t t

X X
Then X, <y>,V3 = lim = In DIa,b<y>,v3 >

t n—eo t

0 so Lv=max{x:*(x,v1),X2"(X,v2),xs*(x ,v3)} then Lv>0 So in the same
way, we can prove if |b|<1 and |a|>1 then Lyapunov exponent of Ikeda map

1s positive. Finally, it is clear if [a>1 and |b[>1 then L(v)>0 m
Then by definition of Gulik we prove that Ikeda map is chaotic :-.

The sensitive dependence on initial conditions is one of the basic

ideas in several definitions of chaos




Definition (2-2-3) [1]:-:-

A map f is chaotic if it satisfies at least one of the following

conditions:-

1. F has a positive Lyapunov exponent at each point in its domain that
Is not eventually periodic.

2. F has sensitive dependence on initial conditions on its domain.
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