

Republic of Iraq

Ministry of Higher Education & Scientific Research

AL-Qadisiyah University

College of Computer Science and Mathematics

Department of Mathematics

Nonlinear Conjugate, Gradient Methods For

Unconstrained Optimization

A Research

Submitted by

Hader Ali Ghadban

 To the Council of the department of Mathematics ∕ College of Education,

University of AL-Qadisiyah as a Partial Fulfilment of the Requirements for the

Bachelor Degree in Mathematics

Supervised by

Alaa Kamel Jaber

A. D. 2017 A.H. 1438

1

Abstract

Conjugate gradient methods are a class of important methods for solving linear

equations and for solving nonlinear optimization. In this article, a review on

conjugate gradient methods for unconstrained optimization is given. Conjugate

gradient (CG) methods comprise a class of unconstrained optimization

algorithms which are characterized by low memory requirements and strong

local and global convergence properties.

1. Introduction

 Optimization models attempt to express, in mathematical terms, the goal of

solving a problem in the “best” way. That might mean running a business to

maximize profit, minimize loss, maximize efficiency, or minimize risk. It might

mean designing a bridge to minimize weight or maximize strength. It might

mean selecting a flight plan for an aircraft to minimize time or fuel use. The

desire to solve a problem in an optimal way is so common that optimization

models arise in almost every area of application. They have even been used to

explain the laws of nature, as in Fermat’s derivation of the law of refraction for

light. Optimization models have been used for centuries, since their purpose is

so appealing. In recent times they have come to be essential, as businesses

become larger and more complicated, and as engineering designs become more

ambitious. In many circumstances it is no longer possible, or economically

feasible, for decisions to be made without the aid of such models. In a large,

multinational corporation, for example, a minor percentage improvement in

2

operations might lead to a multimillion dollar increase in profit, but achieving

this improvement might require analyzing all divisions of the corporation, a

gargantuan task. Likewise, it would be virtually impossible to design a new

computer chip involving millions of transistors without the aid of such models.

Such large models, with all the complexity and subtlety that they can represent,

would be of little value if they could not be solved. The last few decades have

witnessed astonishing improvements in computer hardware and software, and

these advances have made optimization models a practical tool in business,

science, and engineering. It is now possible to solve problems with thousands or

even millions of variables.

 There are two types of optimization models, the constrained and unconstrained

problems. In this article we will discuss the algorithms which are called

conjugate gradient methods (CG) to solve the nonlinear problems of

unconstrained optimization type.

2. Basics of Unconstrained Optimization

 In this section we begin studying the problem

 minimize f(x),

where no constraints are placed on the variable 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 .

Unconstrained problems arise, for example, in data fitting, where the objective

function measures the difference between the model and the data. Methods for

unconstrained problems are of more general value, though, since they form the

foundation for methods used to solve constrained optimization problems. We

will derive several optimality conditions for the unconstrained optimization

problem. One of these conditions, the “first-order necessary condition,” consists

of a system of nonlinear equations. Applying Newton’s method to this system of

3

equations will be our fundamental technique for solving unconstrained

optimization problems.

2.1 Optimality Conditions

We will derive conditions that are satisfied by solutions to the problem

 minimize 𝑓(𝑥).

The conditions for the problem

 maximize 𝑓(𝑥)

are analogous and will be mentioned in passing.

 Let 𝑥∗ denote a candidate solution to the minimization problem. Even if the

global minimizer 𝑥∗ were given to us, it would be difficult or impossible to

confirm that it was indeed the global minimizer. It is easier to look for local

minimizers. A local minimizer is a point x∗ that satisfies the condition

 𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 such that ║x − x∗║ < 𝜖,

where 𝜖 is some (typically small) positive number whose value may depend on 𝑥∗.

Similarly defined is a strict local minimizer:

 𝑓(𝑥∗) < 𝑓(𝑥) for all 𝑥 such that 0 < ║x − x∗║ < 𝜖.

It is possible for a function to have a local minimizer and yet have no global

minimizer. It is also possible to have neither global nor local minimizers, to have

both global and local minimizers, to have multiple global minimizers, and various

other combinations. In this form, these conditions are no more practical than those

for a global minimizer, since they too require information about the function at an

infinite number of points, and the algorithms will only have information at a finite

number of points. However, with additional assumptions on the function 𝑓 ,

4

practical optimality conditions can be obtained. To obtain more practical

conditions, we assume that the function f is differentiable and that its first and

second derivatives are continuous in a neighborhood of the point 𝑥∗. Not all the

conditions that we derive will require this many derivatives, but it will simplify

the discussion if the assumptions do not change from condition to condition. All

of these conditions will be derived using Taylor series expansions of 𝑓 about the

point 𝑥∗. Suppose that 𝑥∗ is a local minimizer of 𝑓 . Consider the Taylor series

with remainder term

 𝑓(𝑥∗ + 𝑝) = 𝑓(𝑥∗) + 𝛻𝑓(𝑥∗)𝑇𝑝 +
 1

2
 𝑝𝑇𝛻2𝑓 (𝜉)𝑝,

Where p is a nonzero vector and 𝜉 is a point between 𝑥 and 𝑥∗. We will show that

 𝛻𝑓 (𝑥∗) = 0.

If 𝑥∗ is a local minimizer, there can be no feasible descent directions at 𝑥∗. Hence

 𝛻𝑓 (𝑥∗)𝑇𝑝 ≥ 0

for all feasible directions 𝑝. For an unconstrained problem, all directions 𝑝 are

feasible, and so the gradient at 𝑥∗ must be zero. Thus, if 𝑥∗ is a local minimizer of

𝑓 , then

 𝛻𝑓 (𝑥 ∗) = 0.

 A point satisfying this condition is a stationary point of the function 𝑓 .

In the one-dimensional case, there is a geometric interpretation for this condition.

If 𝑓 is increasing at a point 𝑥, then 𝑓′(𝑥) > 0. Similarly if 𝑓 is decreasing, then

𝑓′(𝑥) < 0.

 A point where 𝑓 is increasing or decreasing cannot correspond to a minimizer.

At a minimizer the function will be flat or stationary, and hence 𝑓′(𝑥∗) = 0. This

is illustrated in Figure 2.1.

5

Figure 2.1. Stationary points.

 The condition 𝛻𝑓(𝑥∗) = 0 is referred to as the first-order necessary condition for

a minimizer. The term “first-order” refers to the presence of the first derivatives of

𝑓(or to the use of the first-order term in the Taylor series to derive this condition).

It is a “necessary” condition since if 𝑥∗ is a local minimizer, then it “necessarily”

satisfies this condition. The condition is not “sufficient” to determine a local

minimizer since a point satisfying 𝑥∗ could be a local minimizer, a local

maximizer, or a saddle point (stationary point that is neither a minimizer nor a

maximizer).

 Local minimizers can be distinguished from other stationary points by

examining second derivatives. Consider again the Taylor series expansion at

𝑥 = 𝑥∗ + 𝑝, but now using the result that

𝛻𝑓 (𝑥∗) = 0:

 𝑓(𝑥) = 𝑓 (𝑥∗ + 𝑝) = 𝑓 (𝑥∗) +
 1

2
𝑝𝑇𝛻2𝑓 (𝜉)𝑝,

We will show that 𝛻2𝑓 (𝑥∗) must be positive semidefinite. If not, then

𝑣𝑇𝛻2𝑓 (𝑥∗)𝑣 < 0 for some 𝑣 . Then it is also true that 𝑣𝑇𝛻2𝑓 (𝜉)𝑣 < 0 if

║𝜉 − 𝑥∗║ is small. This is because 𝛻2𝑓 is assumed to be continuous at 𝑥∗. If 𝑝 is

6

chosen as some sufficiently small multiple of 𝑣, then the point 𝜉 will be close

enough to 𝑥∗ to guarantee (via the Taylor series) that 𝑓 (𝑥) < 𝑓(𝑥∗), a

contradiction. Hence if 𝑥∗ is a local minimizer, then 𝛻2𝑓 (𝑥∗) is positive semi

definite. This is referred to as the second-order necessary condition for a

minimizer, with the “second-order” referring to the use of second derivatives or

the second-order term in the Taylor series.

 There is also a second-order sufficient condition, “sufficient” to guarantee that 𝑥∗

is a local minimizer:

If 𝛻𝑓 (𝑥∗) = 0 and 𝛻2𝑓 (𝑥∗) is positive definite,

3. Conjugate Gradient Method

Conjugate gradient methods are a class of important methods for solving

unconstrained optimization problem

 𝑚𝑖𝑛 𝑓(𝑥) , 𝑥 ∈ 𝑅𝑛 (3.1)

especially if the dimension 𝑛 is large. They are of the form

 𝑥𝑘+1= 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (3.2)

where 𝛼𝑘 is a step size obtained by a line search, which will discuss in the

following section, and 𝑑𝑘 is the search direction defined by

 𝑑𝑘 = {
−𝑔𝑘 , 𝑓𝑜𝑟 𝑘 = 1
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1

, 𝑓𝑜𝑟 𝑘 ≥ 2
 (3.3)

where 𝛽𝑘 is a parameter, and 𝑔𝑘 denotes ∇𝑓(𝑥𝑘). It is known from (3.2) and (3.3)

that only the step size 𝛼𝑘 and the parameter 𝛽𝑘 remain to be determined in the

definition of conjugate gradient methods. In the case that 𝑓 is a convex quadratic,

the choice of 𝛽𝑘 should be such that the method (3.2)-(3.3) reduces to the linear

conjugate gradient method if the line search is exact, namely,

7

 𝛼𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑓(𝑥𝑘 + 𝛼𝑑𝑘 , 𝛼 > 0. (3.4)

For nonlinear functions, however, different formulae for the parameter 𝛽𝑘

(introduced in table 3.1) result in different conjugate gradient methods and their

properties can be significantly different. To differentiate the linear conjugate

gradient method, sometimes we call the conjugate gradient method for

unconstrained optimization by nonlinear conjugate gradient method. Meanwhile,

the parameter 𝛽𝑘is called conjugate gradient parameter. For nonlinear functions,

however, different formulae for the parameter 𝛽𝑘 result in different conjugate

gradient methods and their properties can be significantly different. To

differentiate the linear conjugate gradient method, sometimes we call the

conjugate gradient method for unconstrained optimization by nonlinear conjugate

gradient method. Meanwhile, the parameter 𝛽𝑘 is called conjugate gradient

parameter.

𝛽𝑘
𝐻𝑆

 =
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇 𝑦𝑘

 (1952) Hestenes and Stiefel [5]

𝛽𝑘
𝐹𝑅 =

║𝑔𝑘+1║
2

║𝑔𝑘║
2 (1964) Fletcher and Reeves [8]

𝛽𝑘
𝐷 =

𝑔𝑘+1
𝑇 𝛻2𝑓(𝑥𝑘)𝑑𝑘

𝑑𝑘
𝑇𝛻2𝑓(𝑥𝑘)𝑑𝑘

 (1967)

𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘+1
𝑇 𝑦𝑘

║𝑔𝑘║
2 (1969) Polak and Ribiere [2]and by Polyak[1]

𝛽𝑘
𝐶𝐷 =

║𝑔𝑘+1║
2

−𝑑𝑘
𝑇 𝑔𝑘

 (1987) proposed by Fletcher [9], CD

 stands for "Conjugate Descent"

𝛽𝑘
𝐿𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

−𝑑𝑘
𝑇 𝑔𝑘

 (1991) proposed by Liu and Storey [14]

𝛽𝑘
𝐷𝑌 =

║𝑔𝑘+1║
2

−𝑑𝑘
𝑇 𝑦𝑘

 (1999) proposed by Dai and Yuan [12]

𝛽𝑘
𝑁 = (𝑦𝑘 − 2𝑑𝑘

║𝑦𝑘║
2

𝑑𝑘
𝑇 𝑦𝑘

)2 𝑔𝑘+1

𝑑𝑘
𝑇 𝑦𝑘

 (2005) proposed by Hager and Zhang [10]

Table 3.1 : Various choices for the CG update parameter

8

4. Line search [11]

In each 𝐶𝐺 iteration, the step size k is chosen to yield an approximate minimum

for the problem:

 min𝛼≥0 𝑓(𝑥𝑘 + 𝛼𝑑𝑘) (4.1)

Since 𝛼 ≥ 0, the direction 𝑑𝑘 should satisfy the descent condition

 𝑔𝑘
𝑇 𝑑𝑘 < 0 (4.2)

for all 𝑘 ≥ 0. If there exists a constant 𝑐 > 0 such that

 𝑔𝑘
𝑇 𝑑𝑘 < −𝑐║𝑔𝑘║

2
 (4.3)

for all 𝑘 ≥ 0, then the search directions satisfy the sufficient descent condition.

The termination conditions for the 𝐶𝐺 line search are often based on some version

of the Wolfe conditions. The standard Wolfe conditions [6, 7] are

 𝑓(𝑥𝑘 + 𝛼𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑘
𝑇 𝑑𝑘 (4.4)

 𝑔𝑘+1
𝑇 𝑑𝑘 ≥ 𝜎𝑔𝑘

𝑇 𝑑𝑘 (4.5)

Where 𝑑𝑘 is a descent direction and 0 < 𝛿 ≤ 𝜎 < 1. The strong Wolfe conditions

consists of (4.4) and the following strengthened version of (4.5):

 │𝑔𝑘+1
𝑇 𝑑𝑘│ ≤ −𝜎𝑔𝑘

𝑇 𝑑𝑘 (4.6)

In the generalized Wolfe conditions [13], the absolute value in (4.6) is replaced by

a pair of inequalities:

 𝜎1𝑔𝑘
𝑇 𝑑𝑘 ≤ 𝑔𝑘+1

𝑇 𝑑𝑘 ≤ 𝜎2𝑔𝑘
𝑇 𝑑𝑘 (4.7)

where 0 < 𝛿 ≤ 𝜎 < 1 and 𝜎2 ≥ 0. The special case 𝜎1 = 𝜎2 = 𝜎 corresponds

to the strong Wolfe conditions. Ideally, we would like to terminate the line search

in a 𝐶𝐺 algorithm when the standard Wolfe conditions are satis ed. For some 𝐶𝐺

9

algorithms, however, stronger versions of the Wolfe conditions are needed to

ensure convergence and to enhance stability.

5. The General Optimization Algorithm [3]

 More algorithms for solving optimization problems have been proposed than

could possibly be discussed in a single book. This has happened in part because

optimization problems can come in so many forms, but even for particular

problems such as one-variable unconstrained minimization problems, there are

many different algorithms that one could use.

Despite this diversity of both algorithms and problems, all of the algorithms have

the same general form.

5.1 Algorithm I: General Optimization Algorithm I

1. Specify some initial guess of the solution 𝑥0.

2. For 𝑘 = 0, 1, . ..

(i) If 𝑥𝑘is optimal, stop.

(ii) Determine 𝑥𝑘+1, a new estimate of the solution.

This algorithm is so simple that it almost conveys no information at all. However

it is often helpful to keep in mind that we are still working within this simple and

general framework. The algorithm suggests that testing for optimality and

determining a new point 𝑥𝑘+1 are separate ideas, but this is usually not true. Often

the information obtained from the optimality test is the basis for the computation

of the new point. For example, if we are trying to solve the one-dimensional

problem without constraints

10

minimize 𝑓 (𝑥),

then the optimality test will often be based on the condition

𝑓′(𝑥) = 0.

If 𝑓(𝑥𝑘) ≠ 0, then 𝑥𝑘 is not optimal, and the sign and value of 𝑓(𝑥𝑘) indicate

whether 𝑓 is increasing or decreasing at the point 𝑥𝑘, as well as how rapidly 𝑓 is

changing. Such information is valuable in selecting 𝑥𝑘+1. Many of our algorithms

will have a more specific form.

5.2 Algorithm II: General Optimization Algorithm II

1. Specify some initial guess of the solution 𝑥0.

2. For 𝑘 = 0, 1, . ..

(i) If 𝑥𝑘 is optimal, stop.

(ii) Determine a search direction 𝑝𝑘.

(iii) Determine a step length 𝛼𝑘 that leads to an improved estimate of the solution:

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘.

In this algorithm, 𝑝𝑘 is a search direction that we hope points in the general

direction of the solution, or that “improves” our solution in some sense. The scalar

𝛼𝑘 is a step length that determines the point 𝑥𝑘+1, once the search direction 𝑝𝑘 has

been computed, the step length 𝛼𝑘 is found by solving some auxiliary one-

dimensional problem; see Figure 5.1

11

Figure 5.1: General optimization algorithm.

Algorithm II with its three major steps (the optimality test, computation of 𝑝𝑘, and

computation of 𝛼𝑘) has been the basis for a great many of the most successful

optimization algorithms ever developed. It has been used to develop many

software packages for nonlinear optimization, and it is also present implicitly as

part of the simplex method for linear programming. Our methods are used this

general form of algorithm.

5.3 Nonlinear Conjugate-Gradient algorithm

1. Set 𝑝−1 = 0, 𝛽0 = 0, and set the convergence tolerance 𝜖

2. For 𝑖 = 0, 1, . ..

(i) If ║𝛻𝑓 (𝑥𝑖)║ < 𝜖, stop.

(ii) If 𝑖 > 0, set

𝛽𝑖 = 𝛻𝑓 (𝑥𝑖)𝑇𝛻𝑓 (𝑥𝑖)/𝛻𝑓 (𝑥𝑖−1)𝑇𝛻𝑓 (𝑥𝑖 − 1).

(iii) Set 𝑝𝑖 = −𝛻𝑓 (𝑥𝑖) + 𝛽𝑖𝑝𝑖−1.

(iv) Use a line search to determine 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑝𝑖 .

This algorithm can be applied to general unconstrained problems:

12

 minimize 𝑓 (𝑥).

It requires the computation of the gradient 𝛻𝑓 (𝑥) , but no second-derivative

calculations. Its storage requirements are low—just the three vectors 𝑥𝑖 , 𝑝𝑖, and

𝛻𝑓 (𝑥𝑖), plus whatever temporary storage is required by the line search. At each

iteration the algorithm requires only a small number of operations on vectors, plus

the computation of 𝑓 and 𝛻𝑓 for various values of 𝑥. Hence it is suitable for large

problems.

5.3.1 Example 1 We apply the above nonlinear conjugate-gradient method to the

minimization problem :

minimize

 𝑓 =
1

10
[(𝑥1 − 1)2 + 2(𝑥2 − 1)2 + 3(𝑥3 − 1)2 + 4(𝑥4 − 1)2] + [𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 −

1

4
]

2

The initial point is 𝑥0 = (1 − 1 1 − 1)𝑇

We will use a backtracking line search with parameter 𝜇 = 0.1. We give detailed

results for the first two iterations.

At the point 𝑥0 ,

𝑓 (𝑥0) = 16.462

𝛻𝑓 (𝑥0) = (15.0 − 15.8 15.0 − 16.6)𝑇 .

At the first iteration the steepest-descent direction is used:

𝑝 = −𝛻𝑓 (𝑥0) = (−15.0 15.8 − 15.0 16.6)𝑇 .

In the line search, the first few trial values of α are rejected:

𝛼 = 1

 𝑓 (𝑥0 + 𝛼𝑝) = 7.3 × 105

𝑓 (𝑥0) + 𝜇𝛼𝑝𝑇𝛻𝑓 (𝑥0) = −81.058

.

13

.

.

𝛼 = 0.0625

𝑓 (𝑥0 + 𝛼𝑝) = 0.0985

𝑓 (𝑥0) + 𝜇𝛼𝑝𝑇𝛻𝑓 (𝑥0) = 10.367

but the step length 𝛼 = 0.0625 is accepted. The new point is

𝑥1 = (0.0625 − 0.0125 0.0625 0.0375)𝑇

With 𝑓 (𝑥1) = 0.98506

𝛻𝑓 (𝑥1) = (−0.24766 − 0.39297 − 0.62266 − 0.80609)𝑇 .

At this iteration

𝛽1 = 1.2851 × 10−3

and the search direction is

𝑝 = (0.22838 0.41327 0.60338 0.82743)𝑇 .

In the line search 𝛼 = 1

𝑓 (𝑥1 + 𝛼𝑝) = 1.5712

𝑓 (𝑥1) + 𝜇𝛼𝑝𝑇𝛻𝑓 (𝑥1) = 0.85889

 𝛼 = 0.5

𝑓 (𝑥1 + 𝛼𝑝) = 0.46348

𝑓 (𝑥1) + 𝜇𝛼𝑝𝑇𝛻𝑓 (𝑥1) = 0.92197

and the step length 𝛼 = 0.5 is accepted. The new point is

𝑥2 = (0.17669 0.19414 0.36419 0. 45121)𝑇 .

This concludes the second iteration.

14

The complete results are given in Table 5.1. The iteration number is indicated by

𝑘. The costs of the method are given by “ls” (the number of gradient evaluations).

k ls ‖𝛻𝑓 (𝑥𝑘)‖ k ls ‖𝛻𝑓 (𝑥𝑘)‖

0 1 2×10
1
 13 33 6×10

-
5

1 6 8×10
-1

 14 35 5×10
-5

2 8 2×10
-1

 15 37 2×10
-
5

3 11 2×10
-1

 16 38 2×10
-5

4 13 1×10
-1

 17 41 8×10
-6

5 16 6×10
-2

 18 43 7×10
-6

6 18 3×10
-2

 19 46 2×10
-6

7 20 1×10
-2

 20 48 9×10
-
7

8 23 1×10
-3

 21 50 5×10
-
7

9 24 1×10
-3

 22 52 1×10
-7

10 27 7 ×10
-4

 23 54 1×10
-
7

11 29 5×10
-4

 24 57 7×10
-8

12 32 2×10
-4

 13 33 6×10
-
5

Table 5.1. Nonlinear conjugate-gradient method (n = 4).

15

5.2 Example 2: We apply the nonlinear method described in example 5.1 to

min 𝑓(𝑥) = ∑ (𝑥𝑖 − 2𝑥𝑖+1)3
𝑖=1

2
= (𝑥1 − 2𝑥2)2 + (𝑥2 − 2𝑥3)2 + (𝑥3 − 2𝑥4)2

use the initial guess

 𝑥0 = (1,1,1,1)𝑇

𝑓(𝑥) = (𝑥1 − 2𝑥2)2 + (𝑥2 − 2𝑥3)2 + (𝑥3 − 2𝑥4)2

𝑓(𝑥0) = 16.462

∇𝑓(𝑥0) = (15.0 15.8 15.0 16.6)𝑇

𝑝 = (−15.0 − 15.8 − 15.0 − 16.6)𝑇 ,

𝛼 = 1

𝑓(𝑥0 + 𝛼𝑝) = 7.3 × 105 , 𝑓(𝑥0) + 𝜇𝛼𝑝𝑇∇𝑓(𝑥0) = −81.058

𝛼 = 0.0625

𝑓(𝑥0 + 𝛼𝑝) = 0.0985 , 𝑓(𝑥0) + 𝜇𝛼𝑝𝑇∇𝑓(𝑥0) = 10.367

But the step length 𝛼 = 0.0625 the new point is

𝑥 = (0.0695 0.0125 0.0625 0.0375)

𝑓(𝑥1)=0.98506

,∇𝑓(𝑥1) = (0.24766 0.39297 0.62266 0.8060

𝛽1 = 1.2851 × 10−3

𝑝 = (−0.22838 − 0.41327 − 0.60338 − 0.82743)

𝛼 = 1

𝑓(𝑥1 + 𝛼𝑝) = 0.46348

𝑓(𝑥1) + 𝑚𝑎𝑝𝑇∇𝑓(𝑥1) = −0.92197

𝑥2 = (0.17669 0.19414 0.36419 0.45121)𝑇

6 Rates of Convergence [3]

 Many of the algorithms discussed in this book do not find a solution in a finite

number of steps. Instead these algorithms compute a sequence of approximate

solutions that we hope get closer and closer to a solution. When discussing such

an algorithm, the following two questions are often asked:

16

• Does it converge?

• How fast does it converge?

It is the second question that is the topic of this section.

If an algorithm converges in a finite number of steps, the cost of that algorithm is

often measured by counting the number of steps required, or by counting the

number of arithmetic operations required. For example, if Gaussian elimination is

applied to a system of 𝑛 linear equations, then it will require about 𝑛3 operations.

This cost is referred to as the computational complexity of the algorithm. For

many optimization methods, the number of operations or steps required to find an

exact solution will be infinite, so some other measure of efficiency must be used.

The rate of convergence is one such measure. It describes how quickly the

estimates of the solution approach the exact solution. Let us assume that we have

a sequence of points 𝑥𝑘 converging to a solution 𝑥∗. We define the sequence of

errors to be 𝑒𝑘 = 𝑥𝑘 − 𝑥∗.

Note that

lim
𝑘→∞

𝑒𝑘 = 0

We say that the sequence { 𝑥𝑘 } converges to 𝑥∗ with rate 𝑟 and rate constant 𝐶if

lim
𝑘→∞

║𝑒𝑘+1║

║𝑒𝑘║
𝑟 = 𝐶

And 𝐶 < ∞. To understand this idea better, let us look at some examples.

Initially let us assume that we have ideal convergence behavior

║𝑒𝑘+1║ = 𝐶║𝑒𝑘║
𝑟
 for all 𝑘

so that we can avoid having to deal with limits. When 𝑟 = 1 this is referred to as

linear convergence

║𝑒𝑘+1║ = 𝐶║𝑒𝑘║

If 0 < 𝐶 < 1, then the norm of the error is reduced by a constant factor at

every iteration. If 𝐶 > 1, then the sequence diverges. (What can happen when

𝐶 = 1?) If we choose

17

𝐶 = 0.1 = 10−1 and ║𝑒0║ = 1, then the norms of the errors are

1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7,

and seven-digit accuracy is obtained in seven iterations, a good result. On the

other hand, if 𝐶 = 0.99, then the norms of the errors take on the values 1, 0.99,

0.9801, 0.9703, 0.9606, 0.9510, 0.9415, 0.9321, . . . ,

and it would take about 1600 iterations to reduce the error to 10−7, a less

impressive result. If 𝑟 = 1 and 𝐶 = 0, the convergence is called superlinear.

Superlinear convergence includes all cases where 𝑟 > 1 since if

lim
𝑘→∞

║𝑒𝑘+1║

║𝑒𝑘║
𝑟 = 𝐶 < ∞

lim
𝑘→∞

║𝑒𝑘+1║

║𝑒𝑘║
𝑟 = lim

𝑘→∞

║𝑒𝑘+1║

║𝑒𝑘║
𝑟 ║𝑒𝑘║

𝑟−1
= 𝐶 × lim

𝑘→∞
║𝑒𝑘║

𝑟−1
= 0

When 𝑟 = 2 , the convergence is called quadratic. As an example, let 𝑟 =

 2, 𝐶 = 1, and ║𝑒0║ = 10−1. Then the sequence of error norms is

10−1 −1, 10−2 , 10−4 , 10−8 , and so three iterations are sufficient to achieve

seven-digit accuracy. In this form of quadratic convergence the error is squared

at each iteration. Another way of saying this is that the number of correct digits

in 𝑥𝑘 doubles at every iteration. Of course, if the constant 𝐶 = 1, then this is not

an accurate statement, but it gives an intuitive sense of the attractions of

quadratic convergence rate. For optimization algorithms there is one other

important case, and that is when 1 < 𝑟 < 2. This is another special case of

super linear convergence. This case is important because (a) it is qualitatively

similar to quadratic convergence for the precision of common computer

calculations, and (b) it can be achieved by algorithms that only compute first

derivatives, whereas to achieve quadratic convergence it is often necessary to

compute second derivatives as well. To get a sense of what this form of

superlinear convergence looks like, let 𝑟 = 1.5, 𝐶 = 1, and ║𝑒0║ = 10−1 .

18

Then the sequence of error norms is 1 × 10−1, 3 × 10−2, 6 × 10−3, 4 × 10−4,

9 × 10−6, 3 × 10−8, and five iterations are required to achieve single-precision

accuracy.

6. REFERENCES

[1]. B. T. Polyak, "The conjugate gradient method in extreme

problems", USSR Comp. Math. Math. Phys., 9 (1969), pp. 94-112.

[2]. E. Polak and G. Ribiere, "Note sur la convergence de directions

conjugees", Rev. Francaise Informat Recherche Opertionelle, 3e

Annee 16 (1969), pp. 35-43.

[3]. Igor Griva, Stephen G. Nash and Ariela Sofer, "Linear and Nonlinear

Optimization", SECOND EDITION, George Mason University

,Fairfax, Virginia, 2009.

[4]. Jianguo Zhang, Yunhai Xiao, and Zengxin Wei, "Nonlinear

Conjugate Gradient Methods with Sufficient Descent Condition for

Large-Scale Unconstrained Optimization", Hindawi Publishing

Corporation, Mathematical Problems in Engineering, Volume 2009,

Article ID 243290, 16 pages.

[5]. M. R. Hestenes and E. L. Stiefel, "Methods of conjugate gradients for

solving linear systems", J. Research Nat. Bur. Standards, 49 (1952),

pp. 409-436.

[6]. P. Wolfe, "Convergence conditions for ascent methods", SIAM

Review, 11 (1969), pp. 226-235.

[7]. P. Wolfe, "Convergence conditions for ascent methods. II: Some

corrections", SIAM Review, 13 (1971), pp. 185-188.

19

[8]. R. Fletcher and C. Reeves, "Function minimization by conjugate

gradients", Comput. J., 7 (1964), pp. 149-154.

[9]. R. Fletcher, "Practical Methods of Optimization vol. 1:

Unconstrained Optimization", John Wiley & Sons, New York, 1987.

[10]. W. W. Hager and H. Zhang, "A new conjugate gradient method with

guaranteed descent and an efficient line search", November 17,

2003 (to appear in SIAM J. Optim.).

[11]. William W. Hager and Hongchao Zhang, "A SURVEY OF

NONLINEAR CONJUGATE GRADIENT METHODS", (2005).

[12]. Y. H. Dai and Y. Yuan, "A nonlinear conjugate gradient method

with a strong global convergence property", SIAM J. Optim., 10

(1999), pp. 177-182.

[13]. Y. H. Dai and Y. Yuan, "Convergence properties of the Fletcher-

Reeves method", IMA J.

[14]. Y. Liu and C. Storey, "Efficient generalized conjugate gradient

algorithms, Part 1: Theory", J. Optim. Theory Appl., 69 (1991), pp.

129-137.

[15]. Yu-Hong Dai, "Nonlinear Conjugate Gradient Methods", Academy

of Mathematics and Systems Science, Chinese Academy of Sciences.

[16]. Zhen-Jun Shi and Jinhua Guo, "A new algorithm of nonlinear

conjugate gradient method with strong convergence",

Computational & Applied Mathematics, Volume 27, N. 1, pp. 93–106,

2008.

