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Abstract  

Conjugate gradient methods are a class of important methods for solving linear 

equations and for solving nonlinear optimization. In this article, a review on 

conjugate gradient methods for unconstrained optimization is given. Conjugate 

gradient (CG) methods comprise a class of unconstrained optimization 

algorithms which are characterized by low memory requirements and strong 

local and global convergence properties. 

 

1. Introduction 

    Optimization models attempt to express, in mathematical terms, the goal of 

solving a problem in the “best” way. That might mean running a business to 

maximize profit, minimize loss, maximize efficiency, or minimize risk. It might 

mean designing a bridge to minimize weight or maximize strength. It might 

mean selecting a flight plan for an aircraft to minimize time or fuel use. The 

desire to solve a problem in an optimal way is so common that optimization 

models arise in almost every area of application. They have even been used to 

explain the laws of nature, as in Fermat’s derivation of the law of refraction for 

light. Optimization models have been used for centuries, since their purpose is 

so appealing. In recent times they have come to be essential, as businesses 

become larger and more complicated, and as engineering designs become more 

ambitious. In many circumstances it is no longer possible, or economically 

feasible, for decisions to be made without the aid of such models. In a large, 

multinational corporation, for example, a minor percentage improvement in 
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operations might lead to a multimillion dollar increase in profit, but achieving 

this improvement might require analyzing all divisions of the corporation, a 

gargantuan task. Likewise, it would be virtually impossible to design a new 

computer chip involving millions of transistors without the aid of such models. 

Such large models, with all the complexity and subtlety that they can represent, 

would be of little value if they could not be solved. The last few decades have 

witnessed astonishing improvements in computer hardware and software, and 

these advances have made optimization models a practical tool in business, 

science, and engineering. It is now possible to solve problems with thousands or 

even millions of variables. 

   There are two types of optimization models, the constrained and unconstrained 

problems. In this article we will discuss the algorithms which are called 

conjugate gradient methods (CG) to solve the nonlinear problems of 

unconstrained optimization type. 

 

2. Basics of Unconstrained Optimization 

    In this section we begin studying the problem  

                                         minimize     f(x), 

where no constraints are placed on the variable 𝑥 =  (𝑥1, . . . , 𝑥𝑛)𝑇 . 

Unconstrained problems arise, for example, in data fitting, where the objective 

function measures the difference between the model and the data. Methods for 

unconstrained problems are of more general value, though, since they form the 

foundation for methods used to solve constrained optimization problems. We 

will derive several optimality conditions for the unconstrained optimization 

problem. One of these conditions, the “first-order necessary condition,” consists 

of a system of nonlinear equations. Applying Newton’s method to this system of 



3 
 

equations will be our fundamental technique for solving unconstrained 

optimization problems. 

 

2.1 Optimality Conditions 

We will derive conditions that are satisfied by solutions to the problem 

                                             minimize 𝑓(𝑥).  

The conditions for the problem  

                                             maximize 𝑓(𝑥)  

are analogous and will be mentioned in passing.  

      Let 𝑥∗ denote a candidate solution to the minimization problem. Even if the 

global minimizer 𝑥∗  were given to us, it would be difficult or impossible to 

confirm that it was indeed the global minimizer. It is easier to look for local 

minimizers. A local minimizer is a point  x∗  that satisfies the condition 

                      𝑓(𝑥∗)  ≤  𝑓(𝑥) for all 𝑥 such that ║x − x∗║ < 𝜖, 

where 𝜖 is some (typically small) positive number whose value may depend on 𝑥∗. 

Similarly defined is a strict local minimizer: 

                   𝑓(𝑥∗)  <  𝑓(𝑥) for all 𝑥 such that 0 < ║x − x∗║ < 𝜖. 

It is possible for a function to have a local minimizer and yet have no global 

minimizer. It is also possible to have neither global nor local minimizers, to have 

both global and local minimizers, to have multiple global minimizers, and various 

other combinations. In this form, these conditions are no more practical than those 

for a global minimizer, since they too require information about the function at an 

infinite number of points, and the algorithms will only have information at a finite 

number of points. However, with additional assumptions on the function 𝑓  , 
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practical optimality conditions can be obtained. To obtain more practical 

conditions, we assume that the function f is differentiable and that its first and 

second derivatives are continuous in a neighborhood of the point 𝑥∗. Not all the 

conditions that we derive will require this many derivatives, but it will simplify 

the discussion if the assumptions do not change from condition to condition. All 

of these conditions will be derived using Taylor series expansions of 𝑓 about the 

point 𝑥∗. Suppose that 𝑥∗ is a local minimizer of  𝑓 . Consider the Taylor series 

with remainder term 

                       𝑓(𝑥∗  +  𝑝)  =  𝑓(𝑥∗) + 𝛻𝑓(𝑥∗)𝑇𝑝 +
 1

2
 𝑝𝑇𝛻2𝑓 (𝜉)𝑝,  

Where p is a nonzero vector and 𝜉 is a point between 𝑥 and 𝑥∗. We will show that  

                                              𝛻𝑓 (𝑥∗)  =  0.  

If 𝑥∗ is a local minimizer, there can be no feasible descent directions at 𝑥∗. Hence  

                                        𝛻𝑓 (𝑥∗)𝑇𝑝  ≥  0  

for all feasible directions 𝑝. For an unconstrained problem, all directions 𝑝 are 

feasible, and so the gradient at 𝑥∗ must be zero. Thus, if 𝑥∗ is a local minimizer of 

𝑓 , then  

                                        𝛻𝑓 (𝑥 ∗)  =  0.   

   A point satisfying this condition is a stationary point of the function 𝑓 .  

In the one-dimensional case, there is a geometric interpretation for this condition. 

If 𝑓 is increasing at a point 𝑥, then 𝑓′(𝑥)  >  0. Similarly if 𝑓 is decreasing, then 

𝑓′(𝑥)  <  0.  

      A point where 𝑓 is increasing or decreasing cannot correspond to a minimizer. 

At a minimizer the function will be flat or stationary, and hence 𝑓′(𝑥∗) = 0. This 

is illustrated in Figure 2.1. 
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Figure 2.1. Stationary points. 

 The condition 𝛻𝑓(𝑥∗)  = 0 is referred to as the first-order necessary condition for 

a minimizer. The term “first-order” refers to the presence of the first derivatives of 

𝑓(or to the use of the first-order term in the Taylor series to derive this condition). 

It is a “necessary” condition since if 𝑥∗ is a local minimizer, then it “necessarily” 

satisfies this condition. The condition is not “sufficient” to determine a local 

minimizer since a point satisfying 𝑥∗ could be a local minimizer, a local 

maximizer, or a saddle point (stationary point that is neither a minimizer nor a 

maximizer).  

      Local minimizers can be distinguished from other stationary points by 

examining second derivatives. Consider again the Taylor series expansion at 

𝑥 =  𝑥∗  +  𝑝, but now using the result that 

𝛻𝑓 (𝑥∗)  =  0:  

             𝑓(𝑥) = 𝑓 (𝑥∗  +  𝑝)  =  𝑓 (𝑥∗)  +
 1

2
𝑝𝑇𝛻2𝑓 (𝜉)𝑝, 

We will show that 𝛻2𝑓 (𝑥∗)  must be positive semidefinite. If not, then 

𝑣𝑇𝛻2𝑓 (𝑥∗)𝑣 <  0  for some 𝑣 . Then it is also true that 𝑣𝑇𝛻2𝑓 (𝜉)𝑣 <  0  if 

║𝜉 − 𝑥∗║ is small. This is because 𝛻2𝑓 is assumed to be continuous at 𝑥∗. If 𝑝 is 
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chosen as some sufficiently small multiple of 𝑣, then the point 𝜉  will be close 

enough to 𝑥∗  to guarantee (via the Taylor series) that 𝑓 (𝑥)  <  𝑓(𝑥∗),  a 

contradiction. Hence if 𝑥∗ is a local minimizer, then 𝛻2𝑓  (𝑥∗) is positive semi 

definite. This is referred to as the second-order necessary condition for a 

minimizer, with the “second-order” referring to the use of second derivatives or 

the second-order term in the Taylor series. 

  There is also a second-order sufficient condition, “sufficient” to guarantee that 𝑥∗ 

is a local minimizer:  

If 𝛻𝑓 (𝑥∗)  =  0 and 𝛻2𝑓 (𝑥∗) is positive definite, 

 

3. Conjugate Gradient Method 

Conjugate gradient methods are a class of important methods for solving 

unconstrained optimization problem 

                                     𝑚𝑖𝑛 𝑓(𝑥) , 𝑥 ∈  𝑅𝑛                                                      (3.1) 

especially if the dimension 𝑛 is large. They are of the form 

                                       𝑥𝑘+1= 𝑥𝑘 + 𝛼𝑘𝑑𝑘                                                        (3.2)  

where 𝛼𝑘  is a step size obtained by a line search, which will discuss in the 

following section, and 𝑑𝑘 is the search direction defined by 

                                  𝑑𝑘 = {
−𝑔𝑘                  , 𝑓𝑜𝑟 𝑘 = 1
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1

, 𝑓𝑜𝑟 𝑘 ≥ 2
                                      (3.3) 

where 𝛽𝑘 is a parameter, and 𝑔𝑘 denotes ∇𝑓(𝑥𝑘). It is known from (3.2) and (3.3) 

that only the step size 𝛼𝑘  and the parameter 𝛽𝑘  remain to be determined in the 

definition of conjugate gradient methods. In the case that 𝑓 is a convex quadratic, 

the choice of 𝛽𝑘 should be such that the method (3.2)-(3.3) reduces to the linear 

conjugate gradient method if the line search is exact, namely,  
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                         𝛼𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑓(𝑥𝑘  +  𝛼𝑑𝑘 , 𝛼 >  0.                                 (3.4) 

For nonlinear functions, however, different formulae for the parameter 𝛽𝑘 

(introduced in table 3.1) result in different conjugate gradient methods and their 

properties can be significantly different. To differentiate the linear conjugate 

gradient method, sometimes we call the conjugate gradient method for 

unconstrained optimization by nonlinear conjugate gradient method. Meanwhile, 

the parameter 𝛽𝑘is called conjugate gradient parameter.  For nonlinear functions, 

however, different formulae for the parameter 𝛽𝑘  result in different conjugate 

gradient methods and their properties can be significantly different. To 

differentiate the linear conjugate gradient method, sometimes we call the 

conjugate gradient method for unconstrained optimization by nonlinear conjugate 

gradient method. Meanwhile, the parameter 𝛽𝑘  is called conjugate gradient 

parameter. 

𝛽𝑘
𝐻𝑆

 =
𝑔𝑘+1

𝑇 𝑦𝑘

𝑑𝑘
𝑇 𝑦𝑘

                                 (1952)   Hestenes and Stiefel [5] 

𝛽𝑘
𝐹𝑅 =

║𝑔𝑘+1║
2

║𝑔𝑘║
2                                (1964)   Fletcher and Reeves [8] 

𝛽𝑘
𝐷 =

𝑔𝑘+1
𝑇 𝛻2𝑓(𝑥𝑘)𝑑𝑘

𝑑𝑘
𝑇𝛻2𝑓(𝑥𝑘)𝑑𝑘

                        (1967) 

𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘+1
𝑇 𝑦𝑘

║𝑔𝑘║
2                                (1969) Polak and Ribiere [2]and by Polyak[1] 

𝛽𝑘
𝐶𝐷 =

║𝑔𝑘+1║
2

−𝑑𝑘
𝑇 𝑔𝑘

                               (1987) proposed by Fletcher [9], CD 

                                                         stands for "Conjugate Descent" 

𝛽𝑘
𝐿𝑆 =

𝑔𝑘+1
𝑇 𝑦𝑘

−𝑑𝑘
𝑇 𝑔𝑘

                                  (1991) proposed by Liu and Storey [14] 

𝛽𝑘
𝐷𝑌 =

║𝑔𝑘+1║
2

−𝑑𝑘
𝑇 𝑦𝑘

                               (1999) proposed by Dai and Yuan [12] 

𝛽𝑘
𝑁 = (𝑦𝑘 − 2𝑑𝑘

║𝑦𝑘║
2

𝑑𝑘
𝑇 𝑦𝑘

)2 𝑔𝑘+1

𝑑𝑘
𝑇 𝑦𝑘

    (2005) proposed by Hager and Zhang [10] 

Table 3.1 : Various choices for the CG update parameter 
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4. Line search [11] 

In each 𝐶𝐺 iteration, the step size k is chosen to yield an approximate minimum 

for the problem: 

                                    min𝛼≥0 𝑓(𝑥𝑘 + 𝛼𝑑𝑘)                                                    (4.1) 

Since 𝛼 ≥ 0, the direction 𝑑𝑘 should satisfy the descent condition 

                                       𝑔𝑘
𝑇 𝑑𝑘 < 0                                                              (4.2) 

for all 𝑘 ≥ 0. If there exists a constant 𝑐 > 0 such that  

                                      𝑔𝑘
𝑇  𝑑𝑘 < −𝑐║𝑔𝑘║

2
                                                 (4.3)  

for all 𝑘 ≥ 0, then the search directions satisfy the sufficient descent condition. 

The termination conditions for the 𝐶𝐺 line search are often based on some version 

of the Wolfe conditions. The standard Wolfe conditions [6, 7] are  

                               𝑓(𝑥𝑘 + 𝛼𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑘
𝑇  𝑑𝑘                                 (4.4) 

                                  𝑔𝑘+1
𝑇  𝑑𝑘 ≥ 𝜎𝑔𝑘

𝑇  𝑑𝑘                                                         (4.5) 

Where 𝑑𝑘 is a descent direction and 0 < 𝛿 ≤ 𝜎 < 1. The strong Wolfe conditions 

consists of (4.4) and the following strengthened version of (4.5):  

                               │𝑔𝑘+1
𝑇  𝑑𝑘│ ≤ −𝜎𝑔𝑘

𝑇  𝑑𝑘                                               (4.6) 

In the generalized Wolfe conditions [13], the absolute value in (4.6) is replaced by 

a pair of inequalities:  

                             𝜎1𝑔𝑘
𝑇 𝑑𝑘 ≤ 𝑔𝑘+1

𝑇  𝑑𝑘 ≤ 𝜎2𝑔𝑘
𝑇  𝑑𝑘                                 (4.7) 

where 0 < 𝛿 ≤ 𝜎 < 1  and 𝜎2  ≥  0. The special case 𝜎1 = 𝜎2 = 𝜎 corresponds 

to the strong Wolfe conditions. Ideally, we would like to terminate the line search 

in a 𝐶𝐺 algorithm when the standard Wolfe conditions are satis ed. For some 𝐶𝐺 
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algorithms, however, stronger versions of the Wolfe conditions are needed to 

ensure convergence and to enhance stability.  

 

5.  The General Optimization Algorithm [3] 

       More algorithms for solving optimization problems have been proposed than 

could possibly be discussed in a single book. This has happened in part because 

optimization problems can come in so many forms, but even for particular 

problems such as one-variable unconstrained minimization problems, there are 

many different algorithms that one could use. 

Despite this diversity of both algorithms and problems, all of the algorithms have 

the same general form. 

 

5.1 Algorithm I: General Optimization Algorithm I 

1. Specify some initial guess of the solution 𝑥0. 

2. For 𝑘 =  0, 1, . .. 

(i) If 𝑥𝑘is optimal, stop. 

(ii) Determine 𝑥𝑘+1, a new estimate of the solution.  

This algorithm is so simple that it almost conveys no information at all. However 

it is often helpful to keep in mind that we are still working within this simple and 

general framework. The algorithm suggests that testing for optimality and 

determining a new point 𝑥𝑘+1 are separate ideas, but this is usually not true. Often 

the information obtained from the optimality test is the basis for the computation 

of the new point. For example, if we are trying to solve the one-dimensional 

problem without constraints  
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minimize 𝑓 (𝑥), 

then the optimality test will often be based on the condition 

𝑓′(𝑥) = 0. 

If 𝑓(𝑥𝑘)  ≠  0, then 𝑥𝑘  is not optimal, and the sign and value of 𝑓(𝑥𝑘) indicate 

whether 𝑓 is increasing or decreasing at the point 𝑥𝑘, as well as how rapidly 𝑓 is 

changing. Such information is valuable in selecting 𝑥𝑘+1. Many of our algorithms 

will have a more specific form. 

5.2 Algorithm II: General Optimization Algorithm II 

1. Specify some initial guess of the solution 𝑥0. 

2. For 𝑘 =  0, 1, . .. 

(i) If 𝑥𝑘 is optimal, stop. 

(ii) Determine a search direction 𝑝𝑘. 

(iii) Determine a step length 𝛼𝑘 that leads to an improved estimate of the solution: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘. 

In this algorithm, 𝑝𝑘  is a search direction that we hope points in the general 

direction of the solution, or that “improves” our solution in some sense. The scalar 

𝛼𝑘 is a step length that determines the point 𝑥𝑘+1, once the search direction 𝑝𝑘 has 

been computed, the step length 𝛼𝑘  is found by solving some auxiliary one-

dimensional problem; see Figure 5.1 
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Figure 5.1: General optimization algorithm. 

Algorithm II with its three major steps (the optimality test, computation of 𝑝𝑘, and 

computation of 𝛼𝑘) has been the basis for a great many of the most successful 

optimization algorithms ever developed. It has been used to develop many 

software packages for nonlinear optimization, and it is also present implicitly as 

part of the simplex method for linear programming. Our methods are used this 

general form of algorithm. 

5.3  Nonlinear Conjugate-Gradient algorithm 

1. Set 𝑝−1  =  0, 𝛽0  =  0, and set the convergence tolerance 𝜖 

2. For 𝑖 =  0, 1, . .. 

(i) If ║𝛻𝑓 (𝑥𝑖)║ <  𝜖, stop. 

(ii) If 𝑖 >  0, set 

𝛽𝑖 =  𝛻𝑓 (𝑥𝑖)𝑇𝛻𝑓 (𝑥𝑖)/𝛻𝑓 (𝑥𝑖−1)𝑇𝛻𝑓 (𝑥𝑖 − 1).   

(iii) Set 𝑝𝑖 =  −𝛻𝑓 (𝑥𝑖)  + 𝛽𝑖𝑝𝑖−1.  

(iv) Use a line search to determine 𝑥𝑖+1  =  𝑥𝑖 + 𝛼𝑖𝑝𝑖  . 

This algorithm can be applied to general unconstrained problems: 



12 
 

                                                     minimize 𝑓 (𝑥). 

It requires the computation of the gradient 𝛻𝑓 (𝑥) , but no second-derivative 

calculations. Its storage requirements are low—just the three vectors 𝑥𝑖 , 𝑝𝑖, and 

𝛻𝑓 (𝑥𝑖), plus whatever temporary storage is required by the line search. At each 

iteration the algorithm requires only a small number of operations on vectors, plus 

the computation of 𝑓 and 𝛻𝑓 for various values of 𝑥. Hence it is suitable for large 

problems. 

5.3.1 Example 1  We apply the above nonlinear conjugate-gradient method to the 

minimization problem :  

minimize 

       𝑓 =
1

10
[(𝑥1 − 1)2 + 2(𝑥2 − 1)2 + 3(𝑥3 − 1)2 + 4(𝑥4 − 1)2] + [𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 −

1

4
]

2

 

The initial point is        𝑥0 = ( 1 − 1 1 − 1 )𝑇 

We will use a backtracking line search with parameter 𝜇 =  0.1. We give detailed 

results for the first two iterations.  

At the point  𝑥0 , 

𝑓 (𝑥0)  =  16.462 

𝛻𝑓 (𝑥0)  =  ( 15.0 − 15.8 15.0 − 16.6 )𝑇 . 

At the first iteration the steepest-descent direction is used: 

𝑝 =  −𝛻𝑓 (𝑥0)  =  (−15.0 15.8 − 15.0 16.6 )𝑇 . 

In the line search, the first few trial values of α are rejected: 

𝛼 =  1  

 𝑓 (𝑥0 +  𝛼𝑝)  =  7.3 × 105  

𝑓 (𝑥0)  +  𝜇𝛼𝑝𝑇𝛻𝑓 (𝑥0)  =  −81.058  

. 
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. 

. 

𝛼 =  0.0625  

𝑓 (𝑥0  +  𝛼𝑝)  =  0.0985  

𝑓 (𝑥0)  +  𝜇𝛼𝑝𝑇𝛻𝑓 (𝑥0)  =  10.367 

but the step length 𝛼 =  0.0625 is accepted. The new point is 

𝑥1  =  ( 0.0625 − 0.0125 0.0625 0.0375 )𝑇  

With 𝑓 (𝑥1)  =  0.98506 

𝛻𝑓 (𝑥1)  =  (−0.24766 − 0.39297 − 0.62266 − 0.80609 )𝑇  .  

At this iteration 

𝛽1  =  1.2851 × 10−3  

and the search direction is 

𝑝 =  ( 0.22838 0.41327 0.60338 0.82743 )𝑇 .  

In the line search 𝛼 =  1 

𝑓 (𝑥1  +  𝛼𝑝)  =  1.5712  

𝑓 (𝑥1)  +  𝜇𝛼𝑝𝑇𝛻𝑓 (𝑥1)  =  0.85889  

 𝛼 =  0.5 

𝑓 (𝑥1  +  𝛼𝑝)  =  0.46348 

𝑓 (𝑥1)  +  𝜇𝛼𝑝𝑇𝛻𝑓 (𝑥1)  =  0.92197 

and the step length 𝛼 =  0.5 is accepted. The new point is 

𝑥2  =  ( 0.17669 0.19414 0.36419 0. 45121 )𝑇 . 

This concludes the second iteration. 
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The complete results are given in Table 5.1. The iteration number is indicated by 

𝑘. The costs of the method are given by “ls” (the number of gradient evaluations). 

k ls ‖𝛻𝑓 (𝑥𝑘)‖ k ls ‖𝛻𝑓 (𝑥𝑘)‖ 

0 1 2×10
1
 13 33 6×10

-
5 

1 6 8×10
-1

 14 35 5×10
-5

 

2 8 2×10
-1

 15 37 2×10
-
5 

3 11 2×10
-1

 16 38 2×10
-5

 

4 13 1×10
-1

 17 41 8×10
-6

 

5 16 6×10
-2

 18 43 7×10
-6

 

6 18 3×10
-2

 19 46 2×10
-6

 

7 20 1×10
-2

 20 48 9×10
-
7 

8 23 1×10
-3

 21 50 5×10
-
7 

9 24 1×10
-3

 22 52 1×10
-7

 

10 27 7 ×10
-4

 23 54 1×10
-
7 

11 29 5×10
-4

 24 57 7×10
-8

 

12 32 2×10
-4

 13 33 6×10
-
5 

Table 5.1. Nonlinear conjugate-gradient method (n = 4). 
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5.2 Example 2: We apply the nonlinear method described in example 5.1 to        

min  𝑓(𝑥) = ∑ (𝑥𝑖 − 2𝑥𝑖+1)3
𝑖=1

2
= (𝑥1 − 2𝑥2)2 + (𝑥2 − 2𝑥3)2 + (𝑥3 − 2𝑥4)2 

use the initial guess  

                      𝑥0 = (1,1,1,1)𝑇  

𝑓(𝑥) = (𝑥1 − 2𝑥2)2 + (𝑥2 − 2𝑥3)2 + (𝑥3 − 2𝑥4)2  

𝑓(𝑥0) = 16.462     

∇𝑓(𝑥0) = (15.0    15.8     15.0     16.6)𝑇  

𝑝 = (−15.0   − 15.8    − 15.0    − 16.6)𝑇 ,   

𝛼 = 1 

𝑓(𝑥0 + 𝛼𝑝) = 7.3 × 105  , 𝑓(𝑥0) + 𝜇𝛼𝑝𝑇∇𝑓(𝑥0) = −81.058  

𝛼 = 0.0625  

𝑓(𝑥0 + 𝛼𝑝) = 0.0985      , 𝑓(𝑥0) + 𝜇𝛼𝑝𝑇∇𝑓(𝑥0) = 10.367  

But the step length 𝛼 = 0.0625    the new point is  

𝑥 = (0.0695      0.0125     0.0625      0.0375)  

𝑓(𝑥1)=0.98506 

,∇𝑓(𝑥1) = (0.24766     0.39297      0.62266    0.8060 

𝛽1 = 1.2851 × 10−3 

𝑝 = (−0.22838    − 0.41327     − 0.60338     − 0.82743)  

𝛼 = 1 

𝑓(𝑥1 + 𝛼𝑝) = 0.46348  

𝑓(𝑥1) + 𝑚𝑎𝑝𝑇∇𝑓(𝑥1) = −0.92197 

𝑥2 = (0.17669       0.19414     0.36419        0.45121)𝑇  

 

6 Rates of Convergence [3] 

  Many of the algorithms discussed in this book do not find a solution in a finite 

number of steps. Instead these algorithms compute a sequence of approximate 

solutions that we hope get closer and closer to a solution. When discussing such 

an algorithm, the following two questions are often asked: 
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• Does it converge? 

• How fast does it converge? 

It is the second question that is the topic of this section. 

If an algorithm converges in a finite number of steps, the cost of that algorithm is 

often measured by counting the number of steps required, or by counting the 

number of arithmetic operations required. For example, if Gaussian elimination is 

applied to a system of 𝑛 linear equations, then it will require about 𝑛3 operations. 

This cost is referred to as the computational complexity of the algorithm. For 

many optimization methods, the number of operations or steps required to find an 

exact solution will be infinite, so some other measure of efficiency must be used. 

The rate of convergence is one such measure. It describes how quickly the 

estimates of the solution approach the exact solution. Let us assume that we have 

a sequence of points 𝑥𝑘 converging to a solution 𝑥∗. We define the sequence of 

errors to be       𝑒𝑘 = 𝑥𝑘 − 𝑥∗. 

Note that 

lim
𝑘→∞

𝑒𝑘 = 0 

We say that the sequence { 𝑥𝑘 } converges to 𝑥∗ with rate 𝑟 and rate constant 𝐶if 

lim
𝑘→∞

║𝑒𝑘+1║

║𝑒𝑘║
𝑟 = 𝐶 

And 𝐶 <  ∞. To understand this idea better, let us look at some examples. 

Initially let us assume that we have ideal convergence behavior 

║𝑒𝑘+1║ = 𝐶║𝑒𝑘║
𝑟
 for all 𝑘 

so that we can avoid having to deal with limits. When 𝑟 =  1 this is referred to as 

linear convergence 

║𝑒𝑘+1║ = 𝐶║𝑒𝑘║ 

If 0 <  𝐶 <  1, then the norm of the error is reduced by a constant factor at 

every iteration. If 𝐶 >  1, then the sequence diverges. (What can happen when 

𝐶 =  1?) If we choose 
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𝐶 =  0.1 =  10−1 and ║𝑒0║ =  1, then the norms of the errors are 

1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 

and seven-digit accuracy is obtained in seven iterations, a good result. On the 

other hand, if 𝐶 =  0.99, then the norms of the errors take on the values 1, 0.99, 

0.9801, 0.9703, 0.9606, 0.9510, 0.9415, 0.9321, . . . , 

and it would take about 1600 iterations to reduce the error to 10−7, a less 

impressive result. If 𝑟 =  1 and 𝐶 =  0, the convergence is called superlinear. 

Superlinear convergence includes all cases where 𝑟 >  1 since if                 

lim
𝑘→∞

║𝑒𝑘+1║

║𝑒𝑘║
𝑟 = 𝐶 < ∞ 

lim
𝑘→∞

║𝑒𝑘+1║

║𝑒𝑘║
𝑟 = lim

𝑘→∞

║𝑒𝑘+1║

║𝑒𝑘║
𝑟 ║𝑒𝑘║

𝑟−1
= 𝐶 × lim

𝑘→∞
║𝑒𝑘║

𝑟−1
= 0 

When 𝑟 =  2 , the convergence is called quadratic. As an example, let 𝑟 =

 2, 𝐶 =  1, and ║𝑒0║ = 10−1. Then the sequence of error norms is 

10−1 −1, 10−2 , 10−4 , 10−8 , and so three iterations are sufficient to achieve 

seven-digit accuracy. In this form of quadratic convergence the error is squared 

at each iteration. Another way of saying this is that the number of correct digits 

in 𝑥𝑘 doubles at every iteration. Of course, if the constant 𝐶 =  1, then this is not 

an accurate statement, but it gives an intuitive sense of the attractions of   

quadratic convergence rate. For optimization algorithms there is one other 

important case, and that is when 1 <  𝑟 <  2. This is another special case of 

super linear convergence. This case is important because (a) it is qualitatively 

similar to quadratic convergence for the precision of common computer 

calculations, and (b) it can be achieved by algorithms that only compute first 

derivatives, whereas to achieve quadratic convergence it is often necessary to 

compute second derivatives as well. To get a sense of what this form of 

superlinear convergence looks like, let 𝑟 =  1.5, 𝐶 =  1, and ║𝑒0║ = 10−1 . 
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Then the sequence of error norms is 1 ×  10−1, 3 × 10−2, 6 × 10−3, 4 × 10−4, 

9 × 10−6, 3 × 10−8, and five iterations are required to achieve single-precision 

accuracy. 
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