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In 1940, S. M. Ulam posed the following question concerning the stability of group homomorphisms before a Mathematical Colloquium:  When  can  weassert  that  the solutions  of an inequality are close to one of the exact solutionsof the corresponding equation?
A year later, D. H. Hyers dealt with ε-additive mapping by direct method, which gave a partial solution to the above question.  The result was extended by T. Aoki [1], D. G. Bourgin [2]. We men- tion here that the interest of this topic has been increasing since it came into being, some other results concerning functional equations one can ﬁnd, e.g., in [4, 5, 6, 7, 8, 9] and some related information  (e.g., ε-isometries, su- perstability of functional equations and the stability of diﬀerential expressions) we refer to [10, 11, 12, 13].
To the best of our knowledge, the ﬁrst one who pay attention to the sta- bility of diﬀerential equations is proved that the stability  holds true for diﬀerential equation y′(x) = y(x). Then, a generalized result was given by S.-E. Takahasi, T. Miura and S. Miyajima , in which they investigated the stability of the Banach space valued linear diﬀerential equation of ﬁrst  order  (see also [14, 15]).  A more general result on the linear diﬀerential equations of ﬁrst order of the form y′(t) + α(t)y(t) + β(t) = 0 was given by S.-M. Jung [16] and the stability of linear diﬀerential equations of second order was established by Y. Li et al. (see [17] . There are a number of results concerning the stability of thelinear ordinary diﬀerential equations, which prompts the question:Can we as-sort that all of the linear ordinary differential  equations  have the Hyers-Ulam stability 
Indeed, P. Gavruta, S.-M. Jung and Y. Li [17] proved that the diﬀerential equation y′′ = 0 does not have the Hyers-Ulam stability on the whole domain. For some examples of diﬀerential equations which have the Hyers-Ulam stability on unbounded interval we refer the reader to which  show that it is a very special case that the Hyers-Ulam stability holds true for general diﬀerential equations on the whole domain.
Recently, proved that the generalized Hyers-Ulam stability holds
for the case of general linear diﬀerential equations, and the stability of nonlinear diﬀerential equations
y′(x) = F ( x, y(x) )
with a Lipschitz condition on a local interval was investigated by a ﬁxed point method:











2. Preliminaries 								
Definition 2.1:  We will say that the equation (3.1.11) has the Hyers – Ʋlam stability with the initial conditions (3.1.12) if there exists a positive constant K> 0 with the following property:
For every ε > 0, z ∈ C 2(I) where x is sufficiently large in R, if
|z′′ + p(x)z′ + (q(x) − α(x))   z|  ≤ ε               (2.1.1)
Then there exists some solution w ∈  (I) of the equation (3.1.13), such that
|z(x) − w(x)| ≤ K ε and satisfies the initial conditions
w(x0 ) = 0 = w′(x0 )            (2.1.2)																											
Definition 2.2: We say that equation  has the Hyers -Ulam stability with initial conditions  if there exists a positive constant K > 0 with the following property:
For every ε > 0, z ∈ C 2(I ) where x is sufficiently large in R,  if
|z′′ + p(x)z′ + q(x)z − h(x)zβ e( )[image: ]|  ≤ ε         (2.3)
Then there exists some solution w ∈ C 2(I) of the equation (3.1.13)  and
w(x0 ) = w′(x0 ) = 0           	 (2.4)
Such that |z(x) − w(x)| ≤ KƐ .																	

		
Definition 2.3 We will say that the equations (),() have the Hyers -Ulam asymptotic stability with the initial conditions (3.1.12) if the equation is stable in the sense of Hyers and Ulam and 


Lemma 2.4 : Let 𝑢,  : [0,∞) → [0,∞) be integrable functions,
let 𝑐> 0 be a constant, and let 𝑡0≥ 0 be given. If 𝑢satisfies the
inequality
𝑢 (𝑡) ≤𝑐 +   (2.2.3)
for all 𝑡≥𝑡0, then
𝑢 (𝑡) ≤𝑐 exp (    (2.2.4)
for all 𝑡 ≥ 𝑡0.

Proof: It follows from  that
     (2.2.5)
for all t≥t0. Integrating both sides of the last inequality from
t0 to t, we obtain
  In     (2.2.6)
Or    
           (2.2.7)
for each t≥t0, which together with (3.1.13) implies that
                             (2.2.8)
for all t≥t0.
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In this section we investigate the Hyers-Ulam stability of the following non- linear differential equation of second order
z"+ p(x)  + q(x)z = h(x) |z| sgnz , ∈ (0, 1) (3.1.9)
with the initial conditions
z(x0) = 0 = z′(x0)                                     (3.1.10)
where q ∈ C0(I) , , h , p ∈ C1(I), I = [x0, x] ⊆ R, x0> 0 , p(x) > 0, and h(x) is a bounded for all sufficiently large x in R. Moreover we proved the Hyers-Ulam stability of the linear differential equation of second order
z" + p(x)z′ + (q(x) −ᾳ(x)) z = 0                        (3.1.11)
with the initial conditions
z(x0) = 0 = z′(x0)                       (3.1.12)
where (x) is a bounded function for all sufficiently large x in 
It should be note here that we may assume that z > 0 in equation () because if z < 0 we set z = −u , u > 0. So we will consider in future the equation
 + p(x)  + q(x)z = h(x)  e  , ∈ (0, 1)      
                                                                                    (3.1.13) 
													
Theorem 3.1.1:
Suppose |h(x)| ≤ A for all x ≥ x0, and that y ∈ C2(I) ,
such that satisfies the inequality
|y" + y − h(x) | ≤      , ∈ (0, 1)          (3.1.14)  
with the initial condition
y(x0) = 0 = y'(x0)           (3.1.15)  
If A <,for x≥ x0,then the equation
y" + y = h(x)    , ∈ (0, 1)                         (3.1.16)  
has the Hyers-Ulam stability with initial condition .				
Proof. suppose that > 0, y ∈ C2(I) satisfies the inequation (3.1.14) with the initial conditions (3.1.15) and that M = .
We will show that there exists a function w(x) ∈ c2(I) satisfying the equation(3.1.16) and the initial condition (3.1.15) such that |z(x) − w(x)| ≤k.
−≤ y" + y − h(x) ≤                              (3.1.17)
Multiply the inequality (3.1.14) by y' and then integrate we obtain
−2 y ≤y'2(x) + y2(x) – 2≤ 2y
From which we get that
y2(x) ≤ 2y + 2
Therefore
M ≤
Hence |y(x)| ≤k, for all x ≥ x0. Obviously, w0(x) = 0 satisfies the equation(3.1.16) and the zero initial condition (3.1.15) such that
|y(x) − w0(x)| ≤k
Thus the equation (3.1.16) has the Hyers-Ulam stability with initial condition(3.1.15).













Corollary 3.1.1 : Assume that h(x) and z(x) satisfy the conditions of Theo- rem 3.2, and the inequality (2.1.1) with the initial condition (3.3.12).
If A < , for x ≥ x0 and the integral 
Converges then the equation (3.1.13) has the Hyers-Ulam stability with initial condition (3.1.12). Moreover, if the integral   = ∞then the equation (3.1.15) has the Hyers-Ulam asymptotic stability with initial condition (3.1.12).

Proof: Suppose that z ∈ C2(I) satisfies the inequality (2.1.1) with the initial condition (3.1.12). Then from the 3.1.1it follows that the equation (3.1.16) has the Hyers- Ulam stability with initial condition (3.1.15), and according to the substitution used in Lemma 2.1 it follows that the equation (3.1.13) has the Hyers-Ulam stability with initial condition (3.1.12). Now if  = ∞, then the equation (3.1.13) has the Hyers-Ulam asymptotic stability with initial condition (3.1.12).
Now we illustrate the Theorem by the following example.
Example 3.1 : Consider the equation
   z" + z' + z = 
with the initial condition
z(x0) = 0 = z'(x0)                                                        (3.1.18)
If we set z(x) = in the the equation (   ) we obtain
y"(x) + y(x) =               (3.1.19)			            											 We Iet y(x)=	 and estimate the	 difference        	               
=    (3.1.20)
Now we may choose the number x0 sufficiently large such that the inequality(3.1.20) will satisfy for any x ≥ x0 and for			 any0.
Hence y(x) = (x − x0)2 e−x is an approximate solution of the equation (3.1.17) satisfying the zero initial condition
y(x0) = 0 = y′(x0)                    (3.1.21)
Now we have

Therefore
M ≤k, where
It is clear that z0≡ 0 satisfies the zero initial condition and the inequality|y(x) − z0(x)| ≤k. Thus the equation (3.1.17) has the Hyers-Ulam stability.Moreover, since 
,then it also is asymptotically stable inthe sense of Hyers and Ulam as x→∞. Now since the integral = ∞ , then by Lemma it follows that the equation (3.1.17) has the Hyers-Ulam stability with zero initial condition (3.1.18). Moreover the equation (3.1.17) isasymptotically stable in the sense of Hyers and Ulam as x →∞.

3.2 Gronwall inequality and Hyers-Ulam stability 
In this section, we investigate the Hyers-Ulam stability of the
nonlinear differential equation
                                     u"(t)+F(t,u(t))=0.  (3.3.22)
3.2.1:Given constants L> 0 and t0≥ 0, assume that F : [t0,∞) × R → (0,∞) is a function satisfyingF' (t, u(t))/F(t, u(t)) > 0 and F(t, 0) = 1 for all t≥t0 andu∈U(L;t0). If a function u : [t0 ,∞) → [0,∞) satisfiesu∈U(L; t0) and the inequality
                         (3.2.23)
for all t≥t0 and for some > 0, then there exists a solution
u0 : [t0 ,∞) → [0,∞) of the differential equation (3.2.23) such
that
                              (3.2.24)
for any t≥t0.
Proof:We multiply (3.2.23) with |u' (t)| to get
- (3.2.25)
for all t≥t0. If we integrate each termof the last inequalities
from t0 to t, then it follows from(ii) that
-                                                                    (3.2.26)
for any t≥t0.
Integrating by parts and using (iii), the last inequalitiesyield
-
                                                                                       (3.2.27)
for all t≥t0. Then we have

(3.2.28)  
for any t≥t0.
   Applying    , we obtain

                                                                                  (3.2.29)
for all t≥t0. Hence, it holds that |u(t)| ≤L for any t≥t0.
Obviously, u0(t) ≡ 0 satisfies (3.2.22) and u0∈U(L; t0) such that
                     (3.2.30)
for all t≥t0.
In the following 3.2.1 , we investigate the Hyers-Ulam
stability of the Emden-Fowler nonlinear differential equation
of second order
u"(t) + h(t)u = 0                               (3.2.31)
for the case where  is a positive odd integer.
3.2.2:Given constants L> 0 and t0≥ 0, assume that ℎ : [t0,∞) → (0,∞) is a differentiable function. Let  be an odd integer larger than 0. If a function u : [t0 ,∞) → [0,∞)
satisfies u∈U(L; t0) and the inequality
                                 (3.2.32)
for all t≥t0 and for some > 0, then there exists a solution
u0 : [t0 ,∞) → [0,∞) of the differential equation (3.2.31) such
that
1/                                    (3.2.33)
for any t≥t0, where  :=  +1.												
Proof. We multiply (3.2.32) with |u'(t)| to get
-     (3.2.34)
for all t≥t0. If we integrate each termof the last inequalities
from t0 to t, then it follows from that
- (3.2.35)
for any t≥t0.
Integrating by parts and using , the last inequalities yield
-  (3.2.36)
for all t≥t0. Applying           , we obtain
            (3.2.37)
for all t≥t0, from  which  we have 
                                (3.2.38)
for all t≥t0. Hence, it holds that
1/                                      (3.2.39)
for any t≥t0, where we set  =  + 1. Obviously, (t) ≡ 0
satisfies (3.2.23) and  ∈U(L; t0). Moreover, we get
1/                               (3.2.40) 
for all t≥t0.
3.2.3:Given constants L≥ 0, M> 0, and t0≥ 0,
assume that ℎ : [t0,∞) → [0,∞) is a function satisfying
c := Let  be an odd integer larger than 0.If a function u∈U(L;M; t0) satisfies the inequality
                     (3.2.41)
for all t≥t0 and for some > 0, then there exists a solution
 : [,∞) → R of the differential equation  such that
              (3.2.42)
for any t≥t0.									
Proof. We multiply (3.2.41) with |u' (t)| to get
-          
                                                                      (3.2.43)
for all t≥. If we integrate each termof the last inequalities from t0 to t, then it follows from that
-

                                         (3.2.44)
for any t≥t0.
Integrating by parts and using  and , the last
Inequalities yield
-              (3.2.45)
                          - 
for all t≥t0. Then it follows from (iii') that

                (3.2.46)


For any t 


for all t≥t0. Hence, it holds that

for any t≥t0. Obviously, u0 (t) ≡ 0 satisfies  and u0∈
U(L; M; t0). Furthermore, we get
         for all  t ≥ t0.		
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