International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 3 Number 1 (2014) pp. 740-744 http://www.ijcmas.com

Original Research Article

Histopathological evaluation of focal ischemic brain damage as a result of acute ruminal lactic acidosis in lambs

Qassim Haleem Kshash¹, Asaad Jassim¹ and Afaf Abdulrahman Yousif^{2*}

¹College of Veterinary Medicine/Al Qadissiya University; Iraq ²College of Veterinary Medicine, Department of Preventive and Internal Veterinary Medicine/Baghdad University, Iraq *Corresponding author

ABSTRACT

Keywords

Ischemic brain damage; acute ruminal acidosis; lambs. Lactic acidosis is a physiological condition characterized by low pH in body tissues and blood (acidosis) accompanied by the buildup of lactate, especially D-lactate, and is considered a distinct form of metabolic acidosis. The current study was conducted to evaluate the histopathological changes in brain that occur due to increased levels of lactic acid after experimentally induced acute ruminal acidosis in lambs. Eight clinically healthy young lambs (6-8 months) (Awassi), with average weight of 30.2 \pm 2.25 kg were selected for this study. These eight young lambs are equally subdivided into two groups: treated group (4) animals and control group (4) animals. Acute Ruminal acidosis was induced intraruminal intubation of 15g /kg BW sucrose via stomach tube. Prior to the infusion of sucrose (0 time), samples from rumen content were obtained to immediate determine normal pH values. Samples of rumen fluid were collected after 12 h of the infusion of sucrose. Clinical manifestation were notice on affected animals and then the histopathological biopsies were taken after 24 hours from three animals of treated group to study the morphological alterations that occur due to acute acidosis. The clinical signs that appears on animals immediately after induction of ruminal acidosis are depression, granting teeth, congestion of conjunctiva, some loss their appetite, while some others preferred roughage diet, salivation, urine retention, ataxia and difficult in gait(laminitis), and some of animals suffering from profuse pasty or watery diarrhea. Mean ruminal PH changed rapidly over the first 12 hours of ruminal lactic acidosis (4.31 ± 0.41) . The histopathological alteration in the brain of lambs were obvious subdural hematoma and perivascular and pericellular edema with perivascular cuffing of inflammatory cells as well as multifocal subdural hemorrhage and thrombi. This study revealed a different pathological changes in the brain of lambs with lactic acidosis.

Introduction

D-Lactate is normally present in the blood of mammals at nanomolar concentrations due to methylglyoxal metabolism; millimolar d-lactate concentrations can arise due to excess gastrointestinal microbial production. Grain overload in ruminants, short-bowel syndrome in humans, and diarrhea in calves can all result in profound d-lactic academia. with remarkably similar neurological manifestations (Ewaschuk et al., 2005). With acute acidosis, ruminal acidity and osmolality increase markedly as acids and glucose accumulate; these can damage the ruminal and intestinal wall, decrease blood pH, and cause dehydration that proves Polioencephalomalacia, fatal. liver abscesses, and Laminitis often accompany acidosis (Enemark, 2008).

Materials and Methods

Eight clinically healthy young lambs (6-8 months) (Awassi), with average weight of 30.2 ± 2.25 kg were selected for this study. These eight young lambs are equally subdivided into two groups: treated group (4) animals and control group (4) animals. There were no any parasitic infections in animals. All of the experiment animals were kept for three weeks under the same condition for adaptation to the new environment, with feeding on alph-alpha grass. Acute Ruminal acidosis was induced by intraruminal intubation of 15g /kg BW sucrose via stomach tube (Slyter, 1976). Prior to the infusion of sucrose (0 time), samples from rumen content were obtained using stomach tube provide with vacuum pump and its pH was measured immediately to determine normal values (pH meter, Germany) were collected after 12 h of the infusion of sucrose.

Clinical manifestations were notice on affected animals and then the histopathological biopsies were taken after 24 hours from three animals of treated study the morphological group to alterations those occur due to acute ruminal acidosis. Routine histopathological process was performed

to obtain slides stained with haematoxylin and eosin (H&E) for histological evaluation (Bancroft *et al.*, 1994). To assess differences between the control (hour zero) and induction of acidosis, Ttest was performed for analysis of data and probability of P<0.05 were considered to be statistically significant.

Ethical approval

This study was approved by the ethical and research committee of Veterinary Medicine College/University of Al-Qadesia.

Results and Discussion

The clinical signs that appears on animals immediately after induction of ruminal acidosis are depression, granting teeth, congestion of conjunctiva, some loss their appetite, while some others preferred roughage diet, salivation, urine retention, ataxia and difficult in gait(laminitis), and some of animals suffering from profuse pasty or watery diarrhea. Mean ruminal pH changed rapidly over the first 12 h of ruminal lactic acidosis (4.31 ± 0.41).

This results were in accordance with (Nikolov, 1998) that revealed that after treatment of the experimental group with 20 ml/kg body mass molasses, decreased rumen pH and the increased serum and concentrations lactate occur rumen progressively in parallel with the severity disease. Metabolic acidosis in of mammalian organisms occurs due to accumulation of D-lactate isomer in blood following absorption from the rumen because there was no specific mechanism for the metabolisation of D-lactate (Gentile et al., 2002).

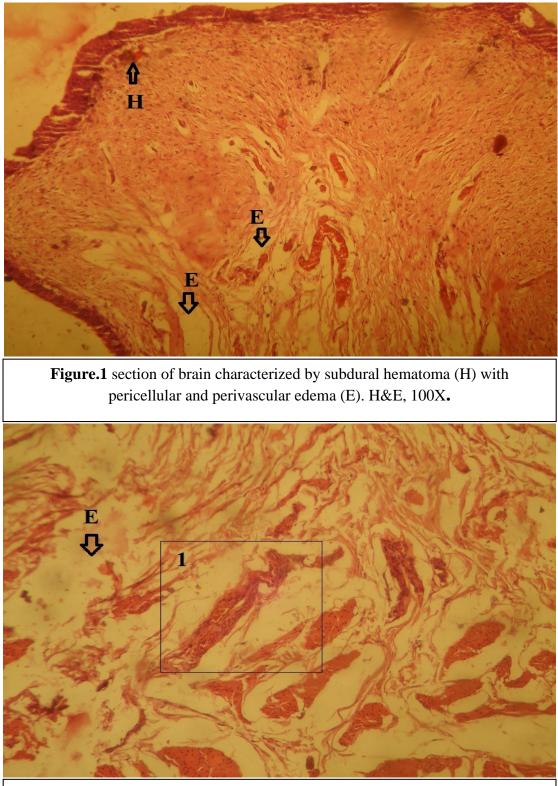
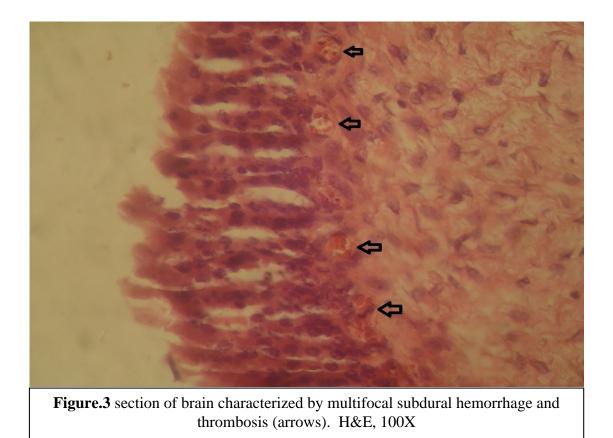



Figure.2 section of brain characterized by edema and perivascular cuffing of inflammatory cells (1). H&E, 100X.

Changing ruminal pH by fermentation amount of easily large digested carbohydrates that occur rapidly and result in formation of greater amount of lactate and propionate simultaneously with decrease in acetate and butyrate concentrations (Nikolov, 1998). This led to multiplies S. bovis until ruminal pH is less than 5.0, a pH that allows an increase in Lactobacillus growth. Both of these bacterial species produce D and L-lactic acid. D-lactate and L-lactate will absorb rumen wall and across the the consequence is decrease blood pH. As Llactate is metabolized more rapidly than D-lactate, the metabolic acidosis is due in large part to the accumulation of the latter (Bolton and Pass, 1988). The toxic metabolites resorbed in blood from the rumen impaired all parenchymal tissues (liver, heart, brain etc.) (Raundhawa, 1987). The histopathological alteration in the brain of sheep that suffering from

experimentally induced lactic acidosis were showed obvious subdural hematoma and perivascular and pericellular edema (figure 1) with perivascular cuffing of inflammatory cells (figure 2) as well as multifocal subdural hemorrhage and thrombi (figure 3). Some of our results were in accordance with these revealed by (Evans et al., 1976) that discover presence of pronounced edemas and hyperaemia in the meninges (pia mater), and brain as well as perivascular and pericellular edema in the brain, while he didn't indicate to perivascular cuffing of inflammatory cells as we mentioned. Other studies (Dshurov, 1976) revealed that injection of sucrose and consequent hypercapnia and then hypoxia caused an increase in cerebral vascular permeability to sucrose in foetal and new-born sheep.

Severe newborn encephalopathy and respiratory complications were recorded

by (Low et al., 1997) that occur as threshold of metabolic acidosis during delivery. Hyperglycemia, intra and extracellular acidosis one causes of ischemia or hypoxia and consequent brain damage and when ischemia is complicated by excessive acidosis, the ischemic damage encompasses post-ischemic seizures. edema. pannecrosis. and Hemorrhagic infarction and cerebral hematoma are feared events that may follow cerebral ischemia (Lyden and Zivin 1993). The cellular and molecular mechanisms responsible for these alterations have not been adequately defined. But, the acidosis may causes damage to inhibitory GABAergic cells by raising Ca_i²⁺ to levels, which will overload the buffering systems and cause cell death (Siesjö et al., 1993).

References

- Bancroft, J. D., Cook, H. C. & Stiling, R.W. 1994. Manual of Histological Techniques and their Diagnostic Application, 3rd edn. New York: Churchill Livingstone
- Bolton, J. R. and Pass, D. A. 1988. The alimentary tract. Clinicopathologic principles for veterinary medicine. W.F. Robinson and C. R. R. Huxtable. Cambridge, Cambridge University Press.UK: 99-121.
- Dshurov, A. 1976. The effect of hypercapnia on a blood-brain barrier mechanism in foetal and new-born sheep. J.Physiol. 255(3):701-14.
- Enemark, J.M.D. 2008. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. Vet. J.176: 32-43.
- Evans, C.A.; Reynolds, J.M.; Reynolds, M.L. and Saunders, N.R. 1976. Pathomorphologic changes in the ruminal acidosis of sheep. Arch. Exp. Veterinarmed. 30(6):881-7.

- Ewaschuk, J. B.; Naylor, J. M. and Zello, G. A. 2005. D-Lactate in Human and Ruminant Metabolism. J. Nutr. 135 (7): 1619-1625.
- Gentile, A.; Sconza, S. and Lorenz, I. 2002. D-lactic metabolic acidosis in calves as a consequence of experimentally induced ruminal acidosis. Abstracts XXII World Buiatrics Congress, 175.
- Low, J. A.; Lindsay, B.G. and Derrick, E.J. 1997. Threshold of metabolic acidosis associated with newborn complications. Am J Obstet Gynecol. 177(6):1391-4.
- Lyden, P.D. and Zivin, J.A. 1993. Hemorrhagic transformation after cerebral ischemia: mechanisms and incidence. Cerebrovasc Brain Metab Rev. 5(1):1-16.
- Nikolov, Y. 1998. Clinical experimental studies on acute rumen acidosis in buffaloes (*Bubalus bubalis* L.). V. Influence on several blood and rumen biochemical parameters. VET. ARHIV. 68 (6): 205-212.
- Nikolov, Y. 1998. Clinical experimental studies in acute rumen acidosis in buffaloes (*Bubalus bubalis* L.). IV.
 Influence of acidosis on blood, rumen liquid and urine electrolytes. Vet. Arhiv. 68: 1-9.
- RaundhawA, S. S. 1987. Evidence of toxic factors in the rumen liquor of healthy and acidotic buffalo calves. Acta Vet. 56: 455-464.
- Siesjö, B. Katsura, K.; Mellergård, P.; Ekholm, A.; Lundgren, J. and Smith, M.1993. Neurobiology of Ischemic Brain Damage; Chapter : Acidosisrelated brain damage. Elsevier B.V. 96:1-26.
- Slyter ,L.L 1976 Influence of acidosis on rumen function. J. Anim. Sci.43:910-929.