(Trachootham et al., 2008). It is worth noting that recent studies are targeting the molecular
mechanisms that control the redox environment in leukemia cells, made up from the production
of ROS and the expression and activity of antioxidant enzymes. It has been demonstrated that
leukemia cells gain proliferative and survival advantages by manipulating this system. Therefore,
ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine
oxidoreductase, and cytochrome P450, have al been targeted to promote leukemia cell death
(Irwin et al., 2013). In this Chapter, the results suggest that CD38 might also serve as a possible
target to regulate the redox system specifically in CD38" leukemia cells through controlling its

rolein ROS production.

The data presented in this Chapter reveal novel findings concerning the effects of NAD depletion
on cell physiology. As discussed above, NAD depletion during HL6E0 differentiation caused an
enhancement of lipid peroxidation, and relative depletion of released lactate and total glutathione
levels, while the NAD":NADH ratio remained relatively constant. These data raise the possibility
that lowered NAD levels might have effects on NAD-dependent processes such as glycolysis,
depending on the availability of NAD" (Krigtian et al., 2011). An insufficient supply of NAD"
limits cellular energy production (Wilhelm and Hirrlinger, 2012), and it might also affect cell
survival and cause cell death (as in differentiated HL60 cells). However, the consequences of
lowered NAD levels via CD38 expression in leukemia cells might promote anti-apoptotic effects,

as shown in Figure 4.10.
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Figure 4.10 The consequences of lowered intracellular NAD levels on cell metabolism. This diagram
describes the role of CD38 expression as a determinant of NAD- mediated cell survival, leading to either
apoptosisin differentiated HLG0 cells or anti-apoptotic effectsin CD38" leukemia cdlls.
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CHAPTER 5

REGULATION OF CD38 EXPRESSION
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5.1 Introduction

The involvement of CD38 expression in various types of cells and in severa diseases makesit a
possible therapeutic target, especialy in leukaemia. Thus, transcriptiona regulation of CD38 has
been extensively studied. Cytokines and hormones are two major groups of signalling molecules
implicated in the regulation of CD38 expression. In CLL, studies have shown that interferons
(IFN-a, -B and -y), IL-2 and IL-4 increase CD38 mRNA expression (Bauvois et al., 1999;
Deaglio et al, 2003; Levesgue et al., 2006). Furthermore, the effects of tumour necrosis factor-o
(TNF-a), IFN-y, IL-1p and the Th2 cytokine, I1L-13, on the increase of CD38 mRNA have aso
been studied in human airway smooth muscle (HASM) cells (Deshpande et al., 2004). Further
studies suggest a transcriptional upregulation of CD38 by TNF-o in myometria cells (Barata et
al., 2004) and macrophages (lgbal, and Zaidi, 2007). Moreover, in human monocytes and the
derived lines U937 and THP-1, the study of Musso et al. (2001) found that IFN-y and IL-2
increased CD38 expression but that lipopolysaccharide (LPS), TNF-a. and GM-CSF had no
detectable effects. However, further studies showed that LPS increased CD38 mRNA expression

in J774 macrophage cells (Lee et al., 20123).

The effects of hormones on CD38 expression have been studied in myometrial tissue (Dogan et
al., 2002; 2006). In ovariectomized rats, administration of estradiol-17f caused a significant
induction of CD38 expression in the myometrium (Dogan et al., 2004). However,
glucocorticoids (a class of steroid hormones) have been found to inhibit CD38 expression as

shownin HASM cells (Kang et al., 2006; 2008).
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Transcriptional regulation of CD38 has been aso investigated in the HL60 cell line during
differentiation with various agents. It was observed that differentiation of HL60 to granulocytes
induced by isonicotinic acid, led to CD38 expression (Iwata et al., 2003). Moreover, lo,25-
dihydroxy vitamin D3z which is an inducer of differentiation of HL60 towards monocyte-like
cells, has aso been shown to induce CD38 expression (Stoeckler et al., 1996). Importantly, the
differentiation of HL60 into granulocytic cells using ATRA is accompanied by the induction of
CD38 expression (Drach et al., 1993), while DM SO has no effect on CD38 expression (lwata et
al., 2003; Guida et al., 2004). It was suggested that ATRA-induced CD38 expression is mediated
by direct transcriptional regulation via activation of a RAR/RXR heterodimer interacting with a
retinoic acid response element located in the first intron of the CD38 gene (Mehta et al., 1997).
In undifferentiated-HL60 cells, a mitochondrial NADH dehydrogenase inhibitor, rotenone, was
also shown to induce CD38 expression (Matsunaga et al., 1996). Importantly, the finding of
appropriate regulators that inhibit CD38 mRNA expression might be a useful approach,
especially in CD38" subset patients. Compared to CD38' leukemia subset patients, inhibition of
CD38 mRNA production in CD38" leukemia might successfully inhibit cell proliferation and

reduce resistance to apoptosis, and hence improve the prognosis.

Collectively, several regulators of CD38 expression have been suggested that mostly regulate
CD38 mRNA, such as ATRA, cytokines and hormones. However, regulation of CD38
expression by its substrate, NAD, has not been studied. The novel work in this chapter suggested
firstly that CD38 expression might be regulated by manipulating NAD levels, either by inhibiting
a key enzyme in NAD biosynthesis, NAMPT, by using FK866 in order to decrease NAD levels
or by supplementing cells with NAD to elevate the intracellular levels. Manipulation of NAD
levels might be involved in CD38 regulation indirectly through the effect of NAD availability on
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sirtuin and PARP, as NAD-consuming enzymes. Alternatively, NAD might be involved in CD38
transcriptional regulation via a protein such as C-termina binding protein (CtBP). This study has
provided the first evidence indicating that controlling NAD levels can attenuate CD38 mRNA

expression.

5.2 Materials and methods

5.2.1 Materials

Kuromanin was purchased from Sigma (Poole, UK), NAD was from Melford (Ipswich, UK) and
FK866 (APO866, (E)-N-[4-(1-benzoylpiperidin-4-yl) butyl]-3-(pyridin-3yl) acrylamide was
from Axon Medchem (Groningen, The Netherlands). Plastic boxes for oxygen exposures and
cylinders containing custom mixtures of O,, CO, and N, were al obtained from the Diving

Diseases Research Centre (DDRC, Plymouth, UK).

5.2.2 Evaluation of CD38 expression in differentiating cells after treatment with kuromanin

Differentiated cells treated with 30 uM kuromanin for 6, 18 and 24 hours were subjected to

gPCR analysis for CD38 expression as previously described in Chapter 2, Section 2.7.

5.2.3 Determination of the effects of addition of FK866 or NAD on intracellular NAD levels,

cell proliferation and CD38 expression in cell lines

HL60 and RAJI cells (5 x 10° cells ml™) were incubated in 24-well plates at 37 'C in RPMI-1640
culture media in the presence or absence of 1-100 uM NAD™ or 1-1000 nM FK866. After 24
hours cells were removed from each well and used for analysis of intracellular NAD levels and

MTT assay (Sections 2.9.2.1 and 2.6 respectively).
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CD38 expression in RAJI, HL60 and differentiating HL6E0 cells were determined in the presence
or absence of 100 uM NAD™ or 100 nM FK866 for 6, 12 and 24 hours incubation at 37 'C, by
guantitative real-time qPCR (see Chapter 2, section 2.7). The AACt method was used to

determine the relative quantity of CD38 mRNA in samples.

5.2.4 Oxygen exposure protocol

HL60 or RAJI cells (1-2 x 10° ml™) were placed in 6-well plates in air tight plastic boxes (21.5
cm x 21.5 cm x 11 cm; total volume five litres) prepared at the DDRC (Fig. 5.1). Boxes were
flushed for 5 min with gas mixtures either giving a hypoxic environment (2% O, 5% CO,, 93%
N or 5% O, 5% CO, and 90% N>) or a hyperoxic environment (95% O, 5% CO,) at arate of 4 |
min™. The boxes were then sealed and placed at 37 'C in a conventional cell incubator for 30, 60
and 90 min. In each experiment the normoxic controls were incubated under conditions of
atmospheric oxygen concentration (21% O,, 5% CO, and 74% Ny). All the cells were grown in

RPM-1640 medium supplemented with 10% FCS.
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Figure5.1 (A) boxes and (B) Oxygen cylinders used in normoxia, hypoxia and hyperoxia experiments.

5.2.5 Statigtical analysis

Statistical analysis of the data was assessed using Fisher’s one way analysis of variance
(Statview 5.0.1; Abacus concepts, USA) or Student’s t-test as appropriate. Data are expressed as
means + SEM for three separate experiments in triplicate, unless otherwise stated. A difference

of P < 0.05 was considered statistically significant.
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5.3 Results

5.3.1 Effect of elevated NAD" levels on CD38 expression after kuromanin treatment

It was found previously (Chapter 3) that kuromanin, the novel human CD38 inhibitor, caused an
elevation in intracellular NAD" levels. In this Chapter the aim was to establish whether this
elevation in intracellular NAD" might regulate CD38 mRNA expression. Interestingly, gPCR

results revealed that trestment with kuromanin leads to attenuation of CD38 expression.

The results showed significant inhibition of CD38 mMRNA expression in differentiating cells with
30 uM kuromanin and started from as early as 6 h differentiation in the presence of kuromanin
(Fig. 5.2). A significant drop in mRNA levels was also shown at 18 h and 24 h incubation
compared to each control (differentiating cells without kuromanin). In this respect, low CD38
MRNA expression during kuromanin treatment suggested that it might be regulated by

intracellular NAD".
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Figure 5.2 Effect of kuromanin (30 uM) on CD38 expression during the time course of differentiation of
HL60 cellswith 1 uM ATRA up to 24 h comparing to differentiated cells without treatment (as control).
Data are means + SEM, n = 3 (3 measurements per replicate), * denotes a significant difference from each

control, P < 0.05.
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5.3.2 Manipulation of intracellular NAD™ levels by NAD application or using FK866

To further investigate the kuromanin results, the NAD levels in the cells were manipulated by
either elevating NAD" levels by NAD" application or decreasing the intracellular NAD" levels
after treatment with FK866, based on previously published reports by Billington et al. (2008a;
2008b). In this part of the work, firstly it was tested whether NAD™ application could be used as
atool to elevate intracellular NAD" levels. Hence, HL60 cells and RAJI cells were incubated
separately for 24 hours with 0-100 uM extracellular NAD* at 37 "C. The results showed an
elevation in intracellular NAD" levels that was significant in RAJI cells after 24 h incubation

with 30 pM and 100 pM NAD *, and in HL60 cellswith only 100 uM NAD ™ (Fig. 5.3A).

As intracellular NAD" levels were elevated, the MTT assay was performed to monitor cell
vitality during treatment. The results show that treatment with NAD™ had an apparent effect on
vitality of RAJI cells that was significant with 10 and 100 pM NAD™ (Fig. 5.3B). In HL60 cdlls,
a similar effect was seen, but it was not statistically significant (Fig. 5.3B). Collectively, an
increase in intracellular NAD" levels was confirmed both in HL60 and RAJI cells with the

extracellular NAD" application.
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Figure 5.3 Effect of treatment with NAD" (0-100 pM) for 1 day on RAJI and HL60 cells comparing to
untreated control (100%). (A) Intracellular NAD" levels and (B) cell vitdity (as determined by MTT
assay). Data are means £ SEM, n = 3 (3-4 measurements per replicate). * denotes a significant difference
from the control (HL60 or RAJI cells without treatments), P < 0.05.
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Severa FK866 concentrations (0-1000 nM) were also incubated for up to 24 h with HL60 and
RAJ cels, and intracellular NAD" levels were determined. A significant reduction in
intracellular NAD" levels in RAJI and HL60 cells was evident after 24 h incubation with all
FK866 concentrations (Fig. 5.4 A). Thus, FK866 caused a concentration-dependent decrease in

intracellular NAD" levels.

Interestingly, intracellular NAD™ levels in RAJI cells after treatment with FK866 were lower
than in HL60 cells, this may be because RAJ cells aready showed lower NAD" levels
compared to HL60 cells accompanied by significantly higher CD38 activity. Furthermore, the
MTT results have shown that cell vitality was rapidly depleted after 24 h treatment with FK866
(Fig. 5.4 B). A significant drop in cell vitality was evident both in HLE0 and RAJI cells and with
1-1000 nM FK866. Moreover, cell vitality in RAJI cells was lower than that in HL60 cells when
assayed using MTT reduction. Altogether, the cell vitality and NAD™ data in the present study
and the effect of treatment with FK866 suggests a high turnover of intracellular NAD", and after

treatment with extracellular NAD" suggests the cell's ability to uptake the extracellular NAD™.

160



—_—— Ra|

Intracellular NAD (% of control)

Y 0.1 1 10 100 1000

=

=

o

[ ]

G

=

>

ﬁ

b —

-

S 20
u T ] T T
0 0.1 1 10 100 1000

[FK866] puM

Figure 5.4 Effect of treatment with FK866 for 1 day on RAJI and HL60 cells comparing to untreated
control (100%).. (A) Intracellular NAD levels and (B) cell vitality (as determined by MTT assay). Data
are means £ SEM, n = 3 (3-4 measurements per replicate). * denotes a significant difference from the
control (HL60 or RAJI cells without treatments), P < 0.05.
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5.3.3 Effect of intracellular NAD" levels on CD38 expression

In the above section it was confirmed that intracellular NAD™ levels in HL60 and RAJI cells
were significantly depleted after treatment with FK866 and elevated after extracellular NAD®
application. It was of interest to test whether decreasing or elevating intracellular NAD" levels
after treatment with FK866 and NAD", respectively, would also participate in the regulation of
CD38 expression, in the same way as the effect of intracellular NAD" elevation by kuromanin.
Therefore, analysis of CD38 gene expression profiles was performed using gPCR in HL60 and
RAJI cells (Fig 5.5A and B, respectively), and during the time course of HL60 differentiation

(Fig 5.6).

gPCR analysis of HL60 cells (Fig. 5.5 A) demonstrated that the effect of NAD™ (100 puM) or
FK866 (100 nM) was not the same at each time point, since an apparent decrease in CD38
expression at 24 h (P > 0.05) was found with all treatments, compared to the control (untreated
HL60 cells). Also, there was a moderate, but not significant, increase in CD38 expression at 6 h
and 12 h incubation with FK866 and NAD". However, FK866 or NAD" application had a similar

effect on CD38 expression in HL60 cells.

This experiment was also performed with RAJI cells with comparable results to those with HL60
cells (Fig. 5.5 B). A visible attenuation in CD38 expression was shown at 12 h (P > 0.05) and at
24 h (P < 0.05) after treatment with FK866 and NAD". However, at 6 h, a notable rise in CD38
expression after treatment with NAD™ was observed (but not with FK866) compared to the
control. Overall, an apparent decline in CD38 mRNA expression was shown in both HL60 and

RAJI cells, particularly after 24 h incubation with FK866 or NAD™ application.
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Figure 5.5 Effect of treatment with 100 nM FK866 and 100 pM NAD" on CD38 expression after 1 day
incubation comparing to the control (untreated HL60 and RAJI cells) in (A) HL60 cells, and (B) RAJI
cells. Data are means + SEM, n = 3 (3 measurements per replicate). * denotes a significant difference
from the control (RAJI cells without treatments), P < 0.05.
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To further investigate the effect of manipulating NAD" levels on the transcriptional regulation of
CD38 expression, a similar experiment was aso performed in differentiating HL60 cells by
incubating the cells with FK866 or NAD™ up to 24 h. The data demonstrated a significant
attenuation in CD38 expression at 6, 12 and 24 h of treatment with FK866 or NAD" compared to
untreated controls (differentiating cells, Fig. 5.6). A similar effect was observed with both
trestments. Overal, attenuation in CD38 expression was clearly shown in cells treated with
FK866. However, unexpectedly, the results showed that CD38 expression dropped rapidly even
with increasing intracellular NAD". The results of NAD" application are consistent with the
kuromanin results, showing an inhibition of CD38 expression when intracellular NAD™ levels

were elevated.

Hence, whether NAD" is elevated or increased, attenuation in CD38 expression may have been
occurring. This strongly confirmed a possible role of NAD" levels in the regulation of CD38
expression. These observations suggested that NAD™ metabolism might be considered as a novel

target for regulating CD38 expression.
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Figure 5.6 Effect of treatment with 100 nM FK866 and 100 pM NAD " on CD38 expression after 1 day
incubation in differentiating cells (ATRA treated cells) up to 24 h comparing to HL60 and ATRA treated
cells without FK866 or NAD. Data are means + SEM, n = 3 (3 measurements per replicate). * denotes a
significant difference from the appropriate control (differentiated cells without treatments), P < 0.05.
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5.3.4 Effects of hypoxia and hyperoxia conditions on CD38 expression in leukaemia cell lines

Hypoxia, a decrease in oxygen levels, is a hallmark of human cancer cells in vivo (Harris, 2002).
For instance, leukaemia cells in bone marrow are considered physiologically hypoxic (Harrison
et al., 2002). In the current study, the malignant cells, HL60 and RAJI cells, which are derived
from human leukaemia cells and lymphoma cells respectively, might also be adapted to
proliferate in a low-O, environment. However, these cells were cultured in vitro under 21% O,
(normoxia). This study aimed to culture these cells under conditions that mimic the in vivo
environment in order to determine the effect of this environment on CD38 expression. As shown
in Figure 5.7, RAJI cells were cultured under hypoxia (2% O,) and incubated for 30 and 90 min
and CD38 expression was determined compared to normoxia conditions (21% O,). CD38
expression, as measured by gPCR analysis, was dightly increased under hypoxia 2% O, at 30
min and 90 min incubation times compared with normoxia, but this was not significant (P >
0.05). It is important to note that the level of O, (2% hypoxia) used was based on previous
reports indicating that most cells can be maintained when cultured under these conditions (Han et
al., 2006). These data might suggest a link between hypoxia and CD38 expression in the
leukaemia cell line. However, the vitality results (Fig. 5.9B) showed no changesin cell vitality as

assessed by MTT assay at 30 min under 2% O, hypoxiain RAJI cells compared to normoxia.

CD38 expression was also determined in HL60 cells under 2% O, and 5% O, (simulating
hypoxia), and for 30 min, 90 min and 6 h incubation times. Interestingly, a significant effect at
2% O, compared to 5% O, was observed on CD38 expression (Fig. 5.8). Furthermore, the data
showed a strong and significant effect of 2% O, hypoxia a 30 min on regulation of CD38

expression in HL60 cells compared to 90 min and 6 h with both 2% O, or 5% O, (P < 0.05). An
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apparent decrease in cell vitality was detected under hypoxia (2% O,) at 30 min incubation time

(P<0.05; Fig. 5.9 B).

1 normoxia
Emm hypoxia (2% O5)

o

CD38 expression (RQ)
- ka

Treatment with time

Figure 5.7 CD38 expression in RAJI cells exposed to hypoxia (2% O,) and incubated for 30 min and 90
min compared to the untreated control (normoxia). Data are means + SEM, n = 3 (3 measurements per
replicate), no significant differences between groups were found (P >0.05).
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Figure 5.8 CD38 expression in HL6E0 cells exposed to hypoxia (2% O,) and incubated for 30 min, 90 min
and 6 h compared to the control (normoxia), hypoxia (5% O,), and hyperoxia (95% O,). Data are means +
SEM, n = 3 (3 measurements per replicate). * denotes a significant difference from the control (HL60
cellswithout treatments), P < 0.05.
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It is thought that the cell vitality assay measures mitochondrial dehydrogenase activity
(Mosmann, 1983). However, under hypoxia the metabolism of normal or cancerous cells shifts
from the aerobic pathway to lactic fermentation (Warburg, 1956) rather than oxidative
phosphorylation. Therefore, one might expect that dehydrogenase activity may be affected under
these conditions, so that under hypoxia (2% O,), the measured cell vitality is decreased. In
addition to investigating CD38 expression under hypoxia, it was aso investigated under 95% O,
(hyperoxia) at 90 min and 6 h incubation (Fig. 5.8). As expected, there was no effect of
hyperoxia on CD38 expression. Collectively, these novel data strongly confirmed the effect of

low oxygen tension on CD38 expression in leukaemia cells.

The effect of hypoxia on glycolysis activity was evaluated by measuring lactate production in
both leukaemia cell lines. Figure 5.9 A clearly illustrates that under hypoxia (2% O, 30 min
incubation), HL60 cells significantly increased lactate levels compared to RAJI cells or to
normoxia. These data might suggest a link between hypoxia, CD38 expression and glycolysis

activity.
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Figure 5.9 Effect of hypoxia (2% O,) after 30 min incubation in both HL60 and RAJI cellson (A) lactate
production, n = 3 (2 measurements per replicate), and (B) cell vitality (MTT assay) comparing to each
untreated control (normoxia), Nn=2 (3 measurements per replicate). Data are means + SEM.* denotes a
significant difference from the related control (HL60 or RAJI cells without treatment), P < 0.05.
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To further characterize the hypoxic response in the cells, it seemed important to evaluate
intracellular NAD" levels in addition to evaluating the effects of low O, tension on cell vitality
and lactate levels in vitro. Therefore, and also to determine whether NAD™ levels might be
playing arole in the upregulation of CD38 under the hypoxic conditions, the same experiment

was repeated and NAD™ levels were assayed by the routine NAD cycling assay.

The results show that lower NAD" levels were observed under hypoxic conditions (2% O5) at 30
min incubation time in HL60 cells compared to the normoxia, while RAJI cells did not show any
change in NAD" levels (Fig 5.10). The drop in NAD" levels (in HL60) might be mediated by
CD38 upregulation as confirmed under the same conditions in HL60 cells. However, CD38
activity might not be regulated at 30 min under hypoxia; there might be other mechanisms
responsible for the decline in NAD" levels, such as a high glycolysis activity. Interestingly, the
decrease in NAD" levels was concomitant with the decrease in the cell vitality (MTT) in HL60

cells and under hypoxic conditions (Fig. 5.9 B).

Altogether, the results indicate that the hypoxic response of human leukaemia cells is
characterized by a rapid but transient increase in CD38 expression and lactate production, but
with a significant decrease in intracellular NAD™ levels and not with a significant decrease in cell
vitality. Interestingly, the expression of CD38 in CD38" cells (HL60) under hypoxia (2% O,) was

greater than that of CD38" cells (RAJI) at 30 min incubation time.
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172



5.4 Discussion

Severa mechanisms of regulation of CD38 expression that involve transcriptional and post-
transcriptional levels of gene expression have been previously reported. Interestingly, the
analysis of the human CD38 gene has revealed the presence of a number of response elements,
for example, the retinoic acid response element (RARE; Tirumurugaan et al., 2008). These make
this gene responsive to a variety of physiological stimuli, suggesting the complex nature of
CD38 expression in various types of mammalian cells. For instance, a comparatively rapid
increase in CD38 expression occurs in response to ATRA in HL60 cells, and the mechanism that
mediates this regulation has been previously studied (Munshi et al., 2002). Transcriptional
regulation of CD38 expression was aso studied during ATRA-induced HL60 differentiation in
the work described in this Chapter, but after incubation with kuromanin. It was seen that treating
the differentiating cells with kuromanin inhibits CD38 mRNA expression compared to the
untreated control. There are two suggested mechanisms that might explain this attenuation in
CD38 expression. Firstly, kuromanin inhibition of CD38 cyclase activity might have
consequences on the inhibition of CD38 expression. Secondly, the elevation in intracellular
NAD" following inhibition of CD38 cyclase activity might have an impact on CD38 expression,
since NAD" may affect gene expression through two pathways: (1) through the NAD'-
consuming enzymes, PARP-1 and girtuins, that can affect severa transcriptional factors
(D'Amours et al., 1999; Ford et al., 2006) and (2) through the aterations in NAD levels that
might modulate an important NAD(H)-dependent transcription co-repressor, the C-terminal
binding protein (CtBP). The change in NAD levels may regulate the dehydrogenase activity of
CtBP as well as affect the binding of CtBP to specific repressor complexes (Kumar et al., 2002).

It is important to note that repressors require an association with corepressors to mediate
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inhibition of gene transcription (Tyler and Kadonaga, 1999). Hence, the elevation of NAD"

levels might mediate CD38 mRNA inhibition through regulation of CtBP.

In addition to the kuromanin results, it was investigated whether CD38 expression is regulated
by NAD" levels by using NAD" application and FK866. It was hypothesized that the elevation in
intracellular NAD" levels following NAD" application might induce CD38 expression, in order
to degrade the high NAD™ levels and vice versa with FK866. However, the results unexpectedly
showed that elevation of intracellular NAD" by extracellular NAD" application or inhibition
intracellular NAD" in all cell lines resulted in attenuation of CD38 expression. One explanation
is that CD38 might be regulated by specific concentrations of NAD®, but not by 100 puM
extracellular NAD" or by using 100 nM FK866 to diminish NAD" levels. These concentrations
might be completely different from the normal levelsin cells, which are suggested to be around
the high micromolar range (Yang et al., 2007). Therefore, investigations of CD38 expression in
cells incubated with a range of concentrations of NAD" are suggested for further studies. It is
worth mentioning that initial studies found that treatment of the CD38" cells with NAD™ was
shown to induce inactivation of CD38 activities; cyclase, hydrolase (Han et al., 2000) or CD38
might undergo extensive self-oligomerization in the presence of NAD™ (Guida et al., 1995).
Hence, NAD" application inhibited CD38 activities in previous studies, but the effect of NAD*
application on CD38 mRNA was not investigated. Furthermore, CD38 expression was also
investigated, in this study, after inhibition of intracellular NAD™. NAD" levels were inhibited by
FK866 through its impact on the NAD biosynthesis enzyme (NAMPT). Interestingly, low
intracellular NAD™ was accompanied by an inhibition of CD38 expression. This downregulation
of CD38 expression might also be NAD-dependent. One of the possible explanations is that
limited availability of the substrate NAD for the CD38 enzymatic activities might result in
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reduction in both NAD-hydrolase and cyclase activities, which further leads to the control of
CD38 expression. It is important to note that FK866 causes depletion of NAD" levels which
results in cell death by autophagy as confirmed by Billington et al. (2008b). Thus, cells
incubated for 24 h with this agent, to ensure that NAD™ levels dropped first, and to keep the cells
viable in order to investigate the effect of inhibiting the NAD recycling pathway on CD38

expression.

Previous results (Chapter 3) suggested that NAD levels are CD38-dependent. Intriguingly, this
study suggests that CD38 expression might also be NAD-dependent. The current findings have
provided the first in vitro evidence that NAD" metabolism might be anovel target for controlling
CD38 expression by using FK866 and extracellular NAD" application strategies in addition to
using kuromanin. Targeting NAD metabolism by using NAD" application might serve as a
treatment strategy in cancer, Huntington’s disease, multiple sclerosis, and neurodegenerative
diseases (Khan et al., 2007). Targeting NAD metabolism by using FK866 might also implicated
in cancer therapy (Hasmann and Schemainda, 2003; Holen et al., 2008). Indeed, regulation of
CD38 expression via manipulation of NAD levels might serve as a treatment strategy for
leukemia patients, since CD38 works as a dependable marker of unfavourable prognosis and as
an indicator of cell proliferation and activation (Malavas et al., 2011). Moreover, inhibition of
CD38 expression might reduce the consequences of the CD38-CD31 interaction, and
supramolecular complex signalling that mediated CLL homing processes and survival. Hence,
controlling CD38 expression in leukemia patients might affect the unfavourable prognosis and

consequently inflict on patient survival.
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Regulation of CD38 expression in leukaemia cells was further investigated under hypoxia
(ssmilar to in vivo conditions). Hypoxia, a decrease in oxygen levels, plays a magjor role in many
pathological processes such as ischemic stroke and tumour progression (Harris, 2002). Under
hypoxia, cells may survive and adapt to the hypoxic environment. These adaptive responses of
cells to hypoxia may involve the induction of specific gene expression which may help to
suppress or limit the effects of hypoxia on these cells (Yun et al., 1997). Severa studies have
showed a significant association between hypoxia and CD38 activity in disease states, in several
types of cells. For instance, a change in CD38 activity that is associated with hypoxic pulmonary
vasoconstriction (HPV) has been indicated (Wilson et al., 2001). It was suggested that hypoxia-
mediated vasoconstriction is CADPR dependent and the mechanism was attributed to increase an
NADH:NAD" ratio (due to increased NADH formation via glycolysis) that appears to favour the
net production of CADPR probably because of the inhibition of CADPR hydrolase activity of
CD38 (Wilson et al., 2001; Kotlikoff et al., 2004). cADPR accumulation might also suggest
activation of ADP-ribosyl cyclase activity. CD38 expression was also found to be changed under
hypoxia in brain cells from rats (Salmina et al., 2008). It is important to mention that regulation
of CD38 activities might reflect regulation of its mMRNA expression. In addition to that, hypoxia
attenuated CD38 expression in pancregtic B-cells from HIT-T15 hamsters (Ota et al., 2012).
Recently, an association between CD38 and activation of hypoxia inducible factor (HIF), a
family of transcription factors extensively involved in the response of mammalian cells to low
oxygen tension, was shown in alergic airway disease (So Ri et al., 2011). However, regulation
of CD38 expression under hypoxia and in leukaemia cells is still poorly studied. The current
novel results successfully demonstrate that hypoxia induces the expression of CD38 in leukaemia

cells. The data has shown that different leukaemia cells exhibit different levels of sensitivity to
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hypoxia (2% O,); there was more regulation of CD38 mRNA in HL60 cells in response to
hypoxia compared to RAJI cells, although CD38 expression in untreated RAJI cells was higher
than in HL60 cells. Indeed, leukaemia cells in bone marrow are considered physiologically
hypoxic, with oxygen levels approximately three times lower than that usually applied during in
vitro cell culture (Harrison et al., 2002). Therefore, the hypoxic condition in a current study was
within the range for these environments. The reason for using hypoxic conditions was that under
hypoxia a drop in NAD levels might occur. Hence, and in line with the FK866 results, it was
hypothesized that the decline in NAD levels (as a consequence of lactic fermentation) might also
mediate CD38 mRNA downregulation. However, the results unexpectedly showed upregulation
of CD38 mRNA expression. This might raise the possibility that NAD levels might aso be
involved in this interesting regulation. Another possibility is that tumour cells may require
increased expression of CD38 to maintain cell survival and resistance to apoptosis under hypoxic
conditions, and targeting this molecule may be useful for cancer prevention and treatments.
Other suggested mechanisms might be associated with hypoxia-induced cytokines. For instance,
the release of TNF-a,, expected to have occurred under hypoxia as previously shown in retinal
ganglion cells (Hong et al., 2008), might be linked to CD38 overexpresion, since TNF-a has
been shown to induce CD38 expression (Barata et al., 2004). However, further studies are
needed to clarify the mechanism of the hypoxia induced upregulation of CD38 in leukaemia
cells. The consequences of a hypoxic environment on cell physiology, that is reflected by more
lactate production (from lactic fermentation) with lowered intracellular NAD levels, might cause
metabolic dysfunction. Thus, the possible reason that CD38 protein is frequently overexpressed

in aleukemia might be because leukaemia cells, in vivo, exist under constant hypoxic conditions
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and that this might be participating in the development of poor prognosis and metabolic

dysfunction in leukaemia cells.

It is worth noting that under hypoxia (2% O,) for 30 min, CD38 expression levels were greater
than under all other conditions. Hence, the glycolysis state was investigated by measuring both
lactate and NAD™ levels, and cell vitality only under these particular conditions. Furthermore,
lactate levels were measured as an indicator of glycolytic activity under hypoxia, thus, there was
no need to reconfirm the hypoxic conditions by measuring HIF, as most studies do. Ultimately,
although the mechanism of hypoxia-induced CD38 regulation was not investigated, but it seems

that NAD levels might be involved in this process (Fig. 5.11).

+ FK8G6 | | NAD levels | | el
NAD l - hypoxia
. levels
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+ Kuromanin
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Figure 5.11 Schematic diagram showing how NAD levels might regulate CD38 expression through
multiple suggested mechanisms. For instance, elevated NAD levels following kuromanin and NAD*
application might inhibit CD38 mRNA expression. Alternatively, depletion of NAD by using FK866
might also inhibit CD38 mMRNA expression, while decreased NAD levels under hypoxia might upregulate
CD38 expression.
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Interestingly, under 95% hyperoxia the results did not show any effect on CD38 regulation
unlike those seen with hypoxia in leukaemia cells, since it reversed the action of hypoxia on
CD38 expression. One of the possible explanations of these results is that the leukaemia cell
lines are adapted to function in hypoxic environments, rather than under hyperoxic conditions,
and that therefore a hyperoxic environment might not regulate CD38 expression. Indeed, limited
studies have investigated the effect of hyperoxiain HL60 cells; an earlier report confirmed that
hyperbaric oxygen induces spontaneous and chemotherapy-induced apoptosis in Jurkat and
HL60 cells (Ganguly et al., 2002). Other studies have documented the use of hyperoxia as a
potential anticancer therapeutic (Henk et al., 1977; Watson et al., 1978), while there are no

studies of the effect of hyperoxiaon CD38 expression in human cell lines.

\

Cytokines

N

(-

S|4 cp38
- 1 expression

|

*ADP-ribosy!
cyclase

Altered calcium
homeostasls/

NAD —» | cADPR
NAADP?

Hypoxia

|

{ cADPR
hydrolase

Figure 5.12 CD38 regulations in different cell types by hormones, cytokines, and retinoic acid and the
associated increase in ADP ribosyl cyclase activity. In addition to decreasing CADPR hydrolase activity
under hypoxia and the consequences of CADPR accumulation, adapted from Kotlikoff et al. (2004).
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Collectively, regulation of CD38 expression under different stimuli, such as hormones,
cytokines, ATRA, hypoxia (Fig. 5.12) or by manipulating NAD levels (Fig. 5.11) are key points
for investigation. This might lead to regulation of CD38 activities, or its products, CADPR and
NAADP, and their related functions, since the role of CD38 or CD38/cADPR signaling in
regulating different cellular functions in humans and animal models has been well investigated.
For instance, cCADPR plays an important role in hypoxic pulmonary vasoconstriction; HPV
(Dipp and Evans, 2001). In diabetes, CD38 plays a distinct regulatory role in the murine model
with regards to insulin secretion via calcium mobilization of CADPR-sensitive stores (Kato et al .,
1995). The crucial role of CD38 deficiency on prevention of the development of obesity through
activation of SIRT/PGCla has also been documented (Baur et al., 2006). Finaly, in CLL high
levels of CD38 expression correlate with both disease stage and poor prognosis (Morabito et al.,
2002). Studies have also confirmed that CD38 is a master regulator of CLL cell homing (Vaisitti
et al.,, 2011). Indeed, therapeutic applications that target CD38 have been more explored in

leukemia.

Thus, the current study might prove useful to future researchers especially when they are
investigating mechanisms that regulate CD38 expression as a target in leukemia therapy or in

other CD38-rel ated diseases.
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CHAPTERG6

EFFECT OF LOW NAD LEVELSON THE
DNA DAMAGE AND CELL DEATH
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6.1 Introduction

In addition to the well-known functions of NAD in metabolism or as a substrate for CD38, it aso
participates in DNA repair and cell death via PARP, a family of enzymes with 17 members of
which PARP-1 is the founding member (Ying et al., 2005; Hassa and Hottiger 2008). These
enzymes catalyze the covalent attachment of poly ADP-ribose (PAR) polymers either to
themselves or to other acceptor proteins, using NAD" as a donor of ADP-ribose units, in addition
to the release of nicotinamide (Hassa and Hottiger 2008). The poly ADP-ribosylation of specific
target proteins is crucia for genome stability, DNA repair, telomere maintenance and cell death
(Khan et al., 2007). PARP-1 activation is critical in determining cellular fate after DNA damage
has occurred (Pieper et al. 1999) since, through its role in DNA repair, PARP-1 activation may
serve to rescue damaged cells, preventing them from death (Chatterjee et al., 1999). However,
extensive DNA damage results in PARP hyperactivation, leading to a rapid depletion of cellular
NAD" and lowered ATP production, ultimately leading to cell death (Alano et al., 2004; 2010).
Cdll death by autophagy has also observed when intracellular NAD levels are decreased by using

FK 866, a NAD-depleting drug (Billington et al., 2008b).

Thus, researchers have shown an increased interest in the area of influence of NAD™ status on
genomic stability, DNA repair and apoptotic cell death, specifically in cancer (Schwartz et al.,
1974). The reason for this interest is that cancer cells, which mostly depend on lactic
fermentation for ATP production, exhibit a particularly high sensitivity to DNA damage and
PARP-1 activation (Zong et al., 2004). For this, an adequate level of cellular NAD in cancer
cells is necessary because of a high rate of NAD" turnover due to elevated ADP-ribosylation

activity (Burkle, 2005). Several studies have drawn attention to the effects of decreases or
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increases in NAD levels on PARP activity and cell death (Ying et al., 2003; Benavente et al.,
2012). Other cancer therapy studies combined NAD-depleting drugs with chemotherapy and
radiotherapy (Ekelund et al., 2002; Progrebniak et al., 2006), or combined PARP inhibitors with
DNA-binding antitumour drugs as a suitable strategy in cancer therapy (Cepeda et al., 2006).
However, to this author’s knowledge, no research to elucidate the consequences of low NAD
levels on DNA repair, PARP activity and apoptotic cell death in CD38- expressing leukaemia
cells, has been carried out to date. Therefore, according to the hypothesis that hyperactivation of
PARP requires a certain level of cellular NAD to induce cell apoptosis and to decrease cell
proliferation, it was postulated that in CD38" cells such as leukemia there will be a high demand

for NAD that might render these cells more resistant to apoptosis.

The aim of the work described in this chapter was therefore to use a comet assay approach to
investigate the response to DNA damage induced by UVB in cells expressing CD38 with low
cellular NAD levels. In addition, the consequences of UVB on PAR production (confirmed by
western blotting) and finally apoptotic cell death were examined. Whilst the data in this Chapter
are preliminary, the results showed a significant level of UVB-induced DNA damage in cells
with low NAD levels, in addition to cell resistance to apoptosis. Finally, these preliminary results
may help to increase future understanding of the nature of cell resistance to apoptotic death in

CD38" subsets of leukemia patients, even during chemotherapy or radiotherapy.
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6.2 Material and methods

6.2.1 Materials

Low melting point agarose, normal melting point agarose, EDTA, Tris base, Triton X-100,
DMSO, and Wright-Giemsa stain were all purchased from Sigma (Poole, UK). The PAR

antibody was purchased from Abcam (Cambridge, UK).

6.2.2 Comet assay and quantification of DNA damage

Single-cell gel electrophoresis (the comet assay) is a microelectrophoretic technique for the
direct visualization of DNA damage in individual cells. The comet assay (outlined in Fig. 6.1)
was performed as described by Singh et al (1988) on HL60, RAJI and differentiated HL60 cells.
Cell suspension (100 gl of 1 x 10° cells ml™) were transferred to individua 1.5 ml
microcentrifuge tubes and centrifuged at 200 x g for 5 min. The supernatants were discarded and
the pellets were each mixed with 85 pl of low melting-point agarose (0.5% in PBS), which was
then pipetted onto agarose-coated microscope slides (pre-coated with norma melting-point
agarose (1% in PBS) and dried at 37 °C). After the cell/ agarose mixture had solidified (4 °C for
15 min), the slides were then immersed vertically in lysis solution (2.5 M NaCl, 100 mM
NaEDTA, 10 mM Tris-base, pH 10, containing freshly added 1% Triton X-100 and 10%
DMSO) for 24 h at 4 °C. The slides were then washed three times vertically with neutralization
buffer containing 0.4 M Tris-base, pH 7.5, and then placed into a horizontal electrophoresis
apparatus (tank) filled with fresh, pre-cooled electrophoresis buffer (1 mM EDTA, 300 mM
NaOH, pH 13.3). After 20 min of pre-incubation (unwinding of DNA), the electrophoresis was
run for 20 min at a fixed voltage of 25V and 300-400 mA, after which the slides were put in a
tray and washed by adding neutralisation buffer in a drop-wise manner; this process was repeated
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ten times. The slides were then left to dry at room temperature for 60 min. After drying, the

slides were kept in a chamber in the dark at room temperature until analysis.

After 24 h, cells were stained with 20 pl ethidium bromide solution (2 ug mi™), and analysed at
200 x magnification with a Leica EL6000 fluorescence microscope (Bradford, UK). Assessment
of DNA damage was based on the analysis of 100 randomly selected comets from each dlide
which were analysed by the comet 1V imaging system (Perceptive Instruments, Suffolk, UK). In
this system, tail DNA is considered to be the parameter most directly related to DNA damage.
Each experiment was repeated three times with different cell preparations, and statistical analysis

was carried out using a one-way ANOVA.
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Figure 6.1 Schematic representation of the comet assay describing slide preparation, cell lysis,
electrophoresis, visualisation and scoring steps (adapted from Tice et al., 2000).
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6.2.3 Validation of the comet assay under in vitro conditions using hydrogen peroxide

The comet assay was validated using hydrogen peroxide H,0O,, as a reference genotoxic agent to
determine oxidative DNA damage (Tice et al., 2000). This was conducted by in vitro exposure of
HL60 and differentiated HL60 cells to a range of H,O, concentrations. The cell pellet was
incubated with 100 ul of 0-300 uM concentrations of H,O, for 10 min at 4 °C in the dark.
Following the incubation, cells were washed with PBS to remove any remaining H,O,, and cell
viability was determined using trypan blue. Slides were then prepared as described in Section

6.2.2 and processed for the comet assay.

6.2.4 UVB radiation of differentiated cells and induction of apoptosis

HL60, RAJI and 3 day differentiated HL60 cells were irradiated as freshly harvested
suspensions. The cells were resuspended in PBS after two washes at the desired density (0.2 - 3
x 10° cells ml™). UVB irradiation was performed using a twin-tube lamp (TL-20W/12RS;
Philips, Guildford, UK). UVB irradiation was calculated by using a Macam spectroradiometer
(Macam SR9910, Livingston, UK) using integrated intensity between 280 - 340 nm (peak
intensity of 310 nm). lrradiation was performed in 24-well plates. The UVB source was
positioned directly above the cell suspension covered with afilter lid. The dose of UVB was 1.6
kJ m? for 560.8 s. In al experiments after exposure to UVB was completed, cells were
immediately processed for the comet assay, MTT assay, Halo assay, Geimsa staining and
western blotting (poly ADP-ribose modified protein production). In other samples measuring
post-irradiation effects on DNA (DNA repair), cell suspensions were maintained at 37 °C for 45

min, 90 min and 6 h after exposure before processing using the comet assay etc. Cells used as
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controls were similarly washed, centrifuged, counted, and placed in the 24 well plate, but were

not exposed to UV B irradiation.

6.2.5 Halo-Comet assay

This technique was first described by Vinograd et al. (1965) and it was improved as the alkaline-
halo assay by Sestili et al. (2006). In the normal comet assay, and in response to the electric
current, charged DNA migrates away from the nucleus. The halo assay, in contrast, does not
include an electrophoresis step. Also, the intact DNA remains within a residua nucleus-like
structure called a nucleoid. If the nucleoid DNA contains strand breaks, a halo of DNA extends

around the origina form of the nucleus and may be visualized by fluorescence microscopy.

In this assay, following cell irradiation, the DNA damage was assessed as described in the
Section on the comet assay (Section 6.2.2, except for omission of the electrophoresis step), and
halo cells were visualized using a fluorescence microscope (Nikon Eclipse 80i, Surrey, UK),

with image analysis software (NIS-Elements BR, Nikon, Surrey, UK).

6.2.6 Wright-Giemsa staining method

For morphological assessments of apoptosis, the UVB-exposed cells were stained using the
Wright-Giemsa staining method. Cells were centrifuged and the pellets were resuspended in
PBS. Cell suspension (100 pl of 1 x 10° cells mi™) were prepared on slides using a cytospin
centrifuge (Shandon, Leicester, UK) and fixed with 5 pl methanol before staining with Wright-
Giemsa stain. After 4 min, slides were rinsed in water and air-dried. The morphology of cells

was examined under alight microscope (x 100; Olympus, Japan).
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6.2.7 Statistical analysis

Statistical analysis of the data was assessed using Fisher’s one way analysis of variance
(Statview 5.0.1; Abacus concepts, USA) or Student’s t-test as appropriate. Data are expressed as
means £ SEM for three separate experiments in triplicate, unless otherwise stated. A difference

of P < 0.05 was considered statistically significant.
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6.3 Results

6.3.1 Effect of cellular NAD levels on UVB-induce DNA damage

The induction and repair of UV-induced DNA damage has been previously studied in vitro and
in severd cell lines (Cadet et al., 1997; Ravanat et al., 2001). However, the study in this Chapter
aimed to induce DNA damage in vitro by using UVB irradiation, and also to investigate DNA
repair in RAJI, HL60 and differentiated HL60 cells. The alkaline comet assay was used to detect
the damaged DNA due to its high sensitivity (Collins, 2009). Among all the parameters provided
by the comet software, the percentage of DNA in the tail (% tail DNA), is considered to be the
most reliable parameter (Kumaravel and Jha, 2006), and was used in this work to represent

cellular DNA damage.

To validate the comet assay, an experiment was conducted with H,O, exposure to HL60 and 1
day ATRA-treated cells. DNA damage was clearly seen in the both groups of cells, and was
similar in cases (Fig. 6.2). The percentage tail DNA data showed an increase in DNA damage
with concentration in the range 30 to 300 uM H,0,. There was a =2.3 fold increase in percentage
tail DNA with 300 uM H>0; in HL60 and differentiated HL60 cells, compared to the untreated
control. Thus, the comet assay proved to be a sensitive technique for the detection of DNA

damage, and showed that DNA damage by H,O, was concentrati on-dependent.

189



—p— HLG0 cells
— =2— 1daydifferentiated cells

% Tail DNA

1 10 100 1000
[H,0,] (uM)

Figure 6.2 DNA damage expressed as percentage tail DNA in HL60 (solid line) and 1 day differentiated
HL 60 cells (dashed line) following 10 min in vitro incubation with different concentrations of H,O, (1-
300 uM). Data are means = SEM, n = 1 (100 measurements).
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In order to induce DNA damage, a UV B-irradiation system was used. A UVB meter was used to
control the irradiation dose and to calculate the irradiation time. The emission spectrum from
280-340 nm of the lamp is shown in Figure 6.3 with a peak at 310 nm. Thus, to irradiate the cells
with the desired dosage (1.6 kJ m™); the cells were irradiated for 560.8 s by using a twin-tube
lamp (TL-20W/12RS; Philips). The irradiation time (t) was measured in seconds and was
calculated using the formula: D = | x t, where | isthe UV radiation density (2.853 W m?{Js*m

%} a 310 nm and D is dose of irradiation (1600 J m™®).

In the current study, the induction of the DNA damage by exposure to 1.6 kJ m? UVB dosages
was performed on the undifferentiated, 3 day-differentiated HL60 cells and RAJI cells. The
results (Figure 6.4) showed that the UVB irradiation induced DNA damage in al cell lines, as
estimated by percentage tail DNA. The DNA damage was more striking in differentiated HL60
cells and RAJI cells, in comparison to cells not expressing CD38 (undifferentiated HL60 cells),
which showed relatively low levels of DNA damage. The same results were aso confirmed in
the comet images (Fig. 6.5). There was aso no significant loss of cell viability (Figure 6.7) in
any of the cell lines (cell viability using trypan blue exclusion was 70-80% in all cases). These
results suggest that the maximum induced DNA damage can be clearly seen in cells that have

low intracellular NAD levels (CD38" cells) than cells that have ahigh level of NAD.
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Figure 6.3 Spectrum of the twin-tube UV lamp with a maximum emission in the UVB region (310 nm).
The lamp was used to irradiate the cells to induce DNA damage. The data represent a single
measurement.
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Figure 6.4 DNA damage expressed as percentage tail DNA in undifferentiated HL60 cells, differentiated
HL60 cells (3 days) and RAJI cells following the irradiation with 1.6 kJ m? UVB. Data are means *
SEM, n = 3 (100 measurements per replicate). * denotes significant difference from the appropriate
untreated control (P < 0.05).

193



The DNA damage was also assessed in undifferentiated HL60, RAJI and differentiated HL60
cells after recovery times of 45 min, 90 min and 6 hours after UV B-irradiation, to evaluate the
DNA repair process (Fig. 6.6). There was an apparent drop in DNA damage in the all cell lines
between 45-90 min after irradiation. This might suggest that DNA repair processes were more
evident in HL60 and RAJI cells than in the differentiating HL60 cells. Interestingly, there was no
decrease in cell viability a 45 min and 90 min in al cells after irradiation (Figure 6.7).
Surprisingly, after a clear decline in the DNA damage at 45 and 90 min there was an increase in
percentage tail DNA in all cells at 6 h post irradiation. No significant difference was observed
between the different cell types at that time, which might suggest impairment in the DNA repair
process. Moreover, cell viability results after 6 h recovery time showed a significant loss of

viability (Figure 6.7) as determined by trypan blue exclusion in all of the cell lines.

Thus, the above results confirm that a decline in intracellular NAD in CD38 positive cdlls (3
days differentiated HL60 cells and RAJI cells) might increase the cell response to UVB-induced
DNA damage as shown in Figure 6.4. However, these cells showed relatively recovered DNA
after a short time of irradiation which might be related to PAR accumulation, which initiates the

repair processin the case of moderate DNA damage (1.6 kJ m™ dosages).
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Figure 6.5 Representative comet images of undifferentiated HL60, 3 days differentiated HL60 cells and
RAJI cells, which were exposed to UVB-induced DNA damage (1.6 kJ m™®). Cells were stained with
ethidium bromide before visualization. Magnification = x200. Scale bars: 50 um.
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Figure 6.6 DNA repair of UVB-induced DNA damage (1.6 kJ m-2). Following HL60, ATRA-induced
HL60 differentiation (3 days) and RAJI cell irradiation, the percentage of DNA damage was assessed
after recovery times of 45 min, 90 min and 6 hours. Data are means + SEM, n = 3 (100 measurements per
replicate). * denotes significant difference from the appropriate control (P < 0.05).
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Figure 6.7 Cell viahility following UVB-induced DNA damaged (1.6 kJ m-2) in HL60, ATRA-induced
differentiated HL60 and RAJI cells as assessed by trypan blue exclusion over a recovery time of 45 min,
90 min and 6 h, n = 1 (4 measurements).
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6.3.2 Effect of UVB on PAR production in CD38"/ cells

Next, the effect of UVB on PAR accumulation in cells expressing CD38 was examined. It iswell
known that PARP-1 is activated upon binding to damaged or abnormal DNA (Durkacz et al.,
1980) and catalyzes the formation of poly(ADP-ribose) polymers (PAR) onto different acceptor
proteins, including PARP-1 itself (auto PARsylation), using NAD® as substrate. PAR
accumulation is an immediate response following UV exposure. PARP catalytic activation was
assessed by detection of its product, PAR-modified proteins, in CD38 negative cells (HL60) and
CD38 expressing-cells (RAJI, 3 day differentiated HL60 cells) up to 6 h after UVB treatment

(Fig. 6.8 A).

Western blotting (Fig. 6.8 A) showed that UVB exposure resulted in an observed decrease in
PAR hypermodified proteins in HL60 cells, RAJI, and differentiated cells from 0-90 min post
irradiation compared to the basal levels in each corresponding non-exposed control (Fig. 6.8 B),
including PARP-1, whose modifications appear clearly between 100-200 kDa (Yu et al., 2002).
Interestingly, PAR production increases significantly at 6 h post-UVB treatment in all samples
compared to immediately after treatment (Fig. 6.8 A); this was clearly shown in HL60 cells
compared to the NAD-restricted cells (RAJI and differentiated HL60 cells) which showed less
detectable PAR-hypermodified proteins (Fig. 6.8 A). The low PAR levels might reflect low

availability of the substrate for PARP (NAD), probably restricted by CD38 activity.

Collectively, Western blotting results for poly ADP-ribose polymer expression might not show clear
variations in cell response to DNA damage or PAR production which was based on whether or

not the cells expressed CD38.
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Figure 6.8 Western blotting analysis for poly ADP-ribose polymer expression under (A) normal
conditions, represented by HL60 cells treated for 3 days with ATRA compared to the controls (RAJI and
undifferentiated HL60 cells), and (B) PAR production after UVB exposure from 0-6 h for 50 pg cell
lysate under reducing conditions and 12% SDS PAGE (Chapter 2, section 2.8.4). The figure represents
one of two separate cultures.
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6.3.3 Effect of UVB-induced DNA damage on apoptotic cell death in CD38" and CD38 cells

In this Section of the work, an attempt was made to examine a possible relationship between
NAD levels, and effects on DNA-damage and cell death. In previous Sections, a different cell
response to UVB-induced damage DNA was found. Therefore, it seemed important to further
confirm these findings by using another method of assessing cell damage or death. Thus, two
different morphological determination methods- the halo assay and Wright-Giemsa staining-
were performed to compliment the data already obtained and to further investigate the effect of
cellular NAD content on either DNA repair or apoptotic cell death. It is worth mentioning that
radiation therapy is used in cancer treatment via the induction of DNA damage to kill cancer

cells or to keep them from growing (Lawrence et al., in: DeVitaet al., 2008).

Morphological observation of cell death was performed by two simple, sensitive, and reliable
assays, the halo assay and Wright-Giemsa staining. These assays were used for the quantification
of apoptosis in HL60, 3 day differentiated HL60 cells and RAJI cells that had been exposed to
UVB as a DNA damaging source. Giemsa-stained cells (Fig. 6.9), and cells that were assayed by
the halo assay (Fig. 6.10) showed morphological changes after UVB irradiation for up to 6 h.
Typical apoptotic changes, including chromatin condensation, nuclear fragmentation and
formation of apoptotic bodies, were clearly observed in Giemsa stained cells (Fig. 6.9). Those
cells exhibiting morphological changes can be easily differentiated from normal cells which,
under a light microscope, show normal morphology with no apoptotic bodies (Searle et al.,
1982). This was found in the controls for al cell lines. Furthermore, apoptotic cells assayed by
the halo assay (Fig. 6.10) showed a halo of DNA with a hazy outer boundary that extends around

the original form of the nucleus.
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There was variation in cell responses to UVB-induced DNA damage that depended on the cell
line and the time after irradiation. Thus, apoptosis appeared immediately after irradiation in all
cell types as detected by Giemsa stain (Fig. 6.9) and halo assays (Fig. 6.10). Interestingly, HL60
cells showed a greater response to UVB-induced DNA damage with both assays at O h,
compared to the other cells. Also, repair following irradiation was seen at 45 min and 90 min in
HL60, 3 day differentiated HL60 cells and RAJI cells, respectively, and this observation might
confirm initiation of the DNA repair process. No characteristics of apoptosis were seen for each
non-irradiated control, HL60, differentiated HL60 cells and RAJI cdlls (Fig. 6.9, 6.10). Finally,
after the recovery time, 6 h, apoptosis was observed in the differentiated HL60 cells and control
HL60 cells to a greater degree than was observed in RAJI cells (Fig. 6.9, 6.10). These data
appear to confirm that NAD is a key determinant of apoptotic cell death. Therefore, as NAD
levelsin HL60 cells are higher than those in RAJI cells, these cells were more response to UVB-
induced DNA damage as confirmed by more apoptotic cell death. Importantly, similar results
were obtained using the two assays (Fig 6.9; 6.10) and these morphologica data are concomitant

with DNA damage results (Fig. 6.6) for the same cells.

In summary, irradiation of HL60, differentiated HL60 cells and RAJI cells with UVB light
caused the cells to undergo morphological changes characteristic of apoptosis, and the level of
apoptosis differed between cells depending on the levels of CD38 expression, intracellular NAD
content, PAR production and the time after irradiation. Collectively, these data supported the
comet results and suggest that leukaemia cells that express CD38 might exhibit a resistance to

apoptotic cell death that isinduced under UV B radiation.
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Differentiated cells
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Figure 6.9 Photomicrographs showing HL60, 3 day- differentiated HL60 cells and RAJI cells stained
with Wright-Giemsa stain before, and after irradiation (0-6 h). Cells exhibit features typical of apoptosis
after UV B-irradiation. Original magnification x100. Scale bars: 50 pm.
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HL60 Differentiated cells RAJI

Figure 6.10 Photomicrographs processed during the halo assay showing HL60, 3 day differentiated HL60
cells and RAJI cells stained with ethidium bromide as controls or after UVB irradiation (0-6 h). Origina
magnification x 400. Scale bars: 50 pm.
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6.4 Discussion

The aim of this study was to evaluate the effect of a CD38-mediated decrease in NAD levels on
the cellular response to DNA damage (after UVB exposure), both in cells expressing CD38
(RAJI and 3 day differentiated HL60 cells), compared to undifferentiated HL60 cells, which do
not express CD38. In the current study, the halo and comet assays were used to assess the DNA
damage following UVB-induced DNA damage. Ultraviolet B (UVB) causes either direct DNA
damage, forming cyclobutane pyrimidine dimers (CPD) and 6,4-photoproducts which are
removed by nucleotide excision repair (NER), or oxidative DNA damage (for example single
strand breaks), which are removed by base excision repair (BER), and single strand break repair
(SSBR) (Caldecott, 2003). Interestingly, in order to repair the DNA damage, PARP is known to
be activated, and it isimplicated in both SSBR (Caldecott, 2003) and BER (Le Page et al., 2003)

of UV-induced oxidative DNA damage (Caldecott, 2003).

The UVB-induced DNA damage results shown in Fig. 6.4 clearly showed that CD38 negative
cells (with lower intracellular NAD levels) showed less DNA damage compared to CD38
positive cells (RAJI and differentiated HL60 cells). Ultimately, these data confirm that the
decline in NAD levels strongly enhances DNA damage. Furthermore, an important finding is
that DNA repair was seen from the earliest times after irradiation as confirmed by the less DNA
damage in HL60 and RAJI cells at 45 min and 90 min compared to differentiated HL60 cells.
The results suggest that the cellular response to DNA damage is based on the variation in NAD
levels. Although the differentiated cells expressed high levels of CD38 with lower NAD content,
they are also showed low DNA damage at 90 min which might relate to the initiation of repair

processes. A possible explanation for this repair is that the levels of NAD" were suitable to
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initiate the repair process, and that NAD® might not drop to lower levels after PARP-1
activation. Also, PARP-1 activation may lead to rapid depletion of the cytosolic pool, but not of
the mitochondrial pool, of NAD™ (Ying et al., 2005). These reasons might contribute to arelative
DNA repair in the differentiated HL60 cells. Altogether, these results suggest that a repair
process through PARP activation might occur in response to UVB-induced DNA damage, since
a low or mild levels of DNA damage, PARP initiates DNA repair processes (for instance,
recombination, remodelling of chromatin, transcriptional changes at the damaged site, and DNA
base excision repair, Virag and Szabo, 2002). It is worth noting that an early PARP activation
(represented by PAR accumulation) has been observed previously at 1 to 2 h after irradiation
with UVB in mouse fibroblasts (Vodenicharov et al., 2005). However, in the current study, early
PAR production was observed in HL60 at 90 min after UVB-irradiation, increasing in al cell
lines after 6 h. Surprisingly, at 6 h, a detectable level of DNA damage was also evident (=30%
tail DNA), and it was relatively similar in all cell lines. One possible explanation for these datais
that PARP activation and PAR production might not be able to participate in the repair of UV-
induced DNA damage, which might reflect the key role of NAD levelsin the repair process. In
addition to the effect of UVB irradiation in inducing DNA damage (Zong et al., 2004), the
decline in intracellular NAD, probably via CD38, might also participate in increasing this
damage. CD38 might affect PARP activity by limiting the availability of NAD, ultimately
mediating DNA damage and some of its consequences (collectively known as genomic
instability, e.g. chromosomal aberrations, DNA translocations, deletions, and amplifications). In
the absence of a repair system, probably PARP, genomic instability would rapidly accumulate
and disturb DNA replication, gene expression and ultimately cellular and tissue homeostasis

(Burkle, 2001).
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NAD levels are an important factor in deciding cell fate. In general, two controversial hypotheses
have been suggested involving NAD as a determinant of cell fate. It was firstly hypothesized that
NAD depletion increased DNA damage (Winter and Boyer, 1973) and that PARP activation
causes cell death via apoptosis (Yu et al., 2002), necrosis (Ha and Snyder, 1999) or autophagy
(Munoz-Gamez et al., 2009). A second hypothesis proposed that NAD-depleted cells are
resistant to apoptotic cell death, as demonstrated by a study of Wright et al. (1996). This study
indicated that NAD-deficient cells are resistant to UV light-induced apoptotic cell death.
Collectively, these two controversial hypotheses might explain that there are two mechanisms by
which NAD-deficient cells respond when death appears imminent, these being either resistance
or induced cell death. Importantly, the second hypothesis is strongly confirmed by the results of
this Chapter. In the current study, it was hypothesized that the decrease in NAD levels might
increase DNA damage and hence inhibits apoptotic cell death, as it was shown that cells with
adequate levels of NAD undergo apoptosis, but that cells with restricted or lowered NAD levels
show a relative resistance to apoptotic cell death. For example, apoptosis was more evident in
HL60 cells than RAJI cells. It has been shown previously that UVB induced apoptotic cell death
in HLG60 (Lu et al., 1996). The differentiated HL60 cells, unexpectedly, were also found to
undergo apoptosis, which might be one of the consequences of ATRA-induced terminal
differentiation of HL60 cells (James et al., 1999). Thus, apoptotic cell death was NAD-
independent in differentiated HL60 cells and NAD-dependent in both HL60 cells and RAJI cells.
Altogether, cells that are expressing CD38 are expected to have an impaired repair system and

accumulate DNA damage along with a characteristic resistance to cell death.

Several approaches have been developed to target NAD™ metabolism for both the prevention and
treatment of cancer (Jacobson et al., 1999). For instance, pharmacologica inhibition of PARP-1
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activity worked as a suitable target to enhance the activity of antitumour drugs through inhibition
of necrosis and activation of apoptosis (Southan and Szabo, 2003). Furthermore, researchers
have developed drugs targeting the inhibition of NAMPT (the crucial enzyme in NAD synthesis
that is overexpressed in human malignancies), that have anticancer properties through depletion
of cellular NAD™ (Van Beijnum et al., 2002), such as using FK866 (Hasmann and Schemainda,
2003) and CHS828 (now under development as the prodrug GMX1777) either alone (Hjarnaa et
al., 1999) or in combination with cancer therapy producing DNA damage, the alkylating drugs
and radiotherapy. For instance, FK866 has been combined with ionizing radiation in a mouse
tumour model, which shows a delay in tumour growth, with no effect on normal tissues
(Muruganandham et al., 2005; Kato et al., 2010). Importantly, the results of the current study
might also be taken into account in cancer therapy while using chemotherapy or radiotherapy in

combination with inhibitors of NAD biosynthesis, especially in CD38" leukemia subset patients.
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Figure 6.11 The effects of CD38 expression on NAD depletion and the role of NAD as a metabolic link
between DNA damage induced by different stimuli or in cancer, and the resistance to cell death via a
reductionin ATP levels.

In conclusion, NAD depletion in cells expressing CD38 might induce a resistance to apoptotic
cell death and promote cell survival in leukaemia cell lines, which might have important
implications for the pathogenesis and progression of cancer. In terms of leukemia patients, cells
that are expressing high levels of CD38 (in patients with poor prognosis) would also be expected
to show a similar relationship. Firstly, according to the results (Chapter 3), the increase in CD38
expression, concomitant with a decrease in NAD levels, will be linked with reduced glycolytic
activity which may in turn affect ATP levels, since cells consume ATP to replenish NAD™ (Virag
and Szabo, 2002). Thus, a depletion of ATP might lead to increased resistance to cell death,

since apoptosisis an energy-dependent process (Kass et al., 1996), Secondly, as suggested by the
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results presented in this Chapter, low intracellular NAD content may be as a result of CD38
activities, in addition to PARP activation (following DNA damage under UVB irradiation).
CD38 activity and low NAD levels might further lead to restricted PARP activity, lowered PAR
levels, reduction in the repair process and defective induction of apoptosis, since PAR is known
as an inducer of apoptosis. This may lead to impairment of the repair system and failure to

control the carcinogenesis.

Finally, the information presented in this chapter raises the possibility that in leukemia patients
the combinations of chemotherapy or radiotherapy with CD38 expression might lead to poor
responsiveness, drug resistance and a worsening of the disease stage. For this reason, DNA-
damaging therapy that uses irradiation or drugs to destroy cancer cells is often accompanied by
the development of drug resistance and severe side effects (Libura et al., 2005; Mistry et al.,
2005). One possible explanation for this is that CD38 expression is an important regulator of
intracellular NAD" pools and therefore of metabolic pathways that are related to the availability
of NAD" rather than glycolysis, such as PARP reactions. This might reduce PAR production
leading to adelay in apoptotic cell death in preference to cell resistance and survival. Altogether,
combined CD38 expression with cancer therapy agents or radiotherapy may promote cell
proliferation (Fig. 6.11), and drug resistance. For these reasons, CD38" patients at a more
advanced stage of disease show poor responsiveness to chemotherapy and a shorter survival state
in comparison to CD38 CLL patients (Morabito et al., 2002). Thus, to improve patient therapy,
one possible suggestion is to avoid the use of DNA-damaging therapy (chemotherapy or

radiotherapy) in CD38" CLL patients, in order to reduce cell resistance to such treatment.
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CHAPTER 7

GENERAL DISCUSSION
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7.1 Discussion

Leukaemia is one of the common haematological malignant diseases, and CLL is the most
frequent leukaemiain Europe and North America. It is ahighly heterogeneous, incurable disease
that ranges from a stable condition, not requiring treatment, to a rapidly progressive disease
unresponsive to therapy (Hallek et al., 2008). The presence of CD38 on the CLL cell surface has
prognostic relevance, with high levels being associated with an unfavourable outcome (Damle et
al., 1999). For these two reasons, CLL was selected as a disease model in the current study to
investigate the underlying hypothesis. Generally, most studies to date have focused on the role of
receptor function of CD38 in poor CLL prognosis. This study is the first to describe an important
role of CD38 enzymatic function in altering NAD levels and of their contribution to leukaemia
development and progression, in addition to its receptor function. The human leukaemia cell line
HL60, was predominantly used as an aternative model for leukemia in the current study as a
model expressing CD38 when differentiated to neutrophil-like cells using ATRA. The current
findings suggest that CD38 expression plays a key role as a determinant of cell survival, which is
mediated through consumption of NAD, as a redox cofactor and the substrate for a network of
NAD-consuming enzymes. Overall, these findings, combined with previous findings, lead to
three hypotheses describing the synergistic connection between the receptor and enzymatic
functions of CD38, which might help to explain the poor prognosis in CD38" leukemia subset

patients.

Initially, Vaisitti et al. (2011) described two hypotheses in terms of the mechanism by which
CD38 regulates the homing process and therefore why patients with CD38" CLL clones

experience a generally more aggressive disease and a worse prognosis. In the first hypothesis, it
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was suggested that CD38 could transmit its own indirect signals through the generation of Ca®*
active messengers (Vaisitti et al., 2010). Extracellular CD38 catalyses NAD" hydrolysis,
generating ADPR and, at lower levels, CADPR. These two messengers are transported inside the
cell by CD38 itself or by active channels, where they could then trigger Ca®* influx from the
binding to TRPM2 or RyR (Perraud et al., 2001). An increase in Ca?* concentrations may lead to
direct activation of Ca®*-sensitive tyrosine kinases (Schaller, 2010), in addition to direct nuclear
translocation of Ca’*-sensitive transcription factors (Graef et al., 1999). Ultimately, this leads to

the initiation of atranscriptional program regulating proliferation.

The second hypothesis suggests that CD38 induces the formation of highly stable supramolecul ar
complexes that include surface molecules as well as intracellular signalling adaptors (Deaglio et
al., 2007). CD38 plays direct role as a molecular amplifier that activates the polymerization of
actin and nuclear events, specificaly in the presence of its non-substrate ligand CD31. In
addition, the presence of other possible molecules as previously described (Chapter 1) together
creates a suitable environment for CD38 to work as a master regulator of the CLL cell homing

processin patients with CD38" CLL clones.

The current study explores a third hypothesis (Fig. 7.1), which postulates that, in addition to the
aforementioned role of CD38 as a receptor, CD38 enzymatic functions are also involved in
CD38-mediated poor prognosis in leukemia patients. Tests of the current hypothesis had two
major aims, the first was to provide solid confirmation that CD38 is the main NAD consuming
enzyme, but not its analogue (CD157), nor other NAD consumers (PARP or sirtuin). The
findings (Chapter 3) supported the hypothesis, confirming the mgor role of CD38 in altering

NAD levelsto the lower levels concomitant with its expression; this relationship was reversed by
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the impact of kuromanin in inhibiting CD38 cyclase activity. This study produced results which
corroborate the findings of Barbosa et al. (2007), who demonstrated that loss of CD38 in CD38

KO mice had a major effect on NAD homeostasis, since a significant boost in NAD levels were

shown.
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Figure 7.1 Schematic diagram representing the third hypothesis for the functional role of CD38
enzymatic functions mediated by NAD, combining with its receptor functions in inducing cell
proliferation and poor prognosisin CD38" leukemia patients.
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The second aim in testing the current hypothesis was to investigate the consequences of CD38
enzymatic function (since it has a mgor role in NAD consumption) on NAD-dependent
processes, cell physiology and induction of cell proliferation in leukaemia, specifically in chronic
lymphocytic leukaemia. The results in Chapters 4 and 6 provide positive data that support this
hypothesis. The results confirmed that many processes were affected by CD38-mediated
lowering of NAD levels. For example, glycolytic activity, which was reflected by reduced lactate
production and a relatively constant NAD™: NADH ratio. This might directly affect cellular
energy as the NAD™: NADH ratio is a measure of the energy status of a cell (Ying, 2006).
Moreover, CD38 activity might aso restrict NAD-dependent enzyme activities (PARP, sirtuin)
and their dependent processes in the cells by limiting the substrate availability (NAD). These
enzymes mediate important roles in modifying cellular functions such as genomic stability,
apoptosis, cell signalling and stress tolerance (Maavas et al., 2010). CD38 expression was
accompanied by elevated lipid peroxidation (as assessed by TBARS) and low total glutathione
levels, which represents the antioxidant status in the cells, suggesting that an imbalance between
oxidant/antioxidant status was concomitant with CD38 expression. Collectively, these two

results using differentiated HL60 cells support the third hypothesis.

It is worth noting that ATRA-induced CD38 expression in HL60 cells has been shown to induce
cell apoptosis (Mehta et al., 1996), despite a large decrease in intracellular NAD levels. One of
the possible explanations for this is that ADP ribosylation of nuclear CD38 may trigger an
induction of apoptosis in ATRA-treated HL60 cells (Yalcintepe et al., 2005). Similar results
have been obtained in vivo to the effect of ATRA, in patients with acute promyelocytic
leukaemia, but with a side effect known as an APL differentiation syndrome (Sanz et al., 2009).
In other cells, however, CD38 has been attributed to different effects on cell growth; its cellular
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effects have shown to be ambiguous, since CD38 expression was either a positive or negative
regulator of induced cell differentiation and growth arrest, depending on the expression level per
cell (Lamkin et al., 2006). For example, in 3T3 or HeL a cells, it promotes cell cycle progression
(Zocchi et al., 1998), in B lymphocytes or T lymphocytes it can cause apoptosis (Kumagai et al.,
1995; Tenca et al., 2003), but in CLL, a B cell leukaemia, CD38 is an indicator of poor
prognosis (Ghia et al., 2003). According to previous studies, CD38" CLL clones show a
resistance to apoptosis; this might be due to a decline in NAD levels that occur while CD38
expression is upregulated. Hence, from the current datain differentiated HL60 cells, it is possible
to suggest that leukemia cell survival might not be affected by NAD-depletion. Instead, cancer
cells with low cellular ATP levels may show higher resistance to programmed cell death due to
the high energetic requirements of apoptosis. The findings relating to the current hypothesis
along with the previous hypotheses may provide a better understanding of the mechanism of

resistance of leukemiacells to apoptosis.

In cancer cells, the same basic metabolic pathways are utilized to generate energy as in normal
cells, but some changes in a tumour microenvironment lead to protective metabolic adaptation
(DeBerardinis, 2008; Semenza, 2008). For example, the cellsin such an environment tend to use
lactic fermentation in the absence of oxygen, which is a faster way to generate metabolic energy
(Jones and Thompson, 2009). The main advantage of lactic fermentation is that ATP can be
obtained at a faster rate through a simpler process (DeBerardini, 2008). Hence, cancer cells
exhibit a high rate of NAD turnover due to a high glycolytic activity in addition to high levels of
ADP-ribosylation activity (Gagne et al., 2006), resulting from PARP activation (required for
DNA repair and genome stability). Thus, in cancer cells, low intracellular NAD levels may lead
to a resistance to apoptosis and induce cell proliferation. Interestingly, in CD38 negative
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leukaemia cells one might expect that the replenishment of NAD levels might relatively enhance
the DNA repair process and control disease progression. However, the same effect might not be
seen in leukaemia cells that express CD38, since NAD-depletion would have more impact on
NAD-dependent process and cell survival. Thus, low NAD levels lead to a drop in ATP, the
level of which is an important factor in the process of apoptosis. Moreover, the metabolic
pathways that depend on NAD availability such as sirtuin and PARP would also be affected.
Low intracellular NAD might lead to accumulation of damaged DNA that would further
decrease NAD levels due to PARP hyperactivation. Altogether, a severe drop in NAD levels
leads to a similar drop in the determinant factor of apoptotic cell death, ATP. Ultimately, these
environments create cellular resistance to apoptosis, and also facilitate the cell proliferation
process. It is worth noting that drug resistance in tumour cells is a common obstacle in cancer
chemotherapy. Resistance includes decreased drug accumulation, intracellular drug
detoxification, enhanced DNA repair/ tolerance and failure of apoptotic pathways (Fuertes et al.,
2003). Beyond NAD depletion, it has been suggested that highly resistant tumour cells may
express different versions of caspases or they may contain endogenous caspase inhibitors that

[imit apoptotic cell death pathways (Schimmer et al., 2003).

In conclusion, targeting CD38 enzymatic functions in leukemia therapy along with its receptor
function might serve as a possible solution to apoptotic cell resistance or poor cell metabolism in
leukemia patients, and that future studies should pay attention to the evaluation of intracellular
NAD levels as well as CD38 expression levels as a marker for poor prognosis in leukemia

patients.
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7.2 Future studies

One of the current treatments for leukaemia is a drug-based chemotherapy that uses one or more
drugs to destroy cancer cells and induce apoptosis. However, this may be accompanied by the
development of drug resistance and severe side effects (Libura et al., 2005; Mistry et al., 2005).
Chemotherapeutic alkylating agents have been shown to cause miscoding lesions, chromosomal
aberrations (Veld et al., 1997) and secondary cancer, particularly leukaemia. They may aso
depress NAD" levels (Dreizen et al., 1990). For instance, the chemotherapeutic agents (e.g., 5-
fluorouracil, 6-mercaptopurine) interfere with the conversion of tryptophan to niacin (Stevens et
al., 1993). Moreover, rat studies have shown that niacin deficiency significantly increases the
risk of chemotherapeutic induced secondary leukaemia (Kirkland, 2003). Therefore, it is
imperative to develop other potential therapeutic agents for the treatment of this disease. Thus,
NAD metabolism has an important position in total cellular metabolism, because it has
multifunctional roles as a cofactor for individua enzymes and as a substrate for NAD"-
consuming enzymes. It could pose an attractive target for the treatment of various pathologies,
especialy in the fields of CD38 biology, linked to the prevention of aging and its related diseases
like obesity and cancer. The results obtained in the current study might successfully be applied in
the field of cancer therapy and also open the door for future studies to further characterize the
functional role of CD38-mediated NAD depletion in the development of leukaemia, for example
if the observations obtained from a current study using the human leukaemia model (HL60) are
confirmed in the context of leukaemia cells. If so, therapeutic strategies which target this
CD38/NAD reationship, such as investigating the effect of manipulating NAD levels on
prognosis in CD38" leukemia patients, might be effective in fighting leukemia. However, several

areas still need further investigation to clarify the precise effect of CD38 expression on the
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nucleotide levels or on other NAD-dependent reactions. One of the important questions to be
addressed is the levels of NADP in this situation; CADPR levels also need to be measured while
NAD is consumed. If levels of this messenger decrease concomitantly with NAD levels, this
raises further questions as to how CD38 induces proliferation signalling since, as previously
mentioned, CADPR plays a role in the control of cell proliferation via Ca** signalling (Zupo et
al., 1994; Hardingham et al., 1997). Similar investigations need to be focus on NAADP as a

second messenger produced from its precursor, NADP.

Moreover, according to the results obtained in Chapter 5 CD38 expression can be
downregulated by adding NAD" to the medium, or using FK866. It would therefore be tempting
to investigate the mechanism of this inhibitory effect as a future study. It has previously been
observed that in cancer cells DNA damage can stimulate NAD™ biosynthesis (Jacobson et al.,
1999), through upregulation of the expression of NAMPT (Van Beijnum &t al., 2002), which is
the rate-limiting enzyme in the salvage pathway from the breakdown product nicotinamide
(Revollo et al., 2004). That suggests that NAMPT may be crucial in maintaining cellular NAD*
levels in tumours. For that reason FK866, a potent inhibitor of human NAMPT, is used, and the
consequent reduction in NAD" levels has been seen to induce apoptosis of tumour cells
(Hasmann, and Schemainda, 2003; Muruganandham et al., 2005). If a similar mechanism applies
to the primary leukaemia cells (CD38" cells), and according to the results in Chapter 5, then
FK866 might serve as a useful therapeutic agent target for leukemia patients. This suggested
study might succeed in the case of moderate DNA damage in cancer cells, since depletion of
NAD levels and also CD38 expression by using FK866 might be a useful tool to induce
apoptotic cell death. Interestingly, downregulation of CD38 expression might reduce its
signalling effect on proliferation. Furthermore, it would be interesting to determine whether the
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same process could apply to leukaemia patients by using NAD™ supplementation, since applying
NAD" has also been shown to downregulate CD38 expression (Chapter 5). An eevation of
intracellular NAD levels through control of NAD homeostasis pathways, either via consuming
enzyme pathways, or recycling pathways could heavily impact on metabolism, cellular viability
and signalling pathways. In this situation, repletion of cellular NAD levels by adding NAD”
directly to the culture medium with concomitant inhibition of CD38 expression might also lead

to apoptotic cell death, since NAD levels are a determinant of cell survival.

CD38, as a mgjor NAD consumer enzyme in the cells, has developed from a mere marker to a
disease modifier in leukemia. Thus, it isimportant to determine the role of other NAD consumers
in modifying the environment or inducing proliferation signalling in cancer cells. Previously
published studies observed that inhibition of PARP-1 in cancer cells exposed to DNA-damaging
drugs would decrease DNA repair and would induce apoptotic cell death, and may also increase
the sensitivity of tumour cellsto DNA damaging antitumour drugs (Munoz-Gamez et al., 2005).
Interestingly, this was more effective against tumour cells than against normal cells. However, in
cancer cells that express CD38 the mechanism may be different, snce NAD would be consumed
by CD38 as the main NAD-degrading enzyme rather than PARP, and this might delay apoptotic
cell death according to the results Chapter 6. Thus, utilizing CD38 inhibitors along with PARP
inhibitors might elevate intracellular NAD levels and hence might also target apoptotic cell
death. Furthermore, in the case of severe DNA damage combining intracellular NAD-elevating
compounds (e.g. nicotinamide or NAD") along with CD38 inhibitors and PARP inhibitors might
serve as an excellent therapeutic approach for CD38" leukaemia patients, since elevation of
intracellular NAD levels might help to induce apoptotic cell death. Indeed, the fact that NAD*
levels could be elevated by selective inhibition of NAD™ consumers, PARPs or CD38 might lead
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to the activation of other NAD" consumers, such as sirtuin. The latter enzyme has important
functions such as gene silencing, longevity and genome stability (Zhang, 2003; Pillai et al.,
2005). Nevertheless, blockage or inhibition of one pathway of NAD" consumption might cause
potential side effects, as, for example, it has been suggested that SIRT1 and 2 are crucia
antiapoptotic molecules in leukaemia cells and have a role in the development of cancer; thus,
the SIRT inhibitor, sirtinol, effectively induced cell death and that may be a useful therapeutic
agent for leukaemia (Peck et al., 2010). Therefore, further studies are still required to evaluate
whether such a strategy may be of therapeutic value, or whether utilizing inhibitors of DNA

repair pathways concomitant with the above suggestions could be an efficient strategy for cancer

therapy.

One of the fundamental problems of tumour cells is the phenomenon of lactic fermentation; the
metabolic adaptation of cancer cellsin response to hypoxia has been shown to be associated with
reduced sensitivity to common anti-cancer agents (Xu et al., 2005). Thus, it has previously been
suggested that targeting the glycolytic pathway might preferentialy sensitize cancer cells to
chemotherapeutic agents without significant toxicity to normal cells (Xu et al., 2005). Hence, in
combination with the results in Chapter 5, CD38 expression has been seen to be upregulated
under hypoxic conditions (specifically 2% O,). Therefore, it is worth investigating the role of
CD38 in inducing cell proliferation under the same in vivo conditions by exposing the cellsto a
range of oxygen levelsin order to characterize the enzymatic and receptor functions of CD38 in

ahypoxic environment similar to that of cancer cells.

Moreover, it is interesting to note that recently published studies by Vaisitti et al. (2011) found

that CLL cells taken from patients died easily in culture and appeared to have severe
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impairments in vital signaling pathways. One possible explanation is that CLL cells from
patients are more dependent on the external environment and supporting signals from other cells
invivo (Vaisitti et al., 2010). This reflects a key role of the host environment in CLL progression
and suggests that targeting the host might be a valuable therapeutic target. For instance, In
addition to targeting CD38-mediated NAD depletion and its related processes, it would be
interesting to target the non-substrate ligand for CD38, CD31. leukemia cells resistance to
apoptosis is probably due to CD38/CD31 interaction-mediated anti-apoptotic signals. Thus,
targeting CD31/CD38 interaction and their proliferation signalling might also be a potential
target in leukaemia, since CD38 receptor functions have alarge signalling effect on proliferation

in addition to its enzymatic functions.

Finally, it would be interesting to investigate the role of CD38 expression leading to depletion of
intracellular NAD and the consequences of this relationship in the development of other diseases
beyond leukaemia such as obesity. CD38 expression is linked to obesity and it has been
suggested CD38 deficiency has a key role in preventing the development of obesity following
NAD elevation (Baur et al., 2006). Thus, future studies might target NAD levels through
regulation of CD38 expression, such as combining CD38 inhibitors with NAD-elevation
compounds which is also found to down regulate CD38 expression, as shown in the current

study.
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Enzymatic ac

ity of CD38 comparative to NAD levels in leukemia cells
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Human CD3B is a cell surface glycoprotein
expressed in 3 wide variety of cell fypes that
has both enzymatic and receptorial functions.
As @ receptor, CD38 contols signaling
f involved in the activation, growth,
and survival of lympheid and myeloid cells. As
an enzyme, CD3B uses NAD(F) as a substrate
to form a number af biologically active
compeunds including cADPR, NAADP and
ADPR (1) although the major physiclegical
role would seem to be in control of NAD levels.
Such control has wide ranging implications on
cell physialogy not only due to medulation of
basic metabolism but also as NAD has
recently been identified as a substrate in a
variety of signaling reactions.
CD38 and its metabolites have been proposed
to be invalved In a number of human diseases
ranging from Diabetes to HIV infection. CD38
is albo a widely used negative prognostic
marker (2) in chronic lymphocylic leukemia
{CLL) where increased CD38 expression
correlates with & worse prognosis.
White much is known about how the receptor
activity of CD38 contributes to the CLL effects,
the enzymatic activity has not been studied.

rfives

»To understand the relationship between
CD38 expression and NAD levels.

+To how this
Influsnce the physiology of CLL cells

RAJI cells were used as CD38+ cells. HL-
€0 (CD38-) were treated with all trans

retincie acid (ATRA;1 pM) Lo
differention to neutrophil-ike cells
ADP-ribosyl cyclase activity of CD38 was
d using the fl NGD assay.
The initial rate was monitored by measuring
the rate of formation of cGDPR (3).
« NAD was extracted and it levels were
determined using a medification of the
protocol deseribed by Leonarde af. af. (4),

CD38 is expressed during differentiation

HL-80 cells were stimulated 1o differentiate to
Neutrophil-like cells with ATRA {1 pM) for 5
days. The initial rate of CD38 cyclase activity
was measured after 1, 3, and 5 days In HL-
B0 cels (not treated with ATRA) and in
differentiated cellz. Cyclase activity increased
during differentiation (Figure 1) canfirming the

induce

expression of CD38 on the plasma
membrane
Effect of CD38 Expression on NAD levels

To investigate the effect of CD38 expression
on NAD levels in cells, NAD levels were
determined after 1. 3 and 5 days of
differentiation (Figure 2).

zalnab. alabady@plymouthac. uk

cells

was used to confirm our

caused a rise

CD3& and evels in R,

020 - .

018 o T To confirm that the relationship was not
g e l. peculiar to HL-60 cells, a CD38+ |eukaemic
AL cell fine, RAJI
s uiz previous results (Figure 3). In these cells,
| expression of high CD38 activity correlated
e -2k JI negatively with intraceliular NAD levels.
= oos 1

;: | Effect of CD38 inhibition on NAD levels

he0 = i i R Inhibition of CO38 was achieved by using the

Trastm ant tis as novel flavenoid compound kuromanin. As

Figure 1: Ti of ATRA ind of HL-60  in intraceilutar NAD levels in Raji cells (Figure
cel i in plasma CD38 cyclase 4 inset)

g the
activity. (n = 9:11). ‘P<0.05

pmal of NADVI etz

HL-% 1day ELT saay

Treatment tim es

Figura 2: NAD levels (n differentiated cells compared to control
(HL-60). Data are mean + SE, (n=2-11).
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In order to see the effect of lowered NAD
levels an cell vitality, we treated cells with
kuromanin and performed the MTT cell vitality
assay. The increase in NAD levels was
mirrared by an increase in cell vitality

N

These results would tend to suggest a strict
relationship between CD38 expression and
NAD levels. \We expect that CD38 may be
expressed Intracelluiarly, possibly on the
nuclear membrane, as well as on the plasma
membrane as i i hard to consolidate
extracelular enzyme activity with the effect on
intracellular NAD levels. In terms of CLL cells
expressing CD38, we would expect & similar
relationship and thus the reduced NAD levels
may play a rcle in the negative prognosis

iated with CD38 ion in patients.
Howsever, our initial cell vitality resulls would
tend to suggest that low NAD levels reduce
cel vitality.

Future Directions

« Measurement of CD38 expression by
PCR/Western Blot in both the Plasma
L and llular e

* Measurement of intracellular NAD levels in
CD38 pesitive and negative cells from CLL
patients.

*+ Measurement
consuming
differentiation.

of activity of other NAD
enzymes during HL-80

+ Further investigation into the physialegical
consequences of reduced NAD levels in
CD38+ cels (eg NAD-dependent metabolism
and signaling processes).

T-Lpe HC (2006) Mol Mod 12: 317-323.

2-Deaghs, 5, 1 al (2008) Trends Mal Med 14(5)
210-218

3-Lee HC et al (1997) Methods Enaymol 280 331-
o

4-Leonarde MR, el sl (1998) J Bavtatiol 178, 8013
[
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The forgotten role of CO38: &5 enrymatic activity important in CLL pathophyyiology?
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Large changes in NAD levels associated with CD38 expression during
HL-60 cell differentiation
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ARTICLE INFO ABSTRACLCT

Ardiole = MAD s an imp cofctari 1 in multiple metabalic reactions and as asubsirate for several NAD-
Eecsvnd 23 Jowder 3003 dependent signaling enmymes. One such enzyme & (D38 which, slongside synthesising €2 *-nelemsing
Aol el s semnd messengers and ading as 3 @l surface receptor, has dso been suggestad o play a key role in

MALF homenstasis (028 i well known a5 3 negatve progno stic marker in B-0L1 butthe roleofits emy-
m*’;ﬂ matic acttwity has not been studied in depth to date. We have exploited the HL-60 col line a5 2 mode] of

inducible O3S expression, o imvestigate (08 -medated regulation intracelluler NAD* lavels and the
EXEN amsequences of changes in HAI® levels on cell physialogy. Infrace] hiar HAD® levels fell with increasing
M 38 expression and this was reversed with the (038 inhihitor, luromanin onfirming the ey nole of

é-;,g D38 in NAD® homeos Gxis. Wie aloo meos ured the consequences of CD3 8 expression d uring the differen-
PEATR i B OTAE itizfion on & rumber of functions linked o NAD" and we show that some but not a1l NAD*-depend ent pro-
oesses 2w significantly afiected by the lowered NAD levels These data suggest that both funational noles

af (D28 might be impaortant in the pathopeness of BC1L
© 2013 Esevier inc All rights nessrved.
1. Tintraediset i MHADNP) levely thiee disting pathways exit to pe-synthesise

The pyricdine nucleotides nicotinamide adenine dinucleotide
(RAD) and its phoaphonylsted fom KADP hove kg been kiown
o e e smential co-encymes insomeof the most fodamental resc-
tion pathiways of basic metabolism ach 23 glyalyss, the TCAoy-
cle and the pentose phosphate pathway |11 1t hes become clear
over the past bwa decades that their mdes in cells axtend far be-
yond being sSmple election carres and NAINP) has alo been
shinwn o be 3 substrate for eneymes that control pathways o
DMA repair (via poly ADP-ribaie polymerase; PARPY, post-transl -
tional protein modification (Wa ADP-ribesyl tranaferases: ARTH)
gone expresdon (Vi druins) and Co™-signalling (vis CD3E
CDI57 |2-5)1 This has led 1o a remnewved interes in the pathways
of HAD(P) homeostasis a5 it is clear that both the oxdation stare
and alsohite levels of MADP) will affect cell physiology via a mem-
ber of pathways. There hes alio been mudh interest i theds
homestasis pathways o polential pharmamlogical targets for 2
wide varety of diseames

When HAINP) i wed &5 & substrare rativer tha &8 & fedo oo~
enryme, the rasult is that the NMADVP) is conmemed with all of the
resctions abave leading to cleavage of the miootinamide modety
and generation of free nicotinamide slong with comoands. con-
taining an ADP-ribose (ploiphats) group. In order to maintsin

= Comespostaiing J il Fax +44 OITSE 34606,
E-mal auitae & Tt d ST M hho I a2 ok (A BERRgan).
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HAD(M |6[ Of the pathways that consueme NADNPL the mos
important interms of the general control of AT P) levals woulkd
appear bo be that medisted by the encyme CDI8 a5t isappanently
oomgitutively scrive |7] Other pathways such 3 the PARP path-
way may also signilbcantly sffect intrsce lulsr MAD(P) bevels wmder
cerain comnditions (Le DNA damege for PARP) bt such changes e
likely to be tramsisnt

CD3E8 i a0 wiiicdisl protein in that it posesses bith & reoeplas
function, medisting cell-cll ontacr amd proliferation, and an
eneymatic activity |81 Furthermarne, the enryma tic activity & wmu-
el i itaed ] in that the enryme will wie multiple pyridine nuckeo-
tide sulsrrates amnd produce multiple oducts through at least
thies kmbwn endymatic medhanismd. A member of e anrymatic
prodisets of CDE8 have been shawn tobe involved inoell gnalling
pathways, for instance, cADPR. MAADP and ADPR |5) While CD38
i% clearly an important regulator of the synthesis of secomnd mes-
sengers, recent evidence from the CD3E KD mouse has suggested
thst the princi ple role of CDAE may be in the contral of MADYP ) lev-
s as rhe KO mouse showed significa nily higher tase NAD levels
tham the swild-type | 100 CD38 i4 perhaps best known lor being &
prognastic marker for chronic lymphooyic leuksemia (OLL) |80
Briefty, high levels of CD3B expression cormelate with both disexse
stage and poor prognosia While the receptor functions of CD38
umndaibedly contribute to high levels of cell pralifemation in ad-
vaioed CLL the contribution of the sneymatic sotivity in g thogen-
eqis has remained Largely ignoned.
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