

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 12 (2016) pp. 897-902 Journal homepage: <u>http://www.ijcmas.com</u>

Original Research Article

http://dx.doi.org/10.20546/ijcmas.2016.512.097

The Relationship between *Staphylococcus aureus* Infection and Some Asthma Markers As (IL – 4, IL – 10, IFN γ, IgE and FOXP3) in Asthmatic Patients

Hamadi Aabttan Al-Hilali* and Mohammed Mousa Atta

Department of Microbiology, College of Medicine/Al-Qadissyia University, Iraq *Corresponding author

ABSTRACT

Keywords

Asthma. Staphylococcus aureus, Nasal Infection.

Article Info

Accepted: 20 November 2016 Available Online: 10 December 2016 The history of studies on the role of bacterial antigens for asthma go back to about 100 years ag. Since then, numerous researches have long been interested in the roles of bacteria particularly Staphylococcus aureus (S. aureus), in the pathogenesis of asthma but with controversy. It is just until recently that their significant association has come into the spotlight. In this study (for first time in Iraq) we taking 100 asthmatic patients and 100 apparent healthy control, the result of ELISA and ASO-PCR and RT - PCR found there was significant relationship between Staphylococcal nasal infection with IFNy polymorphism also found IL-4, total - IgE and IFN γ were increased while IL- 10 and FOXP3 were decreased , that number of positive cases with S. aureus infection and nasal polyp had pneumonia and that corresponding with a recent advances in metagenomics technologies that proved the S. aureus bacteria not only colonize in the upper airways and skin but may be extend to lower airways particularly in the subjects with asthma. Also in the present study found that the eosinophil count is higher (675±480.2/cmm) in asthmatic patients carrier to S. aureus than non carrier patients (450.1±145). To determine the relationship between asthma and nasal Staphylococcal infection. (100) one hundred asthmatic patients from Hilla specialized center for allergy with 100 apparently healthy age and sex matched subjects as controls. Blood and nasal swap samples were collected. Blood sample divided into two divisions heparinized part for DNA and RNA extraction and other non-heparinized part for serum isolation and Eosinophil counting. Nasal swap for bacterial culturing. After analysis of the results we found significant increasing in IFNy, IgE and IL-4 but no effect on FOXP3 and IL-10 titers. Also significant increasing in eosinophil count. Nasal Staphylococcal infection had significant relationship with asthma.

Introduction

In ancient Greece, Galenus was the first physician to recognize the link between the nose and lung (Bachert *et al.*, 2012). The link between upper and lower airways is

now well established and has led to the concept of allergic rhinitis and its impact on asthma' (ARIA) (Anto *et al.*, 2010). There is specific link between allergic rhinitis and

asthma; as many as 50% of patients with allergic rhinitis have asthma, and up to 80% of asthma patients appear to suffer also from allergic rhinitis (Bachert et al., 2001). nonallergic Allergic and rhinitis are independent risk factors for development of asthma. and hypotheses have been developed to explain the link between allergic rhinitis and asthma (Sunver et al., 1996). Rhinosinusitis (including nasal defined is polyps) is clinically an inflammation of the nose and the paranasal sinuses characterized by two or more symptoms including nasal blockage, anterior or postnasal drip, facial pain or pressure, and reduction in or loss of smell. Nasal polyps (NP) are whitish-gray mass-like lesions in the nose. They are almost always associated with chronic inflammation of the nose and paranasal sinuses, so called rhinosinusitis.

Histologically, nasal polyps show interstitial tissue edema, pseudocyst formation and collagen matrix disruption with abundant inflammatory cell infiltration (Gevaert et al., 2005). They usually protrude from the middle and superior meatus into the nasal cavity, causing rhinologic symptoms such as nasal blockage, anterior/posterior rhinorrhea, and smell disturbance. The etiology of nasal polyps is still unknown. Several hypotheses have been proposed, for instance the fungal hypothesis, the role of biofilm formation and the specific impact of superantigens of Staphylococcus aureus enterotoxins (SEs) as disease modifiers. The fungal biofilm can be considered as one possibility but the role of S. aureus is supported by more evidence and is more clinically relevant; biofilms may serve as reservoir for Staphylococcus aureus under specific circumstances. As NPs represent a chronic mostly eosinophilic inflammation, line therapy the first is topical glucocorticosteroid application, either as spray or drops (Chinn et al., 1998; Chinn et

al., 1999; Hastan et al., 2011; Chinn et al., 1996). However, in cases of steroid unresponsiveness or recurrence of disease, surgery is the next choice. Furthermore, inflammation may expand to the lower airways and induce asthma; about one third of severe asthma sufferers have nasal polyps. Thus, there is an unmet need in terms of treatment options for severe cases polyp disease with or without of comorbidity. Recent trials propose new options such as doxycycline, anti-interleukin (IL)-5 and anti-immunoglobulin E (anti-IgE) (15). Staphylococcus aureus (S.aureus) is one of the most common human bacterial pathogens. However, it can multiply in a large proportion of the human population as a harmless colonizing organism.

The primary S. aureus colonization site in humans is the anterior nares. S. aureus produces enterotoxins, a family of proteins of different serological types but structurally and functionally related, and act as super (Bachert antigens et al.. 2012). Staphylococcal enterotoxins can directly activate a large number of peripheral T cells and cause more augmentation of Th2 response with subsequent aggravation of allergic reaction (Bachert et al., 2011). Other actions of Staphylococcal enterotoxins include polyclonal stimulation of IgE class stimulation switching, of local IgE the synthesis in airway mucosa, augmentation of allergen - specific IgE production and inhibition of T reg. cells (Hastan et al., 2011).

Methods

In a case control study, a total of 100 patients with asthma were referred to Hilla Allergy Specialized Center after they were suspected to have asthma according to their clinical manifestations, radiological changes, skin test and confirmed by allergen assay. Venous blood samples and nasal swap were collected from 100 patients suffering from asthma. The age of the patients are ranging from (10 - 75) years old including (40 males) and (60 females). Venous blood samples were taken from apparently healthy persons not suffering from any respiratory problems and have – ve family history to asthma , included 100 persons equal 50 males and 50 females with age range approximately matched to that of patients all control group confirmed diagnosed by radiological X – ray and allergen assay who give – ve results.

Bacteriological study: after preparation of MSA and Blood agar, nasal swap was culture then identified by gram staining and confirmed by Vietk. ASO-PCR technique was performed for detection interferon Gamma Gene Polymorphism in the blood of asthma patients samples as well as in healthy blood samples as control groups. Methods were carried out according to method described by (Sarvari et al., 2011) Quantitative Reveres Transcription Real-Time PCR technique was performed for estimation of relative gene expression analysis (FOXP3 and IL-10). This technique was done according to method described by Serological company. manufactured examination for titration of IFN γ , total IgE, IL-4 by using Elabscience kits (Elisa kits).

Results and Discussion

As shown in table (1), there were no obvious or statistically significant differences in median Foxp3 fold change, IL10 fold change between Asthma cases with positive and negative Staph aureus culture result. Only the median Serum IL4 conc was significantly higher among Asthma cases with positive bacterial culture (676) compared to those with negative culture (599.5) and this corresponding with Refaat *et al.*, (2008) who found significant

increasing in IL-4 titter in case of Staph. positive asthmatic patients in study proved through which relationship between Staph. infection and severity of clinical signs in asthmatic patients. While Serum IFN gamma conc show significant increasing in this paragraph of study and this consistent with many different studies that proved the result as: Broderick et al., (2012); Song et al., (2014); Riechelmann et al., (2015); Sintobin et al., (2015) and Cui et al., (2015) and this well known because IFN gamma (Th1 cytokine) which chiefly responsible for immunity against infection. In the present study found that the eosinophil count is significantly higher (675±480.2/ml) in asthmatic patients carrier to S. aureus than non carrier patients (250.1±145) and correspond with other studies as Ensaf et al., Also (2015). IgE show statistically significant increasing in asthmatic patients with Staph.+ ve compared with healthy control and Staph. - ve asthmatic patients and this may be its enterotoxin which act as super antigen, these findings warrant further studies for elucidating mechanisms and for confirming their relationships in large scale population. There are many different studies proved that S. aureus and its toxins have major role in asthma as following cited by (Jarvis et al., 2015).

Bachert *et al.*, (2012), found enterotoxin IgE positivity was significantly greater in patients with severe asthma than in healthy control subjects so that they proved SE IgE antibodies but not IgE against inhalant allergens are risk factors for asthma severity and hypothesize that the presence of enterotoxin IgE in serum indicates the involvement of Staphylococcal super antigens in pathophysiology of patient with severe asthma.

Yang *et al.*, (2005), proved that the asthma is closely related with sinusitis by taking 85 asthmatic patients they found 51 of 85

patients with high serum anti staphylococcus enterotoxin B antibody before treatment obtained satisfactory results for both sinusitis and asthma. IgE had a strong correlation with specific IgE to SEs in serum from asthma patients that was independent of atopic status and these two factors significantly correlated with asthma severity markers.

Kowalski et al., (2011), observed that total

Table.1 the difference in median of selected outcome measurements between Asthma	
cases with positive and negative Staph aureus bacterial culture	

	Staph.	aureus	
	Negative	Positive	Р
Foxp3 fold change			0.1[NS]
Range	(2.11 to 35.13)	(1.73 to 55.02)	
Median	5.28	7.685	
Inter-quartile range	(3.42 to 9.97)	(4.03 to 11.965)	
N	36	64	
Mean Rank=	44.1	54.1	
IL10 fold change			0.58[NS]
Range	(2.8 to 35.13)	(2.12 to 65.89)	
Median	7.845	7.905	
Inter-quartile range	(5.965 to 12.495)	(4.76 to 11.525)	
N	36	64	
Mean Rank=	52.6	49.3	
Serum IgE conc			0.005
Range	(3.8 to 29.8)	(83.8 to 215.8)	
Median	24.65	28.6	
Inter-quartile range	(14.6 to 38.15)	(17.7 to 40.05)	
N	26	64	
Mean Rank=	47.2	52.4	
Serum IFN gamma conc			0.002
Range	(275.5 to 402)	(874.5 to 1119)	
Median	265	464	
Inter-quartile range	(353.25 to 645)	(347.25 to 709.25)	
N	36	64	
Mean Rank=	50.6	50.5	
Serum IL4 conc			0.005
Range	(305 to 1080)	(304 to 2390)	
Median	599.5	676	
Inter-quartile range	(458.5 to 670.5)	(573.5 to 739)	
N	36	64	
Mean Rank=	39.7	56.6	

4. Xin Yan *et al.*, (2015), found positive rate and level of SEB specific IgE significantly higher in the serum from Chinese patients with Chronic Rhinosinusitis without nasal polyp than that from healthy control so, the positive rate and level of SEB – specific IgE in Chronic Rhinosinusitis with nasal polyp showed an increasing trend but didn't reach significance.

5. Lara *et al.*, (2010), proved that the S. aureus is correlated with the development of persistent severe inflammatory diseases of the upper airway including Chronic Rhino sinusitis with nasal polyp.

6. Tomassen *et al.*, (2013), in first large – scale population – based epidemiological study to demonstrate the sensitization to S. aureus enterotoxins in European volunteers, they are demonstrated that IgE sensitization to SE is common in Europe, may occur in the absence of sensitization to other allergens (aeroallergens such as house dust mite), probably reflecting a different pathophysiologic basis, this effect may be mediated through its association with strongly increased total IgE concentration via polyclonal super antigen action of enterotoxins.

7. The effects of S. aureus nasal carriage on nasal cytokines environment was noticed by Riechelmann *et al.*, (2015) and Refaat *et al.*, (2008) who found that S. aureus nasal carriage in allergic rhinitis patients was associated with high levels of nasal IL-4 and IL-13 (Th2 cytokines) and low level of IFN γ (Th1 cytokines) and its associated with high nasal IgE level suggesting that nasal S. aureus can augment Th2 bias and promote local IgE production thus can actively modulate the allergic reaction in affected tissues. 8. Ensaf *et al.*, (2015) found significant positive correlation between SEB – specific IgE level in patients and markers of severity of allergic reaction including blood eosinophilia, ECP and total IgE levels, So that, they suggest that nasal carriage of enterotoxin producing S. aureus has a potential role in the development and severity of allergic airway diseases.

(Conclusion the presence of Staph aureus had no effect on Foxp3 fold change and IL10 fold change but there was significant increasing in Serum IgE conc, Serum IFN gamma conc. and Serum IL4 conc.) Also found in this study also found all asthmatic patients (+ve) with nasal Staphylococcal infection had nasal polyp, and that is already because of the Staph. aureus is main causative agent for nasal polyp (Bachert et al., 2012) also there was highly significant relationship between Staph. aureus infection and IFNy polymorphism A/T at 874 position in case of asthmatic patients (asthmatic patients +ve with Staph. aureus infection were 64 patients and from those 52 patients (81.25%) had IFNy polymorphism (AT, TT genotype) so that, this may be good indicator or evidence suggesting that the Staph. aureus super antigens is the main cause or chiefly predisposing factor for IFNy polymorphism).

References

- Anto, J.M., Sunyer, J., Basagana, X., Garcia Esteban, R., Cerveri, I., de Marco, R. *et al.* 2010. Risk factors of new-onset asthma in adults: a population-based international cohort study. *Allergy*, 65: 1021–1030.
- Bachert, C., Gevaert, P., Holtappels, G., Johansson, S.G., van Cauwenberge, P. 2001. Total and specific IgE in nasal polyps is related to local eosinophilic

inflammation. J. Allergy Clin. Immunol., 107: 607–614.

- Bachert, C., Gevaert, P., Howarth, P., Holtappels, G., van Cauwenberge, P., Johansson, S.G. 2003. IgE to Staphylococcus aureus enterotoxins in serum is related to severity of asthma. J. Allergy Clin. Immunol., 111: 1131–1132.
- Bachert, C., van Steen, K., Zhang, N., Holtappels, G., Cattaert, T., Maus, B. *et al.* 2012. Specific IgE against Staphylococcus aureus enterotoxins: an independent risk factor for asthma. J. *Allergy Clin. Immunol.*, 130: 376–381.
- Chinn, S., Burney, P., Sunyer, J., Jarvis, D., Luczynska, C. 1999. Sensitization to individual allergens and bronchial responsiveness in the ECRHS. European Community Respiratory Health Survey. *Eur. Respir. J.*, 14: 876–884.
- Chinn, S., Jarvis, D., Luczynska, C., Burney, P. 1998. Individual allergens as risk factors for bronchial responsiveness in young adults. *Thorax*, 53: 662–667.
- Chinn, S., Jarvis, D., Luczynska, C.M., Lai, E., Burney, P.G. 1996. Measuring atopy in a multi-centre epidemiological study. *Eur. J. Epidemiol.*, 12: 155–162.
- Gevaert, P., Holtappels, G., Johansson, S.G., Cuvelier, C., Cauwenberge, P., Bachert, C. 2005. Organization of secondary lymphoid tissue and local IgE formation to Staphylococcus aureus enterotoxins in nasal polyp tissue. *Allergy*, 60: 71–79.
- Hastan, D., Fokkens, W.J., Bachert, C., Newson, R.B., Bislimovska, J., Bockelbrink, A. *et al.* 2011. Chronic rhinosinusitis in Europe – an underestimated disease. A GA2LEN study. *Allergy*, 66: 1216–1223.
- Heinzerling, L.M., Burbach, G.J., Edenharter, G., Bachert, C., Bindslev-Jensen, C.,

Bonini, S. *et al.* 2009. GA2LEN skin test study I: GA²LEN harmonization of skin prick testing: novel sensitization patterns for inhalant allergens in Europe. *Allergy*, 64: 1498–1506.

- Hollams, E.M., Hales, B.J., Bachert, C., Huvenne, W., Parsons, F., de Klerk, N.H. *et al.* 2010. Th2-associated immunity to bacteria in teenagers and susceptibility to asthma. *Eur. Respir. J.*, 36: 509–516.
- Jarvis, D., Newson, R., Lotvall, J., Hastan, D., Tomassen, P., Keil, T. *et al.* 2015. Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. *Allergy*, 67: 91–98.
- Kowalski, M.L., Cieslak, M., Perez-Novo, C.A., Makowska, J.S., Bachert, C. 2011. Clinical and immunological determinants of severe/refractory asthma (SRA): association with Staphylococcal superantigen-specific IgE antibodies. *Allergy*, 66: 32–38.
- Leung, D.Y., Harbeck, R., Bina, P., Reiser, R.F., Yang, E., Norris, D.A. *et al.* 1993. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. *J. Clin. Invest.*, 92: 1374–1380.
- Sunyer, J., Anto, J.M., Castellsague, J., Soriano, J.B., Roca, J. 1996. Total serum IgE is associated with asthma independently of specific IgE levels. The Spanish Group of the European Study of Asthma. *Eur. Respir. J.*, 9: 1880–1884.
- Van Zele, T., Gevaert, P., Watelet, J.B., Claeys, G., Holtappels, G., Claeys, C. *et al.* 2004.
 Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. *J. Allergy Clin. Immunol.*, 114: 981–983.

How to cite this article:

Hamadi Aabttan Al-Hilali and Mohammed Mousa Atta. 2016. The Relationship between *Staphylococcus aureus* Infection and Some Asthma Markers As (IL – 4, IL – 10, IFN γ , IgE and FOXP3) in Asthmatic Patients. *Int.J.Curr.Microbiol.App.Sci.* 5(12): 897-902. doi: <u>http://dx.doi.org/10.20546/ijcmas.2016.512.097</u>