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Abstract 
 

In this paper, an implementation of an efficient numerical method for solving the system of coupled non-linear fractional 

diffusion equations (NFD Es) is introduced. The proposed system has many applications such as porous  media and plasma 

transport and others. The fractional derivative is described in the Caputo sense. The method is based upon a combination 

between the properties of the our scheme uses shifted Chebyshev polynomials of the third kind approximations and finite 

difference method (FDM). The proposed method reduces NFD Es to a system of ODEs, which solved using FDM. Numerical 

example is given to show the validity and the accuracy of the proposed algorithm. 
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1. Introduction 

 

 

Fractional differential equations (FDEs) have been the focus of many studies due to their fre- 

quent appearance in various applications in fluid mechanics, biology, physics and engineering [22]. 

Consequently, considerable attention has been given to the solutions of FDEs and integral equa- 

tions of physical interest. In last decades, fractional calculus has drawn a wide attention from 

many physicists and mathematicians,   because of its interdisciplinary application and physical 

meaning [21]. Fractional calculus deals with the generalization of differentiation and integration 

of non-integer order. Most FDEs do not have exact solutions, so approximate and numerical 

techniques ([8]-[14]) must be used. Several numerical methods to solve FDEs have been given 

such as, homotopy  perturbation method [5], homotopy analysis method [6], collocation method 

([29]-[31]) and finite difference method ([24], [28], [33]). 

In recent decades, the Chebyshev polynomials are one of the most useful polynomials which 

are suitable in numerical analysis including polynomial approximation, integral and differential 
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equations and spectral methods for partial differential equations and fractional order differential 

equations ([7], [15], [17]). 

Representation of a function in terms of a series expansion using orthogonal  polynomials  is a 

fundamental concept in approximation theory and form the basis of the solution of differential 

equations [30].  Chebyshev  polynomials are widely used in numerical computation.  One of 

the advantages of using Chebyshev  polynomials   as a tool for expansion functions is the good 

representation of smooth functions by finite Chebyshev expansion provided that the function 

u(t) is infinitely  differentiable.  In [7], Khader introduced  an efficient  numerical method for 

solving the fractional diffusion equation using the shifted Chebyshev polynomials. In [21] the 

generalized Chebyshev polynomials were used to compute a spectral solution of a non-linear 

boundary value problems. Also, FDM plays an important rule in recent researches in this field. 

It has been shown that this procedure is a powerful tool for solving various kinds of problems. 

This technique reduces the problem to a system of non-linear algebraic equations [28]. 

Our fundamental goal of this work is to develop a suitable way to approximate the system of 

coupled non-linear fractional order diffusion equation using the shifted Chebyshev polynomials 

of the third kind with finite difference method together with Chebyshev collocation method. 

The structure of this paper is arranged in the following way: In section 2, we introduce  some 

basic definitions about Caputo fractional derivatives. In section 3, we introduce the mathematical 

formulation of the model. In section 4, we give some properties  of Chebyshev polynomials of the 

third kind which are of fundamental importance in what follows and we derive an approximate 

formula for fractional derivatives using Chebyshev polynomials of the third kind expansion.  In 

section 5, we give numerical  example to solve the system of NFD Es and show the accuracy of 

the presented method. Finally, in section 6, the paper ends with a brief conclusion. 

2. Preliminaries  and notations 
 

In this section, we present some necessary definitions and mathematical preliminaries of the 

fractional calculus theory that will be required in the present paper. 

Definition  1. 
 

The Caputo fractional derivative operator Dα  of order α is defined in the following form 
    

  1   
  t 

 

f (m) (ξ)
 

 

Dαf (t) = Γ(m−α) 0  (t−ξ)α−m+1 dξ, 0 ≤ m − 1 < α < m, 

f (m)(t),  α = m ∈ N. 
 

Similar to integer-order differentiation, Caputo fractional derivative operator is linear 
 

Dα (c1p(t) + c2q(t)) = c1D
αp(t) + c2 D

αq(t), 
 

where c1  and c2  are constants. For the Caputo’s derivative we have 
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2 

 

 

Dα C = 0, C is a constant, (1) 
 

Dα tn =  
0, for n ∈ N0 and n < Iαl; 

 

(2) 
  Γ(n+1) 

Γ(n+1−α) 
n−α , for n ∈ N0 and n ≥ Iαl. 

We use the ceiling function Iαl to denote the smallest integer greater than or equal to α and 

N0 = {0, 1, 2, ...}. 

For more details on fractional derivatives definitions and its properties see ([19], [26]). 
 
3. Mathematical formulation of the model 

 

Merkin and Needham [18] considered the reaction-diffusion travelling waves that can develop 

in a coupled system involving simple  isothermal autocatalysis kinetics.  They assumed that 

reactions took place in two separate and parallel regions, with, in I, the reaction being given by 

quadratic autocatalysis 
 
 
 

together with a linear decay step 

F + G → 2G(rate k1ρδ),  (3) 
 
 

G → H (rate k2δ), (4) 
 

where ρ and δ  are the concentrations of reactant  F  and autocatalyst G, the ki(i  = 1, 2) are 

the rate constants and H is some inert product of reaction. The reaction in region II was the 

quadratic autocatalytic step (3) only. The two regions were assumed to be coupled via a linear 

diffusive interchange of the autocatalytic species G. We shall consider a similar system as I, but 

with cubic autocatalysis 
 
 
 

together with a linear decay step 

F + 2G → 3G(rate k3ρδ2),  (5) 
 
 

G → H (rate k4δ), (6) 
 

this leads to the system of equations (7). 

The following boundary value problem on 0 < x  < a and t > 0 for the dimensionless 

concentrations (u1, v1) in region I and (u2, v2) in region I I of species F and G is considered 

2
 

∂u1  
= 

∂ u1 2
 

∂t  ∂x2   
− u1v1 , 

2
 

∂v1  
= 

∂     v 2
 

∂t  ∂x2   
+ u1v1 − kv1 + γ(v2 − v1),

 
2
 

 

(7) 
∂u2  

= 
∂ u2 2

 

∂t  ∂x2   
− u2v2 , 

2
 

∂v2  
= 

∂     v 2
 

∂t  ∂x2   
+ u2v2 + γ(v1 − v2),
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with the boundary conditions 

ui(0, t) = ui(a, t) = 1, vi(0, t) = vi(a, t) = 0, i = 1, 2. (8) 

The constants k and γ represent the strength of the autocatalyst decay and the coupling between 

the two regions, respectively. 

In this paper, we study the analytical approximate solution of the system of non-linear fractional 

diffusion equations of the form ([1], [15]) 
 

∂u1 
 

= Dαu
 − u v2,

 

∂t  
1 1  1

 

∂v1 
 

= Dαv
 + u v2 − kv

 
 

+ γ(v − v ),
 

∂t  
1 1  1 1 2 1

 
 

(9) 
∂u2 

= Dαu
 − u v2,

 

∂t  
2 2  2

 

∂v2 
 

= Dαv
 

 

+ u v2 + γ(v
 − v ),

 

∂t  
2 2  2 1 2

 
 

with the boundary conditions (8). Where the symbol α refers to the Caputo fractional derivative. 

Recently, several authors, for example ([4], [16], [23]) have investigated  the fractional diffu- 

sion/wave equation and its special properties. The fractional diffusion and wave equations have 

important applications to mathematical physics. Fractional diffusion equation describes diffusion 

in special types of porous media [20]. It is also used to model anomalous diffusion in plasma 

transport. For more details on the proposed  model  see ([2], [3]). 

In this paper, we use shifted Chebyshev polynomials of third kind and recall some important 

properties and its analytical form. Next we use these polynomials  to approximate the numerical 

solution of (FDE) with the aid of the Chebyshev collocation method together with the finite 

difference method to convert the system of equations in algebraic equations that can be solved 

numerically. 

 

4. Some properties of Chebyshev polynomials of the third  kind 

 
4.1.  Chebyshev polynomials of the thirdkind 

The Chebyshev polynomials Vn(x) of the third kind ([17], [32]) are orthogonal polynomials 

of degree n in x defined on the [−1, 1] 
 

cos(n +  1 )Θ 
Vn  =   2   

cos( Θ ) 
 

where x = cosΘ and Θ ∈ [0, π].   They can be obtained explicitly using the Jacobi polynomials 

k  (x), for the special case β = −α = 1/2. 
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2      

2 

 

π 

 

 

 

 

 

 

These are given by: 
 
 

22k P 
(−1/2,1/2)

(x) 
Vk (x) =    k   . (10) 

(2k k) 

Also, these polynomials  Vn(x) are orthogonal on [−1, 1] with respect to the inner product: 
 
 

< Vn(x), Vm(x) >= 
   1 

   
1 + x  

Vn(x)Vm(x) = 
π,  for n = m;  

. (11) 
−1 1 − x 0, for n = m; 

 
 

where 
   

1+x 
1−x 

 

is weight function corresponding to Vn(x). 

The polynomials Vn(x) may be generated by using the recurrence relations 
 

Vn+1(x) = 2xVn(x) − Vn−1(x),  V0(x) = 1,  V1(x) = 2x − 1, n = 1, 2, ... . 

 

The analytical form of the Chebyshev polynomials of the third kind Vn(x) of degree n, using Eq. 

(10) and properties of Jacobi polynomials to obtain they are given as: 
 
 

 

Vn(x) = 

[ 2n+1 

) 
(−1)k  (2)n−k 

(2n + 1)Γ(2n − 
 

k + 1) 
 

(x + 1)n−k , n ∈ Z +, (12) 
 

k=0 
Γ(k + 1) Γ(2n − 2k + 2) 

 

where [ 2n+1 ] denotes the integer part of (2n + 1)/2. 

4.2.  The shifted Chebyshev polynomials of the third  kind 

In order to use these polynomials  on the interval [0, 1] we define the so called shifted Cheby- 

shev polynomials  of the third kind by introducing the change of variable s = 2x − 1. The shifted 

Chebyshev polynomials of the third kind are defined  as V ∗(x) = Vn2x − 1). 

These polynomials are orthogonal on the support interval [0, 1] as the following inner product: 
 
 

< V ∗(x), V ∗ (x) >= 
   1     x

  

V ∗(x)V ∗ (x) = 2 
, for n = m; 

 
. (13) n  m  

0 1 − x  n  m
 0, for n = m; 

 

where 
/ 

  x  
1−x 

is weight function corresponding to V ∗(x). and normalized by the requirement that 

n (1) = 1. 

The polynomials  V ∗(x) may be generated by using the recurrence relations 
 

 

V ∗  ∗  ∗  ∗  ∗
 

n+1(x)  = 2(2x − 1)Vn (x) − Vn−1(x),  V0 (x) = 1,  V1 (x) = 4x − 3, n = 1, 2, ... . 
 

The analytical form of the shifted Chebyshev polynomials of the third kind V ∗(x) of degree n in 

x given by: 
 

 

n (x) = 

n ) 
 
k=0 

 

(−1)k  (2)2n−2k
 

(2n + 1)Γ(2n − k + 1) 

Γ(k + 1) Γ(2n − 2k + 2) 

 

(x)n−k , n ∈ Z +, (14) 
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In a spectral method, in contrast, the function g(x), square integrable in [0, 1], is represented by 

an infinite expansion of the shifted Chebyshev polynomials of the third kind as follows: 
 

∞ 

g(x) = 
) 

bi V ∗(x),  (15) 
i=0 

where bi   is a chosen  sequence of prescribed basis functions.  One then proceeds somehow  to 

estimate  as many as possible  of the coefficients bi, thus approximating g(x) by a finite sum of 

(m + 1)-terms such as: 
m 

gm(x) = 
) 

bi V ∗(x),  (16) 
i=0 

where the coefficients bi, i = 0, 1, ... are given by 
 

1 
bi  = 

π 

1 x + 1 
g(  ) Vi(x) 

−1  2 

1 + x 
dx, (17) 

1 − x 
 

where the coefficients bi, i = 0, 1, ... are given by 
 

2 
bi  = 

π 

 
1 

g(x) V ∗(x) 
0 

 

x 
dx, (18) 

1 − x 
 

Theorem 1. (Chebyshev truncation theorem) ([17], [25]) 
 

The error in approximating g(x) by the sum of its first m terms is bounded by the sum of 

the absolute values of all the neglected coefficients. If 
 
 
 
 
 
 

then 

m 

gm(x) = 
) 

bi Vi(x), (19) 
i=0 

ET (m) ≡ |g(x) − gm(x)| ≤ 
 
for all g(x), all m, and all x ∈ [−1, 1]. 

∞ ) 
 
k=m+1 

|bi|, (20) 

The main approximate formula of the fractional derivative  of gm(x)  is given in the following 

theorem. 

 

Theorem 2. 
 

Let g(x) be approximated by shifted Chebyshev polynomials of the third kind as (16) and 

also suppose α > 0, then 
 

m 

Dα(gm(x)) = 
)

 

i−fαl ) 
bi N 

(α)  
xi−k−α, (21) 

i=fαl k=0 
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2 

 

where N 
(α)

 

 

is given by 
 
 

N 
(α)

 2i−2k 
k
 (2n + 1)Γ(2i − k + 1)Γ(i − k + 1) 

 
 
 

Proof. ([32]). 

i, k  = (−1) 
 . (22) Γ(k + 1)Γ(2i − 2k + 2)Γ(i − k + 1 − α) 

 

 

5. Implementation of Chebyshev spectral method for solving system of NFD Es 
 

 

In this section, we implement the shifted Chebyshev polynomials of the third kind method to 

solve numerically the system of coupled non-linear fractional diffusion equations.  Test example 

is presented to validate the solution scheme. 

We consider the system of coupled non-linear fractional diffusion equations (9) with the constants 

a = 100, k = 0.2, γ = 0.1 with different values of the time t and different values of α with the 

zeros initial conditions 

 
u1(x, 0) = u2(x, 0) = v1(x, 0) = v2(x, 0) = 0. (23) 

 

 

In order to use the shifted Chebyshev polynomials  of the third kind method, we approximate 

u1(x, t), u2(x, t), v1(x, t) and v2(x, t) with m = 3 as 
 

3 3 

u1(x, t) c: 
) 

u1,i(t) V ∗(x),  u2(x, t) c: 
) 

u2,i(t) V ∗(x), i 

i=0 

3 

i 

i=0 

3 

 
(24) 

v1(x, t) c: 
) 

v1,i(t) V ∗(x),  v2(x, t) c: 
) 

v2,i(t) V ∗(x). i 

i=0 

i 

i=0 
 

Substitution from Eqs.(24) and Theorem 1 in (9) we obtain 
 

3 3 ) 
u̇ 1,i(t) V ∗(x) = 

)
 

i 3 ) 
u1,i(t) N 

(α)
xk−α − 

) 
u1,i(t)V ∗(x) 

( 
3 

 2 ) 
v1,i(t)V ∗(x) 

 

 

, (25) 
 

i=0 

i 

i=fαl k=fαl 
i,k  

i=0 

i i 

i=0 

 

3 3 i 3 
( 

3 
 2 ) 

v̇1,i(t) V ∗(x) = 
)

 
) 

v1,i(t) N 
(α)

xk−α + 
) 

u1,i(t)V ∗(x) 
) 

v1,i(t)V ∗(x) 
 

i=0 

i 

i=fαl k=fαl 

3 

i,k  
i=0 
 

3 

i i 

i=0 
 
(26) 

− (k + γ) 
) 

v1,i(t)V ∗(x) + γ 
) 

v2,i(t)V ∗(x),  

 
 

3 3 i 

 
i=0 

i i 

i=0 

3 
( 

3 
 2 

) 
u̇ 2,i(t) V ∗(x) = 

)
 
) 

u2,i(t) N 
(α)

xk−α − 
) 

u2,i(t)V ∗(x) 
) 

v2,i(t)V ∗(x) , (27)  
i=0 

i 

i=fαl k=fαl 
i,k  

i=0 

i i 

i=0 
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3 3 i 3 
( 

3 2 
) 

v̇2,i(t) V ∗(x) = 
)

 
) 

v2,i(t) N 
(α)

xk−α + 
) 

u2,i(t)V ∗(x) 
) 

v2,i(t)V ∗(x) 
 

i=0 

i 

i=fαl k=fαl 
( 

3 

i,k  
i=0 

 

3 

i i 

i=0 
 
(28) 

+ γ  
) 

v1,i(t)V ∗(x) − 
) 

v2,i(t)V ∗(x)  . 
 

i=0 

i i 

i=0 

We now collocate Eqs.(25)-(28) at (m + 1 − Iαl) points xp, p = 0, 1, ..., m − Iαl as 
 

3 3 ) 
u̇ 1,i(t) V ∗(xp) = 

)
 

 
i 3 ) 

u1,i(t) N 
(α)

xk−α − 
) 

u1,i(t)V ∗(xp)
 

( 
3 
) 

v1,i(t)V ∗(xp)
 

 

2 
 

, (29) 
 

i=0 

i 

i=fαl k=fαl 
i,k  p  

i=0 

i i 

i=0 
 

3 3 i 3 
( 

3 2 ) 
v̇1,i(t) V ∗(xp) = 

)
 
) 

v1,i(t) N 
(α)

xk−α + 
) 

u1,i(t)V ∗(xp)
 
) 

v1,i(t)V ∗(xp)
 

 
i=0 

i 

i=fαl k=fαl 

3 

i,k  p i 

i=0 
 

3 

i 

i=0 
 
(30) 

− (k + γ) 
) 

v1,i(t)V ∗(xp) + γ 
) 

v2,i(t)V ∗(xp),
 

 

 
3 3 i 

 
i=0 

i i 

i=0 

3 
( 

3 2 
) 

u̇ 2,i(t) V ∗(xp) = 
)

 
) 

u2,i(t) N 
(α)

xk−α − 
) 

u2,i(t)V ∗(xp)
 
) 

v2,i(t)V ∗(xp)
 , (31)  

i=0 

i 

i=fαl k=fαl 
i,k  p  

i=0 

i i 

i=0 
 

3 3 i 3 
( 

3 2 
) 

v̇2,i(t) V ∗(xp) = 
)

 
) 

v2,i(t) N 
(α)

xk−α + 
) 

u2,i(t)V ∗(xp)
 
) 

v2,i(t)V ∗(xp)
 

 
i=0 

i 

i=fαl k=fαl 
( 

3 

i,k  p  
i=0 

 

3 

i i 

i=0 
 
(32) 

+ γ  
) 

v1,i(t)V ∗(xp) − 
) 

v2,i(t)V ∗(xp)  . i 

i=0 

i 

i=0 

For suitable collocation points we use roots of shifted Chebyshev polynomials of the third kind 
 

m+1−f αl(x). 

In this case, the roots xp  of shifted Chebyshev polynomials of the third kind V ∗(x), are 
 

x0 = 14.6447, x1 = 85.3553. 
 
Also, by substituting Eq.(24) in the boundary conditions (8) we can find 

 

3 )
(−1)i u1,i(t) = 1, 

i=0 

3 )
(−1)i u2,i(t) = 1, 

i=0 

3 ) 
u1,i(t) = 1, 

i=0 

3 ) 
u2,i(t) = 1, 

i=0 

3 )
(−1)i v1,i(t) = 0, 

i=0 

3 )
(−1)i v2,i(t) = 0, 

i=0 

3 ) 
v1,i(t) = 0, 

i=0 

3 ) 
v2,i(t) = 0. 

i=0 

 
 
 
(33) 

 

By using Eqs.(29)-(32) and (33) we obtain the following non-linear system of ODEs 
 

3 

u̇ 1,0(t)++1 u̇ 1,1(t)++2 u̇ 1,3(t) = 
)

 

 
i 3 ) 

u1,i(t) N 
(α)

xk−α −
) 

u1,i(t)V ∗(x0)
 

( 
3 2 
) 

v1,i(t)V ∗(x0)  ,  
i=fαl k=fαl 

i,k  0  
i=0 

i 

i=0 

i 
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3 

v̇1,0(t) + +1 v̇1,1(t) + +2 v̇1,3(t) = 
)

 

 

i 3 ) 
v1,i(t) N 

(α)
xk−α + 

) 
u1,i(t)V ∗(x0)

 

( 
3 2 ) 

v1,i(t)V ∗(x0)
 

 
i=fαl k=fαl 

3 

i,k  0 i 

i=0 
 

3 

i 

i=0 

− (k + γ) 
) 

v1,i(t)V ∗(x0) + γ 
) 

v2,i(t)V ∗(x0),
 

 
i=0 

 

 
 

3 i 

i i 

i=0 
 

3 
( 

3
 

 
 

(35) 
 

2 

u̇ 2,0(t)++1 u̇ 2,1(t)++2 u̇ 2,3(t) = 
)

 
) 

u2,i(t) N 
(α)

xk−α +
) 

u2,i(t)V ∗(x0)
 
) 

v2,i(t)V ∗(x0)  ,  
i=fαl k=fαl 

i,k  0  
i=0 

i 

i=0 

i 

 
(36) 

3 

v̇2,0(t) + +1 v̇2,1(t) + +2 v̇2,3(t) = 
)

 
i 3 ) 

v2,i(t) N 
(α)

xk−α + 
) 

u2,i(t)V ∗(x0)
 

( 
3 2 ) 

v2,i(t)V ∗(x0)
 

 
i=fαl k=fαl 

( 
3 

i,k  0  
i=0 

 

3 

i i 

i=0 

+ γ  
) 

v1,i(t)V ∗(x0)) − 
) 

v2,i(t)V ∗(x0)  , i 

i=0 
 

 
 

3 i 

i 

i=0 
 

3 
( 

3
 

 
 

(37) 
 

2 

u̇ 1,0(t)++11 u̇ 1,1(t)++22 u̇ 1,3(t) = 
)

 
) 

u1,i(t) N 
(α)

xk−α−
) 

u1,i(t)V ∗(x1)
 
) 

v1,i(t)V ∗(x1)  ,  
i=fαl k=fαl 

i,k  1  
i=0 

i 

i=0 

i 

 
(38) 

3 

v̇1,0(t) + +11 v̇1,1(t) + +22 v̇1,3(t) = 
)

 
i 3 ) 

v1,i(t) N 
(α)

xk−α + 
) 

u1,i(t)V ∗(x1)
 

( 
3 2 ) 

v1,i(t)V ∗(x1)
 

 
i=fαl k=fαl 

3 

i,k  1 i 

i=0 
 

3 

i 

i=0 

− (k + γ) 
) 

v1,i(t)V ∗(x1) + γ 
) 

v2,i(t)V ∗(x1),
 

 
i=0 

 

 
 

3 i 

i i 

i=0 
 

3 
( 

3
 

 
 

(39) 
 

2 

u̇ 2,0(t)++11 u̇ 2,1(t)++22 u̇ 2,3(t) = 
)

 
) 

u2,i(t) N 
(α)

xk−α+
) 

u2,i(t)V ∗(x1)
 
) 

v2,i(t)V ∗(x1)  ,  
i=fαl k=fαl 

i,k  1  
i=0 

i 

i=0 

i 

 
(40) 

3 

v̇2,0(t) + +11 v̇2,1(t) + +22 v̇2,3(t) = 
)

 
i 3 ) 

v2,i(t) N 
(α)

xk−α + 
) 

u2,i(t)V ∗(x1)
 

( 
3 2 ) 

v2,i(t)V ∗(x1)
 

 
i=fαl k=fαl 

( 
3 

i,k  1  
i=0 

 

3 

i i 

i=0 

+ γ  
) 

v1,i(t)V ∗(x1)) − 
) 

v2,i(t)V ∗(x1)  , i 

i=0 

i 

i=0 
 
 

(41) 

u1,0(t) − u1,1(t) + u1,2(t) − u1,3(t) = 1,                                     (42) 

u1,0(t) + u1,1(t) + u1,2(t) + u1,3(t) = 1,                                     (43) 

u2,0(t) − u2,1(t) − u2,2(t) − u2,3(t) = 1,                                     (44) 



 
 
 
International Journal of Advance Research, IJOAR .org                                                                                        
ISSN 2320-9143 12 

IJOAR© 2016 
http://www.ijoar.org 

 

 

u2,0(t) + u2,1(t) + u2,2(t) + u2,3(t) = 1,                                     (45) 

v1,0(t) − v1,1(t) + v1,2(t) − v1,3(t) = 0,                                      (46) 

v1,0(t) + v1,1(t) + v1,2(t) + v1,3(t) = 0,                                      (47) 

v2,0(t) − v2,1(t) + v2,2(t) − v2,3(t) = 0,                                      (48) 
 

v2,0(t) + v2,1(t) + v2,2(t) + v2,3(t) = 0,                                      (49) 
 

where +1  = V ∗(x0),  +2  = V ∗(x0),  +11  = V ∗(x1),  +22  = V ∗(x1).
 

1 3 1 3 
 

Now, to use finite difference method [24] for solving the system (34)-(49), we use the notations 

tn  = n∆t to be the integration time 0 ≤ tn  ≤ T , ∆t = T /N,  for n = 0, 1, ..., N.   Define 

un  n
 

i,k  = ui,k (tn), vi,k  = vi,k (tn), i = 1, 2, k = 0, 1, 2, 3. Then the system (34)-(49), is discretized 

and takes the following form 
 

un+1  n
 

n+1  n
 

n+1  n
 

1,0   − u1,0 
+ + 

∆t  
1
 

u1,1   − u1,1 
+ + 

∆t  
2
 

u1,3   − u1,3 

∆t 
3 i 

= 
) )  

un+1
 

 
(α)

 
 
k−α

 
3 ) 

n+1     ∗
 

( 
3 2 ) 

n+1     ∗
 

(50) 

 
i=fαl k=fαl 

1,i   Ni,k  x0  − 
 

 
i=0 

u1,i  Vi  (x0) 
 

 
i=0 

v1,i   Vi  (x0)  , 

 

vn+1  n
 

vn+1  n
 

vn+1  n
 

1,0   − v1,0 
+ + 

∆t  
1
 

3 

1,1   − v1,1 
+ + 

∆t  
2
 

i 

1,3   − v1,3 

∆t 
3 

( 
3 2 

= 
) ) 

vn+1
 (α)

 
k−α

 ) 
n+1     ∗

 ) 
n+1     ∗

 

 
i=fαl k=fαl 

3 

1,i   Ni,k  x0  + 
 

 
i=0 
 

3 

u1,i  Vi  (x0) 
 

 
i=0 

v1,i   Vi  (x0) (51) 

− (k + γ) 
) 

vn+1V ∗(x0) + γ 
) 

vn+1V ∗(x0),
 

 

 
un+1  n

 

 

 
un+1

 

 
i=0 
 

n
 

1,i i 
 

 

un+1
 

 
i=0 

 

n
 

2,i  i 

2,0   − u2,0 
+ + 

∆t  
1
 

3 

2,1   − u2,1 
+ + 

∆t  
2
 

i 

2,3   − u2,3 

∆t 
3 

( 
3 

 

 
 
2 (52) 

= 
) ) 

un+1
 (α)

 
k−α

 ) 
n+1     ∗

 ) 
n+1     ∗

 

 
i=fαl k=fαl 

2,i   Ni,k  x0  + 
 

 
i=0 

u2,i  Vi  (x0) 
 

 
i=0 

v2,i   Vi  (x0)  , 

 

vn+1  n
 

 

vn+1  n
 

 

vn+1  n
 

2,0   − v2,0 
+ + 

∆t  
1
 

3 

2,1   − v2,1 
+ + 

∆t  
2
 

i 

2,3   − v2,3 

∆t 
3 

( 
3 2 

= 
) ) 

vn+1
 (α)

 
k−α

 ) 
n+1     ∗

 ) 
n+1     ∗

 

 
i=fαl k=fαl 
( 

3 

2,i   Ni,k  x0  + 
 

 
3 

 

 
i=0 

u2,i  Vi  (x0) 
 

 
i=0 

v2,i   Vi  (x0) (53) 

+ γ  
) 

vn+1     ∗
 ) 

n+1     ∗
 

 

 
i=0 

1,i   Vi  (x0) − 
 

 
i=0 

v2,i   Vi  (x0)  , 
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un+1  n
 

un+1  n
 

un+1  n
 

1,0   − u1,0 
+ + 

∆t 
11

 

3 

1,1   − u1,1 
+ + 

∆t  
22

 

i 

1,3   − u1,3 

∆t 
3 

( 
3 

 

 
 
2 (54) 

= 
) ) 

un+1
 (α)

 
k−α

 ) 
n+1     ∗

 ) 
n+1     ∗

 

 
i=fαl k=fαl 

1,i   Ni,k  x1  − 
 

 
i=0 

u1,i  Vi  (x1) 
 

 
i=0 

v1,i   Vi  (x1)  , 

 

vn+1  n
 

 

vn+1  n
 

 

vn+1  n
 

1,0   − v1,0 
+ + 

∆t 
11

 

3 

1,1   − v1,1 
+ + 

∆t  
22

 

i 

1,3   − v1,3 

∆t 
3 

( 
3 2 

= 
) ) 

vn+1
 (α)

 
k−α

 ) 
n+1     ∗

 ) 
n+1     ∗

 

 
i=fαl k=fαl 

3 

1,i   Ni,k  x1  + 
 

 
i=0 
 

3 

u1,i  Vi  (x1) 
 

 
i=0 

v1,i   Vi  (x1) (55) 

− (k + γ) 
) 

vn+1V ∗(x1) + γ 
) 

vn+1V ∗(x1),
 

 

 
un+1  n

 

 

 
n+1

 

 
i=0 

1,i  i 
 

 
n

 

 

 
n+1

 

 
i=0 
 

n
 

2,i  i 

2,0   − u2,0 
+ + 

∆t 
11

 

3 

u2,1   − u2,1 
+ + 

∆t  
22

 

i 

u2,3   − u2,3 

∆t 
3 

( 
3 

 

 
 
2 (56) 

= 
) ) 

un+1
 (α)

 
k−α

 ) 
n+1     ∗

 ) 
n+1     ∗

 

 
i=fαl k=fαl 

2,i   Ni,k  x1  + 
 

 
i=0 

u2,i  Vi  (x1) 
 

 
i=0 

v2,i   Vi  (x1)  , 

 

vn+1  n
 

 

vn+1  n
 

 

vn+1  n
 

2,0   − v2,0 
+ + 

∆t 
11

 

3 

2,1   − v2,1 
+ + 

∆t  
22

 

i 

2,3   − v2,3 

∆t 
3 

( 
3 2 

= 
) ) 

vn+1
 (α)

 
k−α

 ) 
n+1     ∗

 ) 
n+1     ∗

 

 
i=fαl k=fαl 
( 

3 

2,i   Ni,k  x1  + 
 

 
3 

 

 
i=0 

u2,i  Vi  (x1) 
 

 
i=0 

v2,i   Vi  (x1) (57) 

+ γ  
) 

vn+1     ∗
 ) 

n+1     ∗
 

 

 
i=0 

1,i   Vi  (x1) − 
 

 
i=0 

v2,i   Vi  (x1)  , 

un+1
 

n+1
 

n+1
 

n+1
 

1,0   − u1,1   + u1,2   − u1,3   = 1, (58) 
 

un+1
 

 
n+1

 
 
n+1

 
 
n+1

 

1,0   + u1,1   + u1,2   + u1,3   = 1, (59) 
 

un+1
 

 
n+1

 
 
n+1

 
 
n+1

 

2,0   − u2,1   − u2,2   − u2,3   = 1, (60) 
 

un+1
 

 
n+1

 
 
n+1

 
 
n+1

 

2,0   + u2,1   + u2,2   + u2,3   = 1, (61) 
 

vn+1
 

 
n+1

 
 
n+1

 
 
n+1

 

1,0   − v1,1   + v1,2   − v1,3   = 0, (62) 
 

vn+1
 

 
n+1

 
 
n+1

 
 
n+1

 

1,0   + v1,1   + v1,2   + v1,3   = 0, (63) 
 

vn+1
 

 
n+1

 
 
n+1

 
 
n+1

 

2,0   − v2,1   + v2,2   − v2,3   = 0, (64) 
 

vn+1
 

 
n+1

 
 
n+1

 
 
n+1

 

2,0   + v2,1   + v2,2   + v2,3   = 0. (65) 
 

This system presents the numerical  scheme of the proposed problem (9) and represents non-linear 

system of algebraic equations. Solving this system using the Newton iteration method yields the 
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, 

 

, 

numerical solution of the coupled non-linear fractional diffusion equations (9). 

At n = 0, we will evaluate the values of 
 

 
u0

 
0 0 0 

 
1,0 u1,1 u1,2 u1,3 

 
u0 0 0 0 

 
 

2,0 u2,1 u2,2 u2,3    v0 0 0 0
 

 1,0 v1,1 v1,2 v1,3   

v0 0 0 0
 

2,0 v2,1 v2,2 v2,3 

 

using the initial conditions (23). Therefore, we can obtain the solutions (for n = 1, 2, ..., N ) 
 

 
un  n  n  n  

 
1,0 u1,1 u1,2 u1,3 

 
un

 
n  n  n  

 
 

2,0 u2,1 u2,2 u2,3    vn n
 

n  n  
 

 1,0 v1,1 v1,2 v1,3   

vn  n  n  n
 

2,0 v2,1 v2,2 v2,3 

 

Using the numerical  scheme (50)-(65). 

 
Numerical  results 

 
In this section, we implement the proposed method to solve the coupled non-linear system 

of fractional diffusion equations (9) with the constants γ = 0.1, k = 0.2 and a = 100. The 

obtained approximate solutions by means of the proposed method are shown in figures 1-5. 

Where in figures 1-3, we presented the behavior of the approximate solution with different values 

of α(α = 2, 1.8, and 1.6, respectively), with time step ∆t = 0.05, and m = 5 with final time 

t = 2. 
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Figure 1. The behavior of the approximate solution at t = 2 for (9) 

with α = 2, γ = 0.1, k = 0.2 and a = 100. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The behavior of the approximate solution at t = 2 for (9) 

with α = 1.8, γ = 0.1, k = 0.2 and a = 100. 
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Figure 3. The behavior of the approximate solution at t = 2 for (9) 

with α = 1.6, γ = 0.1, k = 0.2 and a = 100. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The behavior of the approximate solution at t = 5 for (9) 

with α = 1.75, γ = 0.1, k = 0.2 and a = 100. 



 
 
 
International Journal of Advance Research, IJOAR .org                                                                                        
ISSN 2320-9143 17 

IJOAR© 2016 
http://www.ijoar.org 

 

Also, in figures 4-5, we presented the behavior of the approximate solution with different values 

of t(t = 4 and 5, respectively), with time step ∆t = 0.05, and m = 5 with α = 1.75. From 

these figures, it seen that u1, u2, v1 and v2 decrease with increase in t and with decrease in the 

fractional values of α. This confirms the physical behavior of the proposed system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The behavior of the approximate solution at t = 7 for (9) 

with α = 1.75, γ = 0.1, k = 0.2 and a = 100. 
 

 

6. Conclusion and remarks 
 

 

In this article, the shifted Chebyshev polynomials of the third kind method is implemented for 

solving the system of coupled non-linear fractional diffusion equations. The fractional derivative 

is considered in the Caputo sense.   The properties of the shifted Chebyshev polynomials of 

the third  kind are used to reduce the proposed problem to the solution of a system of ODEs 

which is solved by using FDM. Special attention is given to study the convergence analysis and to 

estimate an upper bound of the error of the derived formula and the approximate solution. From 

the behavior of the obtained numerical solutions using the suggested method we can see that the 

physical behavior of the proposed system is confirmed. So, we can show that this approach can 

be solved the problem effectively. It is evident that the overall errors can be made smaller by 

adding new terms in the series (24). All computations in this paper are done using Matlab 12b. 
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