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Abstract 

 

     In this work, we introduce and study the concept of ss-injective modules as 

a generalization of both soc-injective and small injective modules. Also, we 

introduce and study the concept of ss-flat modules as a dual notion of ss-

injective modules. The notion strongly ss-injective modules is defined by using 

ss-injectivity as a generalization of strongly soc-injective modules. Various 

characterizations of these modules and rings are given. By using ss-injectivity, 

we provide many other new characterizations of semisimple rings, quasi-

Frobenius rings, Artinian rings and universally mininjective rings. Several 

results in the literature are improved and extended by some results of this 

thesis. 
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Introduction 

 

     Throughout this thesis,   stands for an associative ring with identity and all 

modules are unitary. A right  -module   is said to be injective, if for every 

right  -monomorphism       (where   and   are right  -modules) and 

every right  -homomorphism      , there exists a right  -

homomorphism       such that      [6]. Injective module has been 

studied widely, and various generalizations for this module were given, for 

examples, principally injective module [24], quasi-injective module [24], s-

injective module [36], and mininjective module [23]. 

     I. Amin, M. Yousif and N. Zeyada in [2] introduced soc-injective modules 

as a generalization of injective modules. A right  -module   is called soc- -

injective (where   is a right  -module) if every  -homomorphism       

extends to  , where   is a semisimple submodule of  . A module   is called 

soc-injective, if   is soc- -injective and it is called strongly soc-injective, if   

is soc- -injective for all    Mod- . In [27, 30], the notion of small injectivity 

was discussed as a generalization of injective modules, a right  -module   is 

called small injective if every  -homomorphism from a small right ideal of   

into   can be extended from    to  . Also, in [35], self-injective rings were 

generalized by the concept simple  -injective rings. A ring   is called right 

simple  -injective if, for any small right ideal   and any  -homomorphism 

        with simple image can be extended to  .   

     In this thesis, we introduce the concept of ss-injective modules as a  

generalization of both soc-injective modules and small injective modules. A 

right  -module   is said to be ss- -injective (where   is a right  -module), if 

every right  -homomorphism       has an extension from   into   for 

every semisimple small submodule   of  . A module   is said to be ss-

injective (resp. strongly ss-injective) if it is ss- -injective (resp. ss- -injective, 

for all      - ). A ring   is said to be right ss-injective (resp. strongly right 

ss-injective), if a right  -module   is ss-injective (resp. strongly ss-injective).  



 
 

 

Also, we introduce the notion of ss-flat modules as a dual concept of ss-

injective modules. A left  -module   is said to be ss-flat, if 

    
         ⁄      . Min-flat modules were introduced in [19] as the 

dual concept of the mininjective modules. The concept ss-flatness is stronger 

than min-flatness and weaker than flatness.  

     This thesis consists of three chapters. In chapter one, we state some basic 

concepts and results which are related to our work. 

     Chapter two is divided into three sections. In section 1, we introduce the 

concept of ss- -injective modules as a generalization of soc- -injective 

modules (where   is a right  -module); specially, the concept of ss- -injective 

(briefly, ss-injective) modules is a  generalization of soc-injective and small 

injective module. We give examples to show that the ss-injectivity is distinct 

from that soc-injectivity, small injectivity, principally injectivity, and 

mininjectivity ( see Example 2.1.2). Some elementary properties of ss-injective 

modules are given, for example, we show that the class of ss-injective right  -

modules is closed under direct products, finite direct sums, summands, and 

isomorphisms. Also we prove that if      - , then               if 

and only if every simple submodule of   is ss- -injective. Thus, we obtain 

that a ring   is right universally mininjective  if and only if every simple right 

ideal is ss-injective. Many results are provided in terms of ss-injectivity. For 

example, if   is a projective right  -module, then every quotient of an ss- -

injective right  -module is ss- -injective if and only if every sum of two ss-

 -injective submodules of a right  -module is ss- -injective if and only if 

            is projective. In Theorem 2.1.20, we prove that if every simple 

singular right  -module is ss-injective, then          for every        

and    is projective. By using Lemma 2.1.31, we have establish the connection 

between ss-injectivity and other injectivities (see Corollary 2.1.32).  

     In section 2, we study ss-injective rings and give some properties and 

characterizations of its. For example, in Proposition 2.2.1, we state some 

characterizations of ss-injective rings. The results [2, Proposition 4.6 and 

Theorem 4.12] have been improved by ss-injectivity (see Proposition 2.2.14 

and Corollary 2.2.15). We also give an example to show that the result [38, 

Theorem 2.12] is not true and we rewrite [38, Theorem 2.12] in a correct 

version by using ss-injectivity. 



 
 

 

     We introduce in section 3 the concept of ss-flat modules as a dual of ss-

injective modules. We show that the three classes of modules: ss-flat modules, 

min-flat modules, and flat modules are different (see Example 2.3.2). We also 

show that the classes of all ss-flat left  -modules and all ss-injective right  -

modules are form an example of almost dual pair (see Corollary 2.3.4). The 

notion min-coherent rings was introduced by L. Mao [19]. In this section, we  

generalize the concepts of coherent rings to ss-coherent rings. A ring   is said 

to be right ss-coherent ring if it is a right min-coherent and      is a finitely 

generated. Some characterizations of ss-coherent and min-coherent rings are 

given (see Theorem 2.3.9, Theorem 2.3.10, and Corollary 2.3.11). For a right 

min-coherent ring  , we prove that every ss-flat left  -module is flat if and 

only if every ss-injective right  -module is   -injective if and only if every ss-

injective pure injective right  -module is injective. Some equivalence 

statements of ss-injective ring are given by using  ss-flatness and ss-injectivity; 

for example, if   is a right ss-coherent, then   is a right ss-injective ring if and 

only if every left  -module has a monic ss-flat preenvelope if and only if every 

right  -module has epic ss-injective cover if and only if every injective left  -

module is ss-flat if and only if every flat right  -module is ss-injective.  

     Chapter three is divided into two sections. In section 1, examples are given 

to distinguish strongly ss-injectivity from ss-injectivity and strongly soc-

injectivity (see Example 3.1.2). We prove that a right  -module   is strongly 

ss-injective if and only if every small submodule   of any right  -module  , 

every  -homomorphism       with semisimple image extends to  , for 

all       - . In particular, if every simple right  -module is strongly ss-

injective, then   is a semiprimitive ring, but not conversely (see Example 

3.1.11). If   is a right perfect ring, we show that the class of strongly ss-

injective right  -modules and the class of strongly soc-injective right  -

modules are equal (see Theorem 3.1.13). Also, we extend the results ( [2, 

Theorem 3.3, Theorem 3.6 and Proposition 3.7]) by the following results: a 

ring   is right Artinian if and only if any direct sum of strongly ss-injective 

right  -modules is injective, and a ring   is    ring if and only if every 

strongly ss-injective right  -module is projective.  

     In section 2, we show that every strongly ss-injective ring is right simple  -

injective ring, but not conversely (see Example 3.2.8). Also, we prove that a 

ring   is    if and only if   is strongly ss-injective and right noetherian with 

essential right socle. I. Amin, M. Yousif and N. Zeyada [2] proved that if a ring 

  is left perfect and two-sided strongly soc-injective, then   is    ring. We 



 
 

 

extend their result by Corollary 3.2.15. Finally, we improve Corollary 3.2.15 as 

follows: a ring   is    if and only if   is two-sided strongly ss-injective, left 

Kasch, and   is left  -nilpotent (see Theorem 3.2.16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Chapter one 

Section one 
 

1.1 Preliminaries 

 

     In this section, we recall some basic concepts of modules and rings and we 

state some of their properties and results which are related to our work. 

Definition 1.1.1 [16, p. 106]. A submodule   of a right  -module   is said to 

be small (resp. essential) in  , notationally     (resp.       ), if every 

submodule   of   with       (resp. with      ) implies     

(resp. implies    ). 

Lemma 1.1.2 [16, Lemma 5.1.3 and 5.1.5, p. 108 and 109]. The following 

holds for right  -modules   and  : 

(1) If         and    , then    . 

(2) If     ,          , then ∑      
   . 

(3) If     and            , then       . 

(4) If         and       , then       . 

(5) If        and            , then            . 

Definition 1.1.3 [16, p. 107]. A right  -module   is called semisimple if every 

submodule of   is a direct summand. A ring   is called semisimple if   is 

semisimple as right (or left)  -module; equivalently, if every right (or left)  -

module is semisimple.  

Example 1.1.4. 

(1)      is small submodule in the   -module   , but not semisimple   -

module. 

(2)     is simple right ideal of    , but not small submodule of the  -module 

  . 

(3) The  -module          is semisimple small submodule of the  -

module      , but not simple submodule.    

Definition 1.1.5 [6, p. 16 and 27] and [16, p. 144]. Let   be a subset of a right 

 -module  , the right (resp. left) annihilator of   in   is defined by       



 
 

 

           , for all      ( resp.                  , for all     . 

If    , we write            and           . Similarly, we define 

      where         . 

Definition 1.1.6 [16, p. 214]. The Jacobson radical (resp. the socle) of a right 

 -module   is denoted by      (resp.       ) and defined by      

∑      ⋂         ( resp.        ∑             
       

 ⋂        ). 

Remark 1.1.7. Let   and   be right  -modules, then: 

(1) If            , then  (    )       and  (      )         (see 

[16, Theorem 9.1.4, p. 214]). 

(2) Let    , we have      if and only if        (see [16, Corollary 

9.1.3, p. 214]). 

(3) If   is finitely generated, then        (see [16, Theorem 9.2.1, p.218]). 

(4)         (see [16, Theorem 9.2.1, p. 218]). 

(5) If     and     ⁄    , then        (see [16, Theorem 9.1.4, p. 

214]). 

Definition 1.1.8 [25, p. 96]. A ring   is said to be local if   ⁄  is a division 

ring; equivalently,   is a maximal right ( or left) ideal of  . 

Definition 1.1.9 [6, p. 13 and 242]. An element     is said to be idempotent 

if     . The idempotents   and   are called orthogonal if        . An 

idempotent   is called local if     is a local ring. 

Definition 1.1.10 [17, p. 246]. Let   be a right  -module. An element     

is called singular element of   if            . The set of all singular 

elements of   is denoted by     . We say   is singular (resp. nonsingular) if 

       (resp.       ). 

Definition 1.1.11 [4, 36]. The second singular submodule of a right  -module 

  is denoted by       and defined by the equality          ⁄  

       ⁄  . The second singular right ideal of    is defined by    
        . 

Definition 1.1.12 [5, p. 15]. A functor    Mod-  Mod-  is said to be 

preradical if the following hold: 

(1)        for all    Mod- . 

(2) For any  -homomorphism       we have that  (    )      . 



 
 

 

Definition 1.1.13 [3, p. 175]. A ring   is called Von Neumann regular if 

     , for every    . 

Definition 1.1.14 [22]. A right ideal   of   is said to be lie over a summand of 

  , if there exists a direct decomposition          with     and 

       ( it is clear that           ). 

Definition 1.1.15 [22]. A ring   is said to be semiregular if every finitely 

generated right ideal of   lies over a direct summand of   . 

Definition 1.1.16 [18]. A right  -module   is called semilocal if      ⁄  is 

semisimple. A ring   is said to be semilocal if    (or R  ) is a semilocal  -

module. 

Definition 1.1.17 [29, p. 187]. A ring   is said to be a semiperfect ring if it 

satisfies the following conditions: 

(1)    is semilocal ring. 

(2)  Idempotents can be lifted modulo   (i.e.,if for every idempotent     ⁄ , 

there exists idempotent     such that      ). 

Definition 1.1.18 [24, p. 152]. A ring   is called right semiartinian if every 

nonzero right  -module has a nonzero socle. 

     Recall that a subset   of a ring   is said to be left  -nilpotent if for each 

sequence            of elements of  ,           for some     (see [6, 

p. 239]). 

Proposition 1.1.19 [29, Proposition VIII.5.1,p.189]. The following statements 

are equivalent for a ring  : 

(1)   is right semiartinian and semilocal. 

(2)   is right semiartinian and semiperfect. 

(3)   is left  -nilpotent and   is semilocal. 

Definition 1.1.20 [29, p. 189]. A ring   is said to be left perfect if it satisfies 

the conditions of Proposition 1.1.19.  

Definition 1.1.21 [14, p. 68]. A ring   is called right max if every nonzero 

right  -module has a maximal submodule. 



 
 

 

Theorem 1.1.22 [14, Theorem 4.4, p. 69]. A ring   is right max if and only if 

       for every nonzero right  -module  . 

Definition 1.1.23 [29, p. 12]. A right  -module   is called noetherian if every 

submodule of   is finitely generated; equivalently, if every strictly ascending 

chain of submodules (ascending chain condition; briefly,    ) is finite. A ring 

  is said to be right noetherian if it is noetherian as right  -module. 

Definition 1.1.24 [29, p. 13]. A right  -module   is called artinian if every 

strictly descending chain of submodules (descending chain condition; briefly, 

   ) is finite. A ring   is said to be right artinian if it is artinian as right  -

module. 

Remark 1.1.25 [16, p. 274]. Every right ( or left) artinian ring is right perfect. 

Corollary 1.1.26 [16, Corollary 9.3.12, p. 225]. If   is a right artinian ring, 

then   is a right noetherian. 

Definition 1.1.27 [17, p. 189]. A ring   is called right Kasch if every simple 

right  -module is isomorphic to a simple right ideal of  . 

Definition 1.1.28 [24, p. 49]. The dual of right  -module   is    
           which is a left  -module via                for all    , 

    , and    .  

Definition 1.1.29 [6, p. 155]. The character module of a right  -module   is 

            ⁄   which is a left  -module via               for all 

   ,     , and    .  

Definition 1.1.30 [23]. A ring   is called right minannihilator if         for 

every simple right ideal  . 
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Section Two 
 

1.2 Injective Modules And Some Related Concepts 

 

     In this section, we recall the definitions of injective module, flat module, 

concepts in homological algebra, and some special rings and we list some of 

their characterizations and properties which are relevant to our work. 

Definition 1.2.1 [6, p. 135]. A right  -module   is said to be injective, if 

every diagram with exact row: 

 

                                                                           

                                                                              

                                                                   

of right  -modules and right  -homomorphisms can be completed 

commutatively by an  -homomorphism      . Equivalently, we can 

assume that   is a submodule of   and   can be replaced by the inclusion map 

     . A ring   is called right self-injective, if    is injective. 

Example 1.2.2 [6, p. 136]. 

(1) The  -module       is not injective. 

(2)   is an injective  -module. 

Proposition 1.2.3 [6] and [16]. Let   and   be a right  -modules, then: 

(1)        is an injective right  -module if and only if each    is injective. 

(2) A finite direct sum of injective right  -modules is injective. 

(3) If   is injective and    , then     . 

(4) If   injective and     , then   is injective. 

(5) If   is injective and    , then   is injective. 



 
 

 

  

Definition 1.2.4 [21, p. 1]. Let   and   be  -modules.   is said to be  -

injective if for every submodule   of  , any  -homomorphism       can 

be extended to an  -homomorphism      . 

Definition 1.2.5 [24, p. 11]. A right  -module   is said to be quasi-continuous 

if it satisfies the following conditions: 

(1) (  -condition) If every submodule of   is essential in a direct summand of 

 . 

(2) (  -condition) If     ,     , and      , then       . 

Definition 1.2.6 [24, p. 96]. A right  -module   is called right principally 

injective, if every  -homomorphism       ,    , extends to  . 

Definition 1.2.7 [6, p. 144]. A right  -module   is said to be projective if each 

diagram with exact row: 

 

                                                                

                                                                  

                                                                            

of right  -modules and  -homomorphisms can be completed commutatively 

by an  -homomorphism      . 

Theorem 1.2.8 [16, Theorem 5.3.1, p. 115]. A right  -module   is injective 

(resp. projective) if every  -monomorphism (resp.  -epimorphism)       

( resp.      ) is split. 

Definition 1.2.9 [24, p.33]. A ring   is called right pseudo-Frobenius (or right 

  ) if   is right self-injective and semiperfect with         . 

Definition 1.2.10 [24, p. 20]. A ring   is called quasi-Frobenius (briefly,    

ring) if it is left and right self-injective artinian ring. 

Proposition 1.2.11 [6, Proposition 12.5.13, p. 427]. A ring   is    if and only 

if every injective right  -module is projective. 

Definition 1.2.12 [34]. A ring   is said to be right   -ring ( resp.   -ring) if    

is projective (resp. flat). 



 
 

 

Proposition 1.2.13 [34, Proposition 8]. Let   be a commutative ring. Then   

is an   -ring if and only if it is   -ring.   

Definition 1.2.14 [2]. Let   and   be right  -modules.   is called soc- -

injective if every  -homomorphism       extends to  , where   is a 

semisimple submodule of  ; equivalently, for any  -homomorphism 

           extends to  .   is called soc-injective, if   is soc- -

injective.   is called strongly soc-injective, if   is soc- -injective for all    

Mod- . A ring   is called right soc-injective (resp. strongly right soc-

injective), if    is soc-injective (resp. strongly soc-injective). 

Definition 1.2.15 [27]. A right  -module   is called small injective if every  -

homomorphism from a small right ideal of   into   can be extended from    

to  . A ring   is called right small injective, if    is small injective. 

Definition 1.2.16 [3, p. 169]. A ring   is called semiprimitive if    . 

Theorem 1.2.17 [30, Theorem 2.8]. Let   be a ring. Then the following 

statements are equivalent: 

(1)   is semiprimitive. 

(2) Every right (or left)  -module is small injective. 

(3) Every simple right (or left)  -module is small injective. 
 

Definition 1.2.18 [33]. A right  -module   is called principally small injective 

if every  -homomorphism from    to   can be extended from    to  , for all 

   . A ring   is called right principally small injective, if    is principally 

small injective. 

Definition 1.2.19 [23]. A right  -module   is called mininjective if, for each 

simple right ideal   of  , every  -homomorphism       extends to  . A 

ring   is called right mininjective, if    is mininjective. 

Definition 1.2.20 [23]. A ring   is called right universally mininjective if 

      . 

Definition 1.2.21 [24, p. 68]. A ring   is called right min-  , if it is a 

semiperfect, right mininjective,         , and         for every simple 

left ideal      for some local idempotent    . 



 
 

 

Definition 1.2.22 [24, p. 62]. A ring   is said to be right minfull if it is 

semiperfect, right mininjective and           for each local idempotent 

   . 

Definition 1.2.23 [35]. A ring   is called right simple  -injective if, for any 

small right ideal   and any  -homomorphism         with simple image 

can be extended to  . 

Definition 1.2.24 [36]. A right  -module   is called strongly s-injective if 

every  -homomorphism from   to   extends to  , for every right  -module 

 , where       . 

Definition 1.2.25 [12, p. 129]. Let   be a ring and   be a class of right  -

modules. An  -homomorphism       is said to be  -preenvelope of   

where     if, for every  -homomorphism       with    , there is 

      such that     . If every          such that      is an 

isomorphism, then   is called an  -envelope of  .  

Definition 1.2.26 [12, p. 105]. Let   be a ring and   be a class of right  -

modules. An  -homomorphism       is said to be  -precover of   

where     if, for every  -homomorphism       with    , there is 

      such that     . If every          such that      is an 

isomorphism, then   is called an  -cover of  . 

Definition 1.2.27 [20, Definition 4.2.1, p. 66]. Let   (resp.  ) be a class of left 

(resp. right)  -modules. The pair (  ,  ) is said to be almost dual pair if for any 

left  -module  ,     if and only if     ; and   is closed under direct 

summands and direct products. 

Remark 1.2.28 [12, Definition 2.1.1 and Remark 3.1.8, p. 40 and 70]. Let   

be a right  -module, then: 

(1) There is an exact sequence             with each    

projective. This sequence is called projective resolution of  . 

(2) There is an exact sequence            with each    

injective. This sequence is called injective resolution of  . 
 

Definition 1.2.29 [12, p. 25 and 26]. A sequence         

      
→    

      
→    

      
→     

      
→          is called chain complex if          for all    . 

               ⁄  is called the nth homology module and is denoted by 



 
 

 

     . A chain complex of the form              

      
→     

      
→    

      
→       is called a cochain complex.                ⁄  is called the nth 

cohomology module and is denoted by      . 

Definition 1.2.30 [12, p. 41 and 70]. Let             be a 

projective resolution of right  -module   and consider the deleted projective 

resolution           . If   is a right  -module and   is a left  -

module, then: 

(1) The ith cohomology module of the complex sequence 

                          is denoted by     
       

(briefly,          ). 

(2) The ith homology module of complex                 is 

denoted by     
       (briefly,          ). 

 

Theorem 1.2.31[12, Theorem 3.2.1, p. 75]. Let   and   be rings and consider 

the situation (  , R  ,   ). If   is injective, then     (           )  

                 , for all    . 
 

Theorem 1.2.32 [12, Theorem 3.1.9, p. 70]. The following statements are 

equivalent for a right  -module  : 

(1)   is injective. 

(2)             for all right  -module  . 

(3)             for all right  -module  . 
 

Theorem 1.2.33 [26, Corollary 7.25, p. 421] and [13, Theorem XII.4.4, p. 

491]. The following statements are equivalent for a right  -module  : 

(1)   is projective. 

(2)             for all right  -module  . 

(3)             for all right  -module  . 
 

Definition 1.2.34 [12, p. 40]. A left  -module   is said to be flat if given any 

exact sequence       of right  -modules, the tensored sequence 

            is exact. 
 

Example 1.2.35.  

(1) Every projective  -module is flat (see [6, Examples (1), p. 155]). 

(2) The  -module    is flat (since   is coherent ring), but not projective (see [6, 

Examples (3), p. 145]). 



 
 

 

 

Proposition 1.2.36 [26, Proposition 3.54, p. 136]. A left  -module   is flat if 

and only if    is injective. 

Theorem 1.2.37 [12, Theorem 2.1.8 and 3.2.10, p. 41 and 78]. The following 

statements are equivalent for a left  -module  : 

(1)   is flat. 

(2)             for all right  -module  . 

(3)             for all right  -module  . 

(4)        ⁄       for all right ideal  . 

(5)        ⁄       for all right ideal  . 
 

Definition 1.2.38 [6, p. 159]. A right  -module   is said to be finitely 

presented if there is an exact sequence           of right  -

modules, where   is finitely generated free and   is finitely generated; 

equivalently, if there is an exact sequence          , where    and 

   are finitely generated free right  -modules. 

Definition 1.2.39 [17, p.138]. A ring   is said to be right coherent if every 

finitely generated right ideal of   is finitely presented. 

     It is clear that every right noetherian ring is right coherent. 

Definition 1.2.40 [9]. A right  -module   is called  -presented if there is an 

exact sequence                  such that each    is a 

finitely generated free right  -modules. 

Lemma 1.2.41[9, Lemma 2.7]. Let   and   be rings and consider the situation 

(  ,S  ,S ) with    is  -presented and S  is injective, then 

      (           )                      . 

Definition 1.2.42 [32, p. 197]. A direct system of  -modules           

consists of a family of right  -modules       and a family of  -

homomorphisms           with     satisfying        
 and            

for      . A direct system of  -homomorphisms from           into a 

right  -module   is a family of an  -homomorphisms            with 

         whenever    . A direct system of  -homomorphisms        

    is said to be a direct limit of           if, for every direct system of  -



 
 

 

homomorphisms           ,    Mod- , there is a unique  -

homomorphism       such that        for all    . The direct limit is 

unique and denoted by      
 

  . 

Definition 1.2.43 [32, p. 274 and 278]. An exact sequence    
     
→  

     
→     of right  -modules is called pure if every finitely presented right  -

module   is projective with respect to this sequence; equivalently, if the 

sequence                                   is exact. In 

this case we call      is a pure submodule of  . A right  -module   is called 

pure injective if   is injective with respect to every pure exact sequence. 

Theorem 1.2.44 [32, 34.5, p. 286]. The exact sequence of right  -modules 

          is pure if and only if the sequence         

     is split. 

Theorem 1.2.45 [32, 33.7, p. 279]. A right  -module   is pure injective if and 

only if every pure sequence           is split. 

Theorem 1.2.46 [15, Theorem 2.5]. Let   be a class of right  -modules. If   

is closed under pure quotient, then the following statements are equivalent: 

(1)   is closed under direct sums. 

(2)   is precovering. 

(3)   is covering. 
 

Theorem 1.2.47 [32, 34.6, p. 289]. For every left  -module  , then: 

(1)   is pure submodule of    . 

(2)    is pure injective. 
 

Definition 1.2.48 [20, Definition 2.4.1, p. 29]. A subclass   of    -  is said 

to be definable if it is closed under direct products, direct limits and pure 

submodules. 

Definition 1.2.49 [12]. A right  -module   is said to be   -injective (or 

absolutely pure) if             for every finitely presented right  -module 

 . 

Proposition 1.2.50 [10]. Let   be a finitely generated right  -module and 

   . If every  -homomorphism       extends to   for every   -

injective right  -module  , then   is finitely generated. 



 
 

 

Remark 1.2.51 [10]. A right  -module   is finitely presented if and only if 

            for all   -injective right  -module  . 

Definition 1.2.52 [19]. A left  -module   is said to be min-flat if 

       ⁄       for any simple right ideal   of  , equivalently, the sequence 

            is exact for any simple right ideal   of  . 

Definition 1.2.53 [19]. A ring   is called right min-coherent if every simple 

right ideal of   is finitely presented. 

     It is clear that a ring   is right min-coherent if and only if every finitely 

generated semisimple small right ideal of   is finitely presented. 

Lemma 1.2.54 [19, Lemma 3.2]. A left  -module   is min-flat if and only if 

   is mininjective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Chapter Two 

Section One 
 

2.1 SS-Injective Modules 

 

     As a generalization of both soc-injective modules and small injective 

modules, we will introduce in this section the concept of ss-injective modules 

and we will give some characterizations and properties of it. 

Definition 2.1.1. Let   be a right  -module. A right  -module   is said to be 

ss- -injective, if for any semisimple small submodule   of  , any right  -

homomorphism       extends to  . A module   is said to be ss-quasi-

injective if   is ss- -injective.   is said to be ss-injective if   is ss- -

injective. A ring   is said to be right ss-injective if the right  -module    is ss-

injective. 

Example 2.1.2.  

(1) Every soc-injective module is ss-injective, but not conversely (see 

Example 3.2.9). 

(2) Every small injective module is ss-injective, but not conversely (see 

Example 3.2.7). 

(3) Every  -module is ss-injective. In fact, if   is a  -module, then   is small 

injective (by Theorem 1.2.17) and hence it is ss-injective. 

(4) The two classes of principally small injective rings and ss-injective rings 

are different ( see Example 2.2.4 and Example 3.2.7). 
 

In the following theorem, we will give som basic properties of ss- -

injective modules. 

Theorem 2.1.3. The following statements hold: 

(1) Let   be a right  -module and let          be a family of right  -

modules. Then the direct product        is ss- -injective if and only if 

each    is ss- -injective,    . 

(2) Let  ,   and   be right  -modules with    . If   is ss- -injective, 

then   is ss- -injective. 



 
 

 

𝑖 

𝑖 

(3) Let  ,   and   be right  -modules with    . If   is ss- -injective, 

then   is ss- -injective. 

(4) Let  ,   and   be right  -modules with     and   is ss- -injective. 

Then   is ss- -injective. 

(5) Let  ,   and   be right  -modules with   is a direct summand of  . If   

is ss- -injective, then   is ss- -injective. 

Proof. (1) ( ) Suppose that        is ss- -injective. Let     and consider the 

following diagram: 

 

                                                                           

                                                             

                                                                

where   is a semisimple small submodule of  . Thus we have the following 

diagram: 

 

                                                                             

                                                                             

                                                                       

                                                                           

                                                                 

where               and               are the injection and projection 

right  -homomorphisms, respectively. Since         is ss- -injective by 

hypothesis, thus there exists a right  -homomorphism             such 

that        . Put            . Thus, we have     (   )  

  (    )    . Hence    is an ss- -injective  -module, for all    . 

( ) Suppose that for each    , the right  -module    is an ss- -injective. 

Consider the following diagram: 

 



 
 

 

𝑖  𝑖  

𝑖 

 

                                                                                      

                                                                    

                                                                      

                                                                    

                                                                

where   is a semisimple small submodule of  . For each    , let 

             be the projection  -homomorphism. Since each    is ss- -

injective, thus there is a right  -homomorphism         such that 

       . Define       by                 for every    . It is 

clear that   is an  -homomorphism. For every    , we have that         

                 (    )          , so        is an ss- -injective. 

(2) Suppose that   is an ss- -injective  -module and let    . Consider the 

following diagram: 

 

                                                                                 

                                                                                        

                                                    

where   is a semisimple small submodule of   and    and    are the inclusion 

maps. Clearly,   is a semisimple small submodule of   and by hypothesis there 

exists right  -homomorphism       is an extension of   and hence 

        is an extension of   . Therefore,   is an ss- -injective. 

(3) Suppose that       is an isomorphism with   is an ss- -injective and 

let   be a semisimple small submodule of  , thus we have the following 

diagram: 

 

 

 



 
 

 

𝑖 

𝑖 

𝑖  

𝑖 

 

                                                                                 

                                                                                 

                                                                            

                                                                

                                                                

where    any  -homomorphism from   to   and   is the inclusion map. By 

hypothesis there is an  -homomorphism       such that      . Put 

          . Thus we have                 . Hence   is an 

ss- -injective. 

(4) Suppose that   is ss- -injective right  -module and let       be an 

isomorphism. Consider the following diagram, where       is an  -

homomorphism,   is a semisimple small submodule of   and   is the inclusion 

mapping: 

 

                                                                          

                                                                

                                                             

The restriction of   to        induces an isomorphism 

            
       , and so we have the following diagram: 

 

                                                                          

                                                                                            

                                                                              

                                                                                               

                                                           



 
 

 

where    is the inclusion map. We note that         
   because let     

and         , then         . Hence            (      )   . 

Thus for all     we have                 and hence           

         ( 
     )    ( 

     )             . Now, since        is 

semisimple small submodule of   and   is ss- -injective, then there is an  -

homomorphism       such that       . Put       , so we have 

             
          . Hence   is ss- -injective. 

(5) This follows from (1). □ 

Corollary 2.1.4. The following statements hold: 

(1) If   is a right  -module, then a finite direct sum of ss- -injective modules 

is again ss- -injective. Moreover, a finite direct sum of ss-injective 

modules is again ss-injective. 

(2) A direct summand of an ss-quasi-injective (resp., ss-injective) module is 

again ss-quasi-injective (resp., ss-injective). 

Proof. (1) By taking   to be a finite set and applying Theorem 2.1.3 (1). 

(2) This follows from Theorem 2.1.3 (5). □   

Lemma 2.1.5. Every ss-injective right  -module is a right mininjective. 

Proof. Let   be a simple right ideal of  . By [25, Lemma 3.8, p. 29] we have 

that either   is nilpotent or a direct summand of  . If   is a nilpotent, then     

by [6, Proposition 6.2.7, p. 181] and hence   is a simple small right ideal of  . 

If      , then every right  -homomorphism       (where   is a right 

 -module) can be extended by     (where    is the injection map from   onto 

 ). Thus every ss-injective right  -module is right mininjective. □ 

Proposition 2.1.6. Let   be a right  -module. If       , then a right  -

module   is ss- -injective if and only if any  -homomorphism          

       extends to  . 

Proof. ( ) Since       , then             is semisimple small 

submodule of   and hence any  -homomorphism                 

extends to  . 



 
 

 

𝑖  𝑖  

( ) Let   be any semisimple small submodule of  . Since      is the largest 

small submodule in   and        is the largest semisimple submodule in  , 

then               and we have the following diagram: 

 

                                                                              

                                                                                          

                                       

where    and    are the inclusion maps and       is any  -

homomorphism. Since   is a direct summand of            , then 

                for some     . Define                 by 

          where              , so we have      . Thus there is 

an  -homomorphism       such that       and hence            , 

so   is ss- -injective. □ 

Corollary 2.1.7. If   is a finitely generated right  -module, then a right  -

module   is ss- -injective if and only if any  -homomorphism          

       extends to  . 

Proof. By Remark 1.1.7 (3) and Proposition 2.1.6. □ 

Proposition 2.1.8. Let   be a right  -module and                be a 

family of finitely generated right  -modules. Then   is ss-    
   -injective if 

and only if   is ss-  -injective, for all          . 

Proof. ( ) This follows from Theorem 2.1.3 ((2), (4)). 

( ) By [5, Proposition (I.4.1) and Proposition (I.1.2), p. 28 and 16] we have 

        
           

                 
         

             

    
 (             ). For           consider the following diagram: 

 

 

 

 



 
 

 

𝑖  

𝑖  

 

                              (  )   (  )                                   

                                               
                                                      

       

                         
 (             )                              

    

                                                                                       

                                                  

where    and    are inclusion maps, and    
 and    

 are injection maps. By 

hypothesis, there is an  -homomorphism         such that          
, 

also there exists exactly one  -homomorphism       
      satisfying 

       
 by [16, Theorem 4.1.6 (2), p. 83]. Thus     

          
   

      
 for all          . Let                   

 (             ), 

thus       (  )   (  ), for all          , and 

                  (                                      ) 

                                 (          )   (            )                     

                                 (   
    )   (   

    )     (   
    )  

                                (      
)     (      

)              
       

                                     (                                    ) 

                                                     

Thus       and the proof is complete. □ 

Corollary 2.1.9. The following statements are hold for a right  -module  : 

(1) Let              in  , where the    are orthogonal idempotents. 

Then   is ss-injective if and only if   is ss-   -injective for every   

       . 

(2) For idempotents   and   of  . If       and   is ss-  -injective, then   

is ss-  -injective. 



 
 

 

Proof. (1) From [3, Corollary 7.3, p. 96], we have       
    , thus it follows 

from Proposition 2.1.8 that   is ss-injective if and only if   is ss-   -injective 

for all          . 

(2) This follows from Theorem 2.1.3 (4). □ 

Proposition 2.1.10. A right  -module   is ss-injective if and only if   is ss- -

injective, for every finitely generated projective right  -module  . 

Proof. ( ) Let   be an ss-injective right  -module, thus it follows from 

Proposition 2.1.8 that   is ss-  -injective for any positive integer number  . 

Let   be a finitely generated projective  -module, thus by [1, Corollary 3.5.5, 

p. 138], we have that   is a direct summand of a module isomorphic to    for 

some positive integer number  . Since   is ss-  -injective, thus   is ss- -

injective by Theorem 2.1.3 ((2),(4)). 

( ) By the fact that   is projective. □ 

Proposition 2.1.11. The following statements are equivalent for a right  -

module  : 

(1) Every right  -module is ss- -injective. 

(2) Every simple submodule of   is ss- -injective. 

(3)              . 

Proof. (1) (2) and (3) (1) are clear. 

(2) (3) Assume that              , thus                     

where     is a simple small submodule of  , for each    . Therefore     is 

ss- -injective for each     by hypothesis. For any    , the inclusion map 

from     to   is split, so we have that       . Since     is small 

submodule of  , thus       and hence      for all     and this a 

contradiction. □ 

Corollary 2.1.12. The following statements are equivalent for a ring  : 

(1)   is right universally mininjective. 

(2)   is right mininjective and every quotient of a soc-injective right  -module 

is soc-injective. 

(3)   is right mininjective and every quotient of an injective right  -module is 

soc-injective.  



 
 

 

(4)    is right mininjective and every semisimple submodule of a projective 

right  -module is projective. 

(5)  Every right  -module is ss-injective. 

(6)  Every simple right ideal is ss-injective. 

Proof. (1) (2) (3) (4) By [23, Lemma 5.1] and [2, Corollary 2.9]. 

(1) (5) (6) By Proposition 2.1.11. □ 

Lemma 2.1.13. Let   be an ss-quasi-injective right  -module and   

       , then the following statements hold: 

(1)            for all              . 

(2)            , where              ,     implies      . 

(3)   (        )          , where              ,    . 

(4) If    is a simple submodule of  , then    is a simple left  -module. For all 

      . Moreover,                    . 

(5)                      . 

(6)                    , for every semisimple small right submodules   

and   of  . 

Proof. (1) Let          , then            . Now, let        is 

given by         , thus   is well define  -homomorphism. By hypothesis, 

there exists an endomorphism   of   such that       . Therefore,   

            , that is           . Conversely, let      . Thus 

      for all         and hence           . Therefore,         

  .  

(2) Let     and              . Since            , then   

       . By (1), we have      as desired. 

(3) If           , then         such that         and       for 

some    . For all           , we have      and        for some 

   . Since                       and        (    )       

 , thus     (        ) and this implies that            (   

     ). Now, we will prove the other inclusion. Let     (        ). If 

    (    ), then        . So,             which yields 

  (    )    (    ). Since              , thus             

    . By (2), we have that            for some    . Therefore, 



 
 

 

           which leads to           . Thus   (        )  

        . 

(4) To prove    is simple left  -module, we need only show that    is cyclic 

for any nonzero element in it. If          , then            is an 

isomorphism. Since    , then        . Since   is ss-quasi-injective, 

thus              has an extension     and hence  (    )  

   (    )   , so       which leads to       . Therefore,    is simple 

left  -module and this leads to                    . 

(5) If    is simple and small submodule of  , then    . We claim that 

       for all        , thus             . Otherwise,        for 

some        . Thus            is an isomorphism. Now, we need to 

prove that   (    )       . Let        , so                  

  which leads to         (    ). The other inclusion, if     (    ), 

then        , that is            , so        . Hence   (    )  

     . Since                   , thus        by (2), and this 

implies that         for some    , so            . Since   

     , then the element    is quasi-regular by [3, Theorem 15.3, p.166]. Thus 

     is invertible and hence     which is a contradiction. This shows that 

                     . 

(6) Let           and consider         is given by        

    , for all     and    . Since   is ss-quasi-injective, then there exists 

    such that              . Thus            , so    

           which yields          . Therefore,         

            and this implies that                    . The other 

inclusion is obtained by [3,Proposition 2.16,p.38], then the proof is complete. □ 

Remark 2.1.14. Let   be a right  -module, then           

                   for each                  is a left ideal in 

 . 

Proof. If        and                , thus              , 

for some     and so        . Since                     , then 

          and hence            . Thus        . Now, let 

           and                . We have that      

          for some    . Since        , then          and hence 



 
 

 

                 for some    . Therefore,              

          . Since                  (        )            

by [3, Proposition 2.16, p.38], thus                for all     

            and hence           . Also, let     and       . 

Since             , thus             for all            

    , that is        . Thus      is a left ideal of  . □ 

Proposition 2.1.15. Let   be an ss-quasi-injective right  -module. Then 

               , for all        and for some           . 

Proof. For all       . By hypothesis, we can find                 

such that           . Clearly,   (    )       , so        by 

Lemma 2.1.13 (2). Thus         for some     and this implies that 

            . Therefore,            , but         and hence 

the inclusion is strictly. □ 

Proposition 2.1.16. Let   is an ss-quasi-injective right  -module, then the set 

                 is  -monomorphism for all      is contained in 

    . Moreover,           . 

Proof. Let       , then there exists                 such that 

          . If     (    ), then         and so         . 

Since           , thus         and hence   (    )       , so we 

get        by Lemma 2.1.13 (2). Therefore,             for some 

   . Since    , thus      is not  -monomorphism and hence the 

inclusion holds. Now, let        , then we have    is quasi-regular element 

by [3,Theorem 15.3, p. 166] and hence      is isomorphism for all    , 

which completes the proof. □ 

Theorem 2.1.17. (ss-Baerʼs condition) For a right  -module  , the following 

statements are equivalent: 

(1)   is an ss-injective right  -module. 

(2) If         , where   and   are riht ideals of  , and       is an 

 -homomorphism, then there exists     such that         for all 

    and     . 

Proof. (1) (2) Define          by             for all       

 . By hypothesis, there is a right  -homomorphism       is an extension 



 
 

 

  

𝑖 

of  , so if       , then                        , for all    . 

Moreover,                     for all    , so     . 

(2) (1) Let       be any right  -homomorphism, where   is any 

semisimple small right ideal. By hypothesis, there exists     such that 

        for all    . Define        by         for all    , thus 

  extends  . □ 

Theorem 2.1.18. If   is a projective right  -module, then the following 

statements are equivalent: 

(1) Every quotient of an ss- -injective right  -module is ss- -injective. 

(2) Every quotient of a soc- -injective right  -module is ss- -injective.  

(3) Every quotient of an injective right  -module is ss- -injective. 

(4) Every sum of two ss- -injective submodules of a right  -module is ss- -

injective. 

(5) Every sum of two soc- -injective submodules of a right  -module is ss- -

injective. 

(6) Every sum of two injective submodules of a right  -module is ss- -

injective. 

(7) Every semisimple small submodule of   is projective. 

(8) Every simple small submodule of   is projective. 

(9)             is projective. 

Proof. (1) (2) (3), (4) (5) (6) and (9) (7) (8) are obvious. 

(8) (9) Since             is a direct sum of simple submodules of   and 

since every simple in      is small in  , thus             is projective. 

(3) (7) Let   and   be right  -modules and consider the diagram: 

                                                                             

                                                                           

                                                                              

where   is a semisimple small submodule of  ,   is a right  -epimorphism,   

is a right  -homomorphism, and   is the inclusion map. We can take   to be 

injective  -module (by [6, Proposition 5.2.10, p. 148]). Since   is ss- -

injective, then we can extend   to an  -homomorphism      . By 

projectivity of  , thus   can be lifted to an  -homomorphism  ̃     such 



 
 

 

𝑖 

  

that   ̃   . Let  ̃     be the restriction of  ̃ over  . Obviously,   ̃    

and this implies that   is projective. 

(7) (1) Let       be an  -epimorphism, where   and   are right  -

modules, and   is ss- -injective. Consider the following diagram: 

 

                                                                             

                                                                           

                                                                               

where   is a semisimple small submodule of  ,       is an  -

homomorphism, and   is the inclusion map. By hypothesis,   is projective, thus 

there is an  -homomorphism       such that     . Since   is ss- -

injective, then there exists  -homomorphism  ̃     such that  ̃   . Put 

    ̃    . Thus      ̃      . Hence   is an ss- -injective right 

 -module. 

(1) (4) Let    and    be two ss- -injective submodules of a right  -module 

 . Then       is a homomorphic image of the direct sum      . Since 

       is ss- -injective, thus       is ss- -injective by hypothesis. 

(6) (3) Let   be an injective right  -module and    . Let         

                 ̅    ⁄           ̅          and    

      ̅          . Then  ̅       . Since           and 

         , thus           . Since             ̅        

           ̅           , thus         under       

for all      . By hypothesis,  ̅ is ss- -injective. Since    is injective, 

thus  ̅       for some    ̅, so            ⁄           ⁄  

  ⁄ . By Theorem 2.1.3 ((3),(5)),   ⁄  is ss- -injective. □ 

     The following corollary gives a new characterizations of   -rings. 

Corollary 2.1.19. The following statements are equivalent for a ring  : 

(1) Every quotient of an ss-injective right  -module is ss-injective. 

(2)  Every quotient of a soc-injective right  -module is ss-injective. 

(3)  Every quotient of a small injective right  -module is ss-injective.  



 
 

 

(4)  Every quotient of an injective right  -module is ss-injective. 

(5)  Every sum of two ss-injective submodules of any right  -module is ss-

injective. 

(6)  Every sum of two soc-injective submodules of any right  -module is ss-

injective. 

(7)  Every sum of two small injective submodules of any right  -module is ss-

injective. 

(8)  Every sum of two injective submodules of any right  -module is ss-

injective. 

(9)  Every semisimple small submodule of any projective right  -module is 

projective. 

(10)  Every semisimple small submodule of any finitely generated projective 

right  -module is projective. 

(11)  Every semisimple small submodule of    is projective. 

(12)  Every simple small submodule of    is projective. 

(13)       is projective. 

(14)     is projective (   is a right   -ring). 

Proof. The equivalence between (1), (2), (4), (5), (6), (8), (11), (12) and (13) is 

from Theorem 2.1.18.  

(1) (3) (4), (5) (7) (8) and (9) (10) (13) are clear. 

(14) (9) By [2, Corollary 2.9]. 

(13) (14) Let            , where          and    is a simple right 

ideal and direct summand of   , for all    . Thus   is projective, but      is 

also projective, so it follows that    is projective. □ 

Theorem 2.1.20. If every singular simple right  -module is ss-injective, then 

         for every        and    is projective. 

Proof. Let        and let           . Thus there exists      such 

that          . Assert that       , then we find         such that 

     , and so        .Since   ⁄  is singular right  -module by [17, 

Example 7.6 (3), p. 247], then   ⁄  is ss-injective. Consider the map      

  ⁄  is given by           which is well define  -homomorphism. Thus, 

there exists     with          and hence       . But        

  which leads to    , a contradiction. Thus        and hence     

          . Since       , then         . Put            , 



 
 

 

for some       , so it follows that        (because            , 

and so          ) for all     and this leads to        . Let      

    be defined by           for all    . Then   is a well defined  -

epimorphism. Clearly,                                         

      . Hence   is an isomorphism and so    is projective. Since      is a 

direct sum of simple small right ideals, thus      is projective and it follows 

from Corollary 2.1.19 that    is projective. □ 

Corollary 2.1.21. A ring   is right mininjective and every singular simple right 

 -module is ss-injective if and only if   is a right universally mininjective. 

Proof. By Theorem 2.1.20 and [23, Lemma 5.1]. □ 

     Recall that a ring   is called zero insertive if       for all       with 

     (see [30]). 

Lemma 2.1.22 [30, Lemma 2.11]. Let   be a zero insertive ring, then     

           for every    .  

Proposition 2.1.23. Let   be a zero insertive ring. If every singular simple 

right  -module is ss-injective, then   is right universally mininjective. 

Proof. Let       . We claim that           , thus        (since 

     ), so     and this means that       . Otherwise, if     

      , then there exists a maximal right ideal   of   such that     

      . Since         by Lemma 2.1.22, then   ⁄  is ss-injective by 

hypothesis. Consider        ⁄  is given by           for all     

which is well defined  -homomorphism. Thus          for some    . 

Since         , then     and this contradicts the maximality of  , so we 

must have            and this ends the proof. □ 

Theorem 2.1.24. If   is a finitely generated right  -module, then the 

following statements are equivalent: 

(1)             is a noetherian  -module. 

(2)             is finitely generated. 

(3) Any direct sum of ss- -injective right  -modules is ss- -injective. 

(4) Any direct sum of soc- -injective right  -modules is ss- -injective.  

(5) Any direct sum of injective right  -modules is ss- -injective. 



 
 

 

(6)      is ss- -injective for every injective right  -module   and for any 

index set  . 

(7)      is ss- -injective for every injective right  -module  . 

Proof. (1) (2) and (3) (4) (5) (6) (7) Clear. 

(2) (3) Let          be a direct sum of ss- -injective right  -modules and 

      be a right  -homomorphism where   is a semisimple small 

submodule of  . Since             is finitely generated, thus   is finitely 

generated and hence           
   , for a finite subset    of  . Since a finite 

direct sums of ss- -injective right  -modules is ss- -injective, thus      
   

is ss- -injective and hence   can be extended to an  -homomorphism 

     . Thus   is ss- -injective. 

(7) (1) Let         be a chain of submodules of            . For 

each    , let         ⁄   and       
    . For every    , we put 

       
       (     

   

   ), then    is injective. By hypothesis, 

    
         

     (    
      

   

   ) is ss- -injective, so it follows from 

Theorem 2.1.3 (5) that   is ss- -injective. Define     ⋃      
    by 

             . It is clear that   is a well defined  -homomorphism. Since 

  is finitely generated, thus             is a semisimple small submodule 

of   and hence ⋃   
 
    is a semisimple small submodule of  , so   can be 

extended to a right  -homomorphism      . Since   is finitely generated, 

then we have          
       ⁄  for some   and hence      

    
       ⁄ . Since          ((    )   

)       for all     and 

   , where             ⁄        ⁄   be the projection map. Thus 

          ⁄  for all    . Since          
       ⁄ . Thus 

            ⁄ , for all      , so      for all       and hence 

the chain           terminates at     . Thus             is a 

noetherian  -module. □ 

Corollary 2.1.25. If   is a finitely generated right  -module, then the 

following statements are equivalent: 

(1)             is finitely generated. 



 
 

 

(2)      is ss- -injective for every soc- -injective right  -module   and for 

any index set  . 

(3)      is ss- -injective for every ss- -injective right  -module   and for 

any index set  .  

(4)      is ss- -injective for every soc- -injective right  -module  . 

(5)      is ss- -injective for every ss- -injective right  -module  . 

Proof. By Theorem 2.1.24. □ 

Corollary 2.1.26. The following statements are equivalent for a ring  : 

(1)       is finitely generated. 

(2)  Any direct sum of ss-injective right  -modules is ss-injective. 

(3)  Any direct sum of soc-injective right  -modules is ss-injective. 

(4)  Any direct sum of small injective right  -modules is ss-injective.  

(5)  Any direct sum of injective right  -modules is ss-injective. 

(6)       is ss-injective for every injective right  -module   and for any index 

set  . 

(7)       is ss-injective for every soc-injective right  -module   and for any 

index set  . 

(8)       is ss-injective for every small injective right  -module   and for any 

index set  . 

(9)       is ss-injective for every ss-injective right  -module   and for any 

index set  . 

(10)       is ss-injective for every injective right  -module  . 

(11)       is ss-injective for every soc-injective right  -module  . 

(12)       is ss-injective for every small injective right  -module  . 

(13)       is ss-injective for every ss-injective right  -module  . 

Proof. By applying Theorem 2.1.24 and Corollary 2.1.25. □ 

Remark 2.1.27. Let   be a right  -module. We denote that       

                  and                       where     and 

      . Clearly,               and       S  , where   

       , and we have the following: 

(1)           for all    . 

(2)           for all       . 

(3)                 for all    . 



 
 

 

(4)                 for all       . 

Proof. (1) Let    , then      for all        , so          . 

(2) Similarly of (1). 

(3) Let        , then      for all          , that is            , and 

so                . The second inclusion is obtained by (1). 

(4) Similarly of (3). □ 

Lemma 2.1.28. For a right  -module  , the following statements are 

equivalent: 

(1) For right ideals of the form      , the ring   satisfies    , where    . 

(2) The ring   satisfies the     for left  -modules of the form      , where 

      . 

(3) For each semisimple small right ideal   of  , there exists a finitely generated 

right ideal     such that            . 

Proof. (1) (2) Clear. 

(2) (3) Consider                is finitely generated right ideal and      

which is nonempty set because    . Now, let   be a finitely generated right 

ideal of   contained in   such that       is the minimal in  . Put       , 

where    . Thus   is a finitely generated right ideal contained in   and 

           . But since       is minimal in  , then             which 

yields         , for all    . Therefore,          and hence       

     . But            , so            . 

(3) (1) Suppose that                          where      

for each  . Put             for each  , and   ⋃       
 
   , then       . 

By hypothesis, there exists a finitely generated right ideal   of   contained in   

such that            . Since   is a finitely generated, thus there exists 

    such that          for all    , that is                   for 

all    . Since                ⋃       
 
     ⋂         

 
    

⋂   
 
       , then          for all    . Since            , then 

                                 for all    . Thus        

       for all    . Hence (3) implies (1), which ends the proof. □ 

     The first part in the following proposition is obtained directly by Corollary 

2.1.26, but we will prove it by different way. 



 
 

 

Proposition 2.1.29. Let   be an ss-injective right  -module. Then      is ss-

injective if and only if the ring   satisfies the     for right ideals of form 

     , where    . 

Proof. ( ) Suppose that                          be a strictly 

chain, where     . Then we get,                              

  . For each    , we can find                        and      

         such that         . Let   ⋃       
 
   , then for all     there 

exists      such that          for all      and this implies that       

for all     . Put  ̅       , we have  ̅       for every    . Consider 

  ̅        is given by   ̅     ̅ , then   ̅ is a well define  -

homomorphism. Since   is semisimple small right ideal, thus   ̅ extends to 

         (by hypothesis). Hence   ̅     ̅            . Thus there 

exists     such that       for all     and all     (since          ), 

but this contradicts with         . 

( ) Let          be an  -homomorphism, where   is a semisimple small 

right ideal, then it follows from Lemma 2.1.28 that there is a finitely generated 

right ideal     such that            . Since    is ss-injective, thus 

     for some     . Write       
    , so we have               , 

         . Thus, there exists  ̃       such that       ̃    for all    , 

         , where    is the nth coordinate of  . Since   is generated by 

            , thus     ̃  for all    . Therefore,     ̃        

      for all     which leads to      ̃   for all     and    , so 

    ̃  for all    . Thus there exists  ̃       such that       ̃  for all 

    and this means that      is ss-injective. □  

Theorem 2.1.30. Let   be a ring, then the following statements are equivalent: 

(1)      is finitely generated. 

(2)     
       is ss-injective right  -module for every family of simple right 

 -modules        . 

Proof. (1) (2) By Corollary 2.1.26. 

(2) (1) Let         be a properly ascending chain of semisimple small 

right ideals of  . It is clear that   ⋃   
 
    is a semisimple small right ideal of 

 . For every    , there exists     ,       and consider 

    ⁄               ⁄ , so              ⁄  is a simple right  -module. 



 
 

 

Define              ⁄            ⁄  by               which is 

right  -epimorphism. Consider the following diagram: 

 

 

                                                            ⁄                  ⁄  

                                                             

                                                                                 

                                                                       

                                                                

where    is the inclusion map. Thus there exists       ⁄        such that 

       . Since      , then             (         )          for 

each    . If    , then there exists      such that      for all      and 

hence            for all     . Thus we can define         
       by 

                 . Then there exists  ̃       
       such that  ̃     

by hypothesis. Put  ̃          , thus there exists     with      for all 

   . Since                   ̃     ̃            for all    , thus 

             for all    , so it follows that            for all     

and all     and this contradicts with            . Thus (2) implies (1). □ 

      In the next results, we will give some relations between ss-injectivity and 

other injectivities.  

Lemma 2.1.31. Let  and   be right  -modules and     with   ⁄  is a 

semisimple. Then every  -homomorphism from a submodule (resp. 

semisimple submodule)   of   to   can be extended to an  -homomorphism 

from   to   if and only if every  -homomorphism from a submodule (resp. 

semisimple submodule)   of   to   can be extended to an  -homomorphism 

from   to  . 

Proof. ( ) is obtained directly. 

( ) Let   be a submodule of a right  -module   and let   be an  -

homomorphism from   to  . Since   ⁄  is a semisimple, thus there exists 

    such that       and       ( see [18, Proposition 2.1]). Thus 



 
 

 

there exists an  -homomorphism       such that           for all 

     . Define       such that for any      ,    ,    , 

              . Thus   is a well define  -homomorphism, because if 

           ,     ,     ,      , then                , 

that is                   which leads to                  . 

Therefore   is a well define  -homomorphism and extension of  . □  

Corollary 2.1.32. For right  -modules   and  , the following hold: 

(1) If   is finitely generated and      ⁄  is semisimple right  -module, then 

  is soc- -injective if and only if   is ss- -injective. 

(2) If        ⁄  is semisimple right  -module, then   is soc- -injective if 

and only if   is  -injective. 

(3) If    ⁄  is semisimple as right  -module, then   is soc-injective if and only 

if   is injective. 

(4) If    ⁄  is semisimple as right  -module, then   is ss-injective if and only if 

  is small injective. 

Proof. (1) ( ) Clear. 

( ) Since   is a right ss- -injective, thus every  -homomorphism from a 

semisimple small submodule of   to   extends to  . Since   is finitely 

generated, thus        and hence every  -homomorphism from any 

semisimple submodule of      to   extends to  . Since      ⁄  is 

semisimple, thus every  -homomorphism from any semisimple submodule of 

  to   extends to   by Lemma 2.1.31. Therefore,   is soc- -injective right 

 -module. 

(2) ( ) Since   is soc- -injective. Thus every  -homomorphism from any 

submodule of        to   extends to  . Since        ⁄  is semisimple, thus 

Lemma 2.1.31 implies that every  -homomorphism from any submodule of   

to   extends to  . Hence   is  -injective. 

( ) Clear. 

(3) By (2). 

(4) Since    ⁄  is semisimple as right  -module, thus      ⁄    . By Remark 

1.1.7 (5), we have      and hence       . Thus   is ss-injective if and 

only is   is small injective. □ 



 
 

 

Corollary 2.1.33. Let   be a semilocal ring, then      is finitely generated if 

and only if    is finitely generated. 

Proof. Suppose that      is finitely generated. By Corollary 2.1.26, every 

direct sum of soc-injective right  -modules is ss-injective. Thus it follows from 

Corollary 2.1.32 (1) and [2, Corollary 2.11] that    is finitely generated. □ 

Proposition 2.1.34. The following statements are equivalent for a right  -

module  : 

(1)   is ss-injective. 

(2) The sequence          ⁄    
      
→           

      
→           

  is exact for all       , where   and   are the inclusion and canonical 

maps, respectively. 

(3) The sequence             ⁄    
      
→           

      
→         

       is exact, where   and   are the inclusion and canonical maps, 

respectively.  

(4)        ⁄       for all       . 

(5)           ⁄      . 

Proof. (1) (2) Let            , then there is             such that 

     and hence        , so    is an  -epimorphism. 

(2) (1) Clear. 

(1) (3) is similar to (1) (2). 

(2) (4) From the exactness of the sequence          ⁄    
      
→   

         
      
→                  ⁄       (see [13, Theorem 

XII.4.4, p. 491]). 

(3) (5) is similar to (2) (4). □ 
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Section Two 
 

2.2 SS-Injective Rings 

 

     In this section, we will study ss-injective rings with some characterizations 

and properties of them. 

Proposition 2.2.1. The following statements are equivalent for a ring  : 

(1)   is a right ss-injective ring. 

(2) If   is a semisimple right  -module,   and   are finitely generated 

projective right  -modules,       is an  -monomorphism with 

       and       is an  -homomorphism, then   can be extended 

to an  -homomorphism      . 

(3) If   be a right semisimple  -module and   is a nonzero  -monomorphism 

from   to    with        , then      . 

Proof. (2) (1) Clear. 

(1) (2) Consider the following diagram: 

                                                                            

                                                                   

                                                                

where   and   are finitely generated projective right  -modules,   is an  -

monomorphism and   is a semisimple  -module with       . Since   is 

finitely generated, then there is an  -epimorphism     
    for some 

positive integer number  . Since   is a projective, then there is an  -

homomorphism         such that        . Thus we have the following 

diagram: 

 

 

 



 
 

 

𝑖 

 

                                                                              

                                                            ̃            

                                                                         

                                                         

                                                             

where  ̃        is defined by  ̃         for all     and   is the 

inclusion map. Since   is a right ss-injective ring, it follows from Proposition 

2.1.10 and Corollary 2.1.4 (1) that    is a right ss- -injective  -module. So 

there exists an  -homomorphism        such that        ̃  . Put 

         . Thus             (    ̃  )    ̃   and hence 

         ( (    ))  (  ̃  )(    )       for all    . Therefore, 

there is an  -homomorphism       such that     . 

(1) (3) Let     , we have             , since      is a semisimple 

small right ideal of   and   is a right ss-injective ring ( by hypothesis), thus 

there exists     such that              , for all       .Now, let 

   , then           and hence  (   (    ))       . Therefore, 

          , for all    . Hence      . 

(3) (1) Let       be a right  -homomorphism, where   is a semisimple 

small right ideal of   and       be the inclusion map, thus by (3) we have 

      and hence      in    for some    . Thus there is     such that 

        for all     and this implies that   is a right ss-injective ring. □ 

Example 2.2.2. 

(1) Every universally mininjective ring is ss-injective, but not conversely (see 

Example 3.2.8). 

(2) The two classes of universally mininjective rings and soc-injective rings are 

different ( see Example 3.2.8 and Example 3.2.9). 
 

Corollary 2.2.3. Let   be a right ss-injective ring. Then: 

(1)   is a right mininjective ring. 

(2)          for all       . 



 
 

 

(3)          ,       ,     implies      . 

(4)  (       )         , for all       ,    . 

(5)                     , for all semisimple small right ideals    and    

of  . 

Proof. (1) By Lemma 2.1.5. 

(2), (3), (4) and (5) are obtained by Lemma 2.1.13 and [32, 11.11, p. 88]. □ 

   The following is an example of a right mininjective ring which is not right ss-

injective. 

Example 2.2.4. (The Bjӧrk Example [24, Example 2.5, p. 38]). Let   be a field 

and let    ̅ be an isomorphism    ̅   , where the subfield  ̅   . Let 

  denote the left vector space on basis      , and make   into an  -algebra by 

defining      and     ̅  for all    . By [24, Example 2.5 and 5.2, p. 38 

and 97] we have   is a right principally injective and local ring. It is mentioned 

in [2, Example 4.15], that   is not right soc-injective. Since   is local, thus by 

Corollary 2.1.32 (1),   is not right ss-injective ring. 

Theorem 2.2.5. Let   be a right ss-injective ring. Then: 

(1)        . 

(2) If the ascending chain                              

terminates for any sequence         in      , then      is right  -

nilpotent and           . 

Proof. (1) Let        and           for any    . By Corollary 2.2.3 

(4),          (       )        , so        because    , 

implies that    . Thus            and hence        . 

(2)  For any sequence         in      , we have                 . By 

hypothesis, there exists     such that                          . 

If          , then                     ( because             

  ) and hence                    for some    . Thus 

               and this implies that           , a contradiction. 

Thus       is right  -nilpotent, so        . Therefore,            

by (1). □ 

Proposition 2.2.6. Let   be a right ss-injective ring. Then : 

(1) If    is a simple left ideal of  , then               is zero or simple. 



 
 

 

(2)               if and only if         for all semisimple small right 

ideals   of  . 

Proof. (1) Suppose that               is a nonzero. Let     and     be any 

simple small right ideals of   with      ,      . If          , then 

by Corollary 2.2.3 (5),              . Since      , thus        for 

some     ,      , that is                  ,      . Since    is a 

simple, then          , that is                 . Therefore,        

and hence     and this contradicts the minimality of   . Thus         

      is simple. 

(2) Suppose that               and let   be a semisimple small right 

ideal of  , trivially we have        . If        for some        , 

then by Corollary 2.2.3 (5),                     , since   

                   . If       , then     , that is         for 

all     and hence           . Thus        , so     and this means 

that           . Since                         , it follows that 

       . The converse is trivial. □ 

Lemma 2.2.7. Let   be a ring then        , for all semisimple small right 

ideals   of   if and only if                  , for all semisimple small 

right ideals   of   and all    . 

Proof. By the same argument of [2, Lemma 4.7].  □ 

Lemma 2.2.8. Let   be an  -generated semisimple right ideal lies over 

summand of   . If   is a right ss-injective ring, then every  -homomorphism 

from   to    can be extended to an endomorphism of   . 

Proof. Let       be a right  -homomorphism. By hypothesis,      

 , for some       , where   is an  -generated semisimple small right 

ideal of  . Now, we need to prove that            . Clearly,    

       is a direct sum. Let    , then      , for some         , 

so we can write               and this implies that      

      . Conversely, let            . Thus           , for 

some         . We obtain                         . 

It is obvious that        is an  -generated semisimple small right ideal. 

Since   is a right ss-injective, then there exists           such that 

                 . Define         by             (      ), for 



 
 

 

all     which is well defined  -homomorphism. If    , then       

where      and         , so             (      )       

                    which yields   is an extension of  . □ 

Corollary 2.2.9. Let   be a ring such that every finitely generated semisimple 

right ideal lies over a summand of    (in particular,   is a semiregular ring) . If 

  is a right ss-injective ring, then every  -homomorphism from a finitely 

generated semisimple right ideal to   extends to  . 

Proof. By Lemma 2.2.8. □ 

Corollary 2.2.10. Let    be a finitely generated and lies over summand of   . 

Then   is a right ss-injective ring if and only if   is a right soc-injective ring. 

Proof. By Lemma 2.2.8. □ 

Lemma 2.2.11. A ring   is a right minannihilator if and only if         for 

any simple small right ideal   of  . 

Proof. ( ) This is clear. 

( ) Let   be any simple right ideal of  . Thus either      for some 

       or     by [25, Lemma 3.8, p. 29]. If      with     , then 

                  . Let        . Since     , thus          and 

hence          and this implies that         . Thus      and hence 

    . Therefore,         . Since         , thus          and hence 

  is a right minannihilator. □ 

     Similarly, we can prove the following lemma. 

Lemma 2.2.12. A ring   is a left minannihilator if and only if         for 

any simple small left ideal   of  . 

Corollary 2.2.13. For a right ss-injective ring  , the following hold: 

(1) If               , then   is right minannihilator. 

(2) If      , then: 

(a)      . 

(b)   is a left minannihilator ring. 

Proof. (1) Let    be a simple small right ideal of  , thus          by 

Proposition 2.2.6 (2). Therefore,   is a right minannihilator ring. 



 
 

 

(2) (a) Since   is a right ss-injective, then it is right mininjective and it follows 

from [23, Proposition 1.14 (4)] that      . 

(b) If    is a simple small left ideal of  , then          by Corollary 2.2.3 

(2) and hence   is a left minannihilator ring. □ 

     The following two results extend the results [2, Proposition 4.6 and 

Theorem 4.12] from the soc-injective rings to the ss-injective rings. 

Proposition 2.2.14. The following statements are equivalent for a right ss-

injective ring  : 

(1)      . 

(2)      . 

(3)   is a left mininjective ring. 

Proof. (1) (2) By Corollary 2.2.13 (2) (a). 

(2) (3) By Corollary 2.2.13 (2) and [24, Corollary 2.34, p. 53], we must show 

that   is right minannihilator ring. Let    be a simple small right ideal, then 

   is a simple small left ideal by [23, Theorem 1.14]. Let           , then 

         . Since          , thus           and hence    is simple left 

ideal, that is     . Now, if       for some       , then      for 

some      . Since         , then          , that is         

  and this implies that      . Thus       , but    is semisimple right 

ideal, so        and hence     . Therefore,     , that is    , a 

contradiction. Thus     and hence       . Therefore,           

    . Now, let         for some         , thus             

          . Since         , thus             and hence       

 , that is    . Therefore,             , so           as desired. 

(3) (1) Follows from [24, Corollary 2.34, p. 53]. □ 

Corollary 2.2.15. Let   be a right ss-injective ring, semiperfect with 

        . Then   is a right minfull ring and the following statements hold: 

(1) Every simple right ideal of   is essential in a summand. 

(2)         is simple and essential in    for every local idempotent    . 

Moreover,   is right finitely cogenerated. 

(3) For every semisimple right ideal   of  , there exists        such that 

                . 



 
 

 

(4)             . 

(5) If   is a semisimple right ideal of   and    is a simple right ideal of   with 

      , then                      . 

(6)        
          

        , where     
     is a direct sum of simple 

right ideals. 

(7) The following statements are equivalent: 

(a)          . 

(b)        , for every semisimple right ideals   of  . 

(c)          , for every simple right ideals    of  . 

(d)      . 

(e)         is a simple for all local idempotent    . 

(f)            , for all local idempotent    . 

(g)   is a left mininjective. 

(h)        , for every semisimple left ideals   of  . 

(i)   is a left minfull ring. 

(j)              . 

(k)        , for every semisimple small right ideals   of  . 

(l)        , for every semisimple small left ideals   of  .  

(8) If   satisfies any condition of (7), then              . 

Proof. (1), (2), (3), (4), (5) and (6) are obtained by Corollary 2.1.32 (1) and [2, 

Theorem 4.12]. 

(7) The equivalence of (a), (b), (c), (d), (e), (f), (g), (h) and (i) follows from 

Corollary 2.1.32 (1) and [2, Theorem 4.12]. 

(b) (j) Clear. 

(j) (k) By Proposition 2.2.6 (2). 

(k) (c) By Corollary 2.2.13 (1). 

(h) (l) Clear. 

(l) (d) Let    be a simple left ideal of  . By hypothesis,         for any 

simple small left ideal   of  . By Lemma 2.2.12,        , for any simple 

left ideal   of   and hence          . Thus   is a right min-   ring and it 

follows from [23, Theorem 3.14] that      . 

(8) Let   be a right ideal of   such that            . Then        

     and we have                     . Now,  (       



 
 

 

    )              . Since   is left Kasch, then               

by [17, Corollary 8.28, p. 281]. Thus        and hence    , so       

        . □ 

     Recall that a ring   is said to be right  -ring if every simple right  -module 

is injective; equivalently, if        for all      -  (see [17, p. 97 and 

99]. 

     N. Zeyada, S. Hussein and A. Amin [38] introduced the notion almost-

injective, a right  -module   is called almost-injective if      , where 

  is injective and   has zero radical. They proved that, every almost-injective 

right  -module is an injective if and only if every almost-injective is a quasi-

continuous if and only if   is a semilocal ring ( see [38, Theorem 2.12]). After 

reflect of [38, Theorem 2.12] we found it is not true always, so most of the 

other results in [38] are not necessary to be correct, because they are based on 

[38, Theorem2.12]. The following example shows that the contradiction in [38, 

Theorem 2.12] is exist. 

Example 2.2.16.  

(1) Let   be an artinian ring. Assume that   is not semisimple ring, then   is 

not right  -ring. Thus there is simple right  -module is not injective. 

Therefore, there is almost-injective right  -module is not injective. So it 

follows from [38, Theorem 2.12] that   is not semilocal. Hence,   is not 

right artinian and this a contradiction. Thus every right artinian ring is 

semisimple, but this is not true in general (see below example).   

(2) The ring    is semilocal. Since   ̅     ̅  ̅  is almost-injective as   -

module, then   ̅   is injective   -module by [38, Theorem 2.12]. Thus 

  ̅       and this a contradiction. 

     The following Theorem is a new version of [38, Theorem 2.12] in terms of 

ss-injectivity. 

Theorem 2.2.17. The following statements are equivalent for a ring  : 

(1)   is a semiprimitive and every almost-injective right  -module is quasi-

continuous. 

(2)   is a right ss-injective and right minannihilator ring,   is a right artinian, 

and every almost-injective right  -module is quasi-continuous. 

(3)   is a semisimple ring.    



 
 

 

Proof. (1) (2) and (3) (1) are clear. 

(2) (3) Let   be a right  -module with zero Jacobson radical and let   be a 

nonzero submodule of  . Thus     is a quasi-continuous module. By [21, 

Corollary 2.14, p. 23],   is an  -injective. Thus      and hence   is 

semisimple. In particular,   ⁄  is a semisimple  -module and hence   ⁄  is 

artinian by [16, Theorem 9.2.2 (b), p. 219], so   is semilocal ring. Since   is a 

right artinian, then   is a right artinian. So, it follows from Corollary 2.2.15 (7) 

that   is right and left mininjective. Thus [23, Corollary 4.8] implies that   is 

   ring. By hypothesis      ⁄   is quasi-continuous ( since   is self-

injective), so again by [21, Corollary 2.14, p. 23] we have that   ⁄  is an 

injective. Since   is    ring, then   ⁄  is a projective (see Proposition 1.2.11). 

Thus the canonical map       ⁄  is a splits and hence     , that is    . 

Therefore,   is semisimple. □  

Note. It is mentioned in [37], that the result [38, Theorem 2.12] is not true but 

they didn't give a counterexample.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Section Three 
 

2.3 SS-Flat Modules 
 

     In this section, we will introduce the dual concept to ss-injective module 

namely, ss-flat module. We will give some results in terms of ss-injectivity and 

ss-flatness.  

Definition 2.3.1. A left  -module   is said to be ss-flat if 

            ⁄      . 

Example 2.3.2. 

(1) Any flat module is ss-flat, but the converse is not true. For example the  -

module    is not flat for all     (see [6,Example , p.155]), but it is clear 

that    as  -module is ss-flat for all    . 

(2) Every ss-flat module is min-flat, since if   is an ss-flat left  -module, then 

   is an ss-injective right  -module (by Lemma 2.3.3) and hence from 

Lemma 2.1.5 we have that    is right mininjective. By Lemma 1.2.54,   

is min-flat. 

(3) In the Björk Example (Example 2.2.4) we have that the ring   is right 

mininjective ring but not right ss-injective ring. If       ̅   is finite, then   

right artinian by [2, Example 4.15]. Therefore,   is a right coherent ring. 

Thus    is a left min-flat  -module by [19, Theorem 4.5], but the left  -

module    is not ss-flat by Theorem 2.3.10 below. 
 

Lemma 2.3.3. The following statements are equivalent : 

(1)   is an ss-flat left  -module. 

(2)    is an ss-injective right  -module. 

(3)        ⁄      , for every semisimple small right ideal   of  . 

(4)        ⁄      , for every finitely generated semisimple small right 

ideal   of  . 

(5) The sequence                   is exact. 

(6) The sequence              is exact for every finitely generated 

semisimple small right ideal   of  . 



 
 

 

Proof. (1) (2) This follows from             ⁄        

            ⁄       (see Theorem 1.2.31). 

(2) (3) Let   be a semisimple small right ideal of  . By Theorem 1.2.31 and 

Corollary 2.1.7        ⁄                      ⁄ . Thus        ⁄   

    , since   ⁄  is injective cogenerator. 

(3) (1) This is clear. 

(4) (3) Let   be a semisimple small right ideal of  , so      
 

    , where    is 

a finitely generated semisimple small right ideal of  ,           is the 

inclusion map, and          is a direct system (see [12, Example 1.5.5 (2), p. 

32]). Clearly,     ⁄        is a direct system of  -modules where 

           ⁄⁄  is defined by                with direct limit 

        
 

   ⁄  . Since the following diagram is commutative: 

                                                     
        
→   

      
→     ⁄    

                                                                                        

                                                     
        
→   

      
→     ⁄     

where    and    are the inclusion and canonical maps, respectively. By [32, 

24.6, p. 200], we have the exact sequence    
       
→  

       
→      

 
   ⁄     . It 

follows from [32, 24.4, p. 199] that the following diagram is commutative:  

                                                        
       
→       ⁄      

                                                                                   

                                                       
       
→      

 
   ⁄     

Thus the family of mappings {              ⁄      
 

  ⁄                  

     
 

  } forms a direct system of homomorphisms, since for    , we get 

              (    )       
 

            for all         ⁄ . 



 
 

 

Thus there is an  -homomorphism   such that the following diagram is 

commutative with short exact rows (see Definition 1.2.42): 

                                                 
        
→   

                                     
→             
         
→      ⁄

         
→      

 
   ⁄     

                                                                                                                        

                                                 
        
→   

         
→      ⁄

         
→   

                                     
→             

    
 

  ⁄     

where   is the canonical map, so it follows from [3, Exercise 11 (1), p. 52] that 

   
 

   ⁄      
 

  ⁄  . Therefore,   

        ⁄         (    
 

   ⁄   ) 

                              (   
 

   ⁄   )      (by [13, Theorem XII.5.4 (4), p. 494]) 

                             
 

         ⁄         (by [26, Proposition 7.8, p. 410]). 

(3) (4) Clear. 

(1) (5) By [13, Theorem XII.5.4 (3), p. 494], we have the exact sequence 

              ⁄                     . Thus the 

equivalence between (1) and (5) is true. 

(4) (6) is similar to ((1) (5)). □ 

     In the following, we will use the symbol     (resp.     ) to denote the 

classes of ss-injective right (resp. ss-flat left )  -modules. 

Corollary 2.3.4. The pair (    ,     ) is an almost dual pair. 

Proof. By Lemma 2.3.3 and Theorem 2.1.3 (1) and (5). 

Lemma 2.3.5. For a ring  , the following statements hold:  

(1) If      is finitely generated, then every pure submodule of ss-injective 

right  -module is ss-injective. 

(2) Every pure submodule of ss-flat left  -module is ss-flat. 



 
 

 

(3) Every direct limts (direct sums) of ss-flat left  -modules is ss-flat. 

(4) If     are left  -modules,    , and   is ss-flat, then   is ss-flat. 

Proof. (1) Let   be an ss-injective right  -module and   be a pure submodule 

of  . Since        ⁄  is a finitely presented, thus the sequence 

            ⁄                  ⁄     ⁄     is exact. By [13, 

Theorem XII.4.4 (4), p. 491], we have the exact sequence 

            ⁄                  ⁄    ⁄               ⁄     

            ⁄     which leads to             ⁄       . Hence   is an 

ss-injective right  -module. 

(2), (3) and (4) By Corollary 2.3.4 and [20, Proposition 4.2.8, p. 70]. □ 

      In the following definition, we will introduce the concept of ss-coherent 

ring as a generalization of coherent ring  

Definition 2.3.6. A ring   is said to be right ss-coherent ring, if   is a right 

min-coherent and      is finitely generated; equivalently, if      is finitely 

presented. 

Example 2.3.7.  

(1) Every coherent ring is ss-coherent. 

(2) Every ss-coherent ring is min-coherent. 

(3) Let   be a commutative ring, then the polynomial ring      is not coherent 

ring with zero socle by [19, Remark 4.2 (3)]. Hence      is an ss-coherent 

ring but not coherent. 
 

Corollary 2.3.8. A right ideal      of a ring   is finitely generated if and 

only if every   -injective right  -module is an ss-injective. 

Proof. By Proposition 1.2.50. □ 

     In the next theorem we give a new characterizations of min-coherent rings 

in terms of ss-injective and ss-flat modules. 

Theorem 2.3.9. The following statements are equivalent for a ring  : 

(1)   is a right min-coherent ring. 

(2) If   is an ss-injective right  -module, then    is ss-flat. 

(3) If   is an ss-injective right  -module, then     is ss-injective. 

(4) A left  -module   is ss-flat if and only if     is ss-flat. 



 
 

 

(5)     is closed under direct products. 

(6)  R 
  is ss-flat for any index set  . 

(7)        ⁄       for every   -injective right  -module   and every 

finitely generated semisimple small right ideal  . 

(8) If           is an exact sequence of right  -modules with   

is   -injective and   is ss-injective, then        ⁄       for every 

finitely generated semisimple small right ideal  . 

(9) Every left  -module has an      -preenvelope. 

(10) If       is an      -preenvelope of a right  -module  , then 

         is an      -precover of   . 

(11) For any positive integer   and any             , then the right ideal 

                           for some            is finitely 

generated. 

(12) For any finitely generated semisimple small right ideal   of   and any 

      , then            is finitely generated. 

(13)      is finitely generated for any simple right ideal   . 

(14) Every simple submodule of a projective right  -module is finitely 

presented. 

Proof. (1) (2) Let   be a finitely generated semisimple small right ideal of  , 

thus there is an exact sequence   

        
→     

        
→       in which    is a finitely 

generated free right  -module,        by hypothesis. Therefore, the sequence 

  

        
→     

       
→   

       
→    ⁄    is exact, where       and       ⁄  are 

the inclusion and the canonical maps, respectively and      . Thus   ⁄  is 2-

presented and hence Lemma 1.2.41 implies that        ⁄      

       ⁄       . Therefore,    is an ss-flat left  -module. 

(2) (3) By Lemma 2.3.3. 

(3) (4) Assume that   is an ss-flat left  -module, thus    is an ss-injective by 

Lemma 2.3.3 and this implies that      is an ss-injective by (3). So     is an 

ss-flat by Lemma 2.3.3 again. The converse is obtained by Theorem 1.2.47 (1) 

and Lemma 2.3.5 (2). 

(4) (5) By (4),            . Since (    ,     ) is an almost dual pair (by 

Corollary 2.3.4), thus [20, Proposition 4.3.1 and Proposition 4.2.8 (3), p. 85 and 

70] implies that     is closed under direct products.  

(5) (6) Obvious.   



 
 

 

(6) (1) Since every ss-flat left  -module is min-flat, thus the result follows 

from [19, Theorem 4.5]. 

(1) (7) Let   be a finitely generated semisimple small right ideal of   and let 

  be a   -injective right  -module. By [13, Theorem XII.4.4 (3), p. 491], we 

get the exact sequence                  ⁄              . But 

            (since   is   -injective and   is a finitely presented) and 

            (since   is projective). Thus        ⁄      . 

(7) (8) If           is an exact sequence of right  -modules, 

where   is   -injective and   is ss-injective and let   be a finitely generated 

semisimple small right ideal of  . By [13, Theorem XII.4.4 (4) ), p. 491], we 

get an exact sequence          ⁄            ⁄             ⁄     

  . Thus        ⁄       for every finitely generated semisimple small 

right ideal   of  . 

(8) (1) Let   be a   -injective right  -module, thus we have the exact 

sequence               ⁄   . Let   be a finitely generated 

semisimple small right ideal of  , thus        ⁄       ⁄     by 

hypothesis. So it follows from [13, Theorem XII.4.4 (4), p. 491] that the 

sequence          ⁄       ⁄          ⁄            ⁄        

  is exact, and so        ⁄      . Hence we have the exact sequence 

                             ⁄       (see [13, Theorem 

XII.4.4 (3) ), p. 491]). Thus             and this implies that   is a finitely 

presented (see Remark 1.2.51). Therefore,   is a right min-coherent. 

(5) (9) By Corollary 2.3.4 and [20, Proposition 4.2.8 (3), p. 70]. 

(2) (10) Since            (by hypothesis) and            (by Lemma 

2.3.3), thus the result follows from [11, Corollary 3.2, p. 1137]. 

(10) (2) By taking   is an ss-injective right  -module in (10). 

(1) (11) Let                  . Put                  and 

            . Thus          . Define         ⁄  by 

            which is a well-define  -epimorphism, because if       

 , then               , that is                . Now, we have 

that                                                 

                                    . By (1) and using [17, Lemma 



 
 

 

4.54, p. 141], we have that     ⁄  is a finitely presented. But 

         ⁄     ⁄ , so         is finitely generated. 

(11) (12) Let        and   be any finitely generated semisimple small 

right ideal of  , then       
    , so we have that               

                                           is finitely generated 

by hypothesis. 

(12) (13) By taking    . 

(13) (1) Let    be a simple right ideal. Since      is finitely generated and 

        ⁄ , thus    is finitely presented. 

(1) (14) Let           , where     is a simple right ideal for each    . If 

  is a projective right  -module, then   is isomorphic to a direct summand of 

     for some index set  . Let   be any simple submodule of  , then   

                 . Since   is finitely generated, then there are finite 

index sets      and      such that         
     

   , so it follows 

from [17, Lemma 4.54, p. 141] that   is finitely presented. 

(14) (1) Clear. □ 

Theorem 2.3.10. The following statements are equivalent for a ring  : 

(1)   is a right ss-coherent ring. 

(2) A right  -module   is ss-injective if and only if    is ss-flat. 

(3) A right  -module   is ss-injective if and only if     is ss-injective. 

(4)     is closed under direct limits. 

(5)      is finitely generated and every pure quotient of ss-injective right  -

module is ss-injective. 

(6) The following two conditions hold: 

(a) Every right  -module has an      -cover. 

(b) Every pure quotient of ss-injective right  -module is ss-injective. 

Proof. (1) (2) Let    be an ss-flat, then     is an ss-injective by Lemma 

2.3.3, so it follows from Theorem 1.2.47 (1) and Lemma 2.3.5 (1) that   is ss-

injective. The converse is obtained by Theorem 2.3.9. 

(2) (3) Let     be an ss-injective, thus    is an ss-flat by Lemma 2.3.3 and 

hence   is ss-injective by hypothesis. The converse is true by Theorem 2.3.9. 



 
 

 

(3) (1) Let   be an   -injective right  -module, then the exact sequence 

              ⁄    is pure by [28, Proposition 2.6], so it 

follows from Theorem 1.2.44 that the sequence              

      ⁄       is split. Since        is an ss-injective by hypothesis, 

thus     is ss-injective and hence   is an ss-injective by hypothesis again. 

Therefore,      is finitely generated by Corollary 2.3.8, and so      is 

finitely presented by Theorem 2.3.9. Thus   is a right ss-coherent ring. 

(1) (4) Let         be a direct system of ss-injective right  -modules. Since 

     is finitely presented, then      ⁄  is  -presented, so it follows from [9, 

Lemma 2.9 (2)] that     (       ⁄     
 

   )     
 

             ⁄      

  . Hence    
 

    is ss-injective. 

(4) (2)  Let          be a family of injective right  -modules. Since 

          
 

       
            finite   (see [32, p. 206]), then        is ss-

injective and hence      is a finitely generated by Corollary 2.1.26. By 

Lemma 2.3.5,     is closed under pure submodules. Since     is closed under 

direct products ( by Theorem 2.1.3 (1)) and since     is closed under direct 

limlts ( by hypothesis), thus     is a definable class. By [20, Proposition 4.3.8, 

p. 89],           is an almost dual pair and hence a right  -module   is an ss-

injective if and only if    is an ss-flat  

(2) (5) By the equivalence between (1) and (2), we have that      is a 

finitely generated. Now, let         ⁄    be a pure exact 

sequence of right  -modules with   is ss-injective, so it follows from Theorem 

1.2.44  that the sequence      ⁄            is split. By 

hypothesis,    is ss-flat, so    ⁄    is ss-flat. Thus   ⁄  is ss-injective by 

hypothesis again. 

(5) (4) Let         be a direct system of ss-injective right  -modules. By 

[32, 33.9 (2), p. 279], there is a pure exact sequence           
 

     . 

Since        is ss-injective by Corollary 2.1.26, thus    
 

    is ss-injective 

by hypothesis. 

(5) (6) By Corollary 2.1.26 and Theorem 1.2.46. □ 



 
 

 

Corollary 2.3.11. A ring   is ss-coherent if and only if it is min-coherent and 

the class     is closed under pure submodules. 

Proof. ( ) Suppose that   is an ss-coherent ring, thus   is a min-coherent and 

     is a finitely generated right ideal of  . By Lemma 2.3.5 (1),     is 

closed under pure submodules. 

( ) Let   be any ss-injective right  -module. Since   is a min-coherent, thus 

Theorem 2.3.9 implies that    is an ss-flat. Conversely, let   be any right  -

module such that    is ss-flat. By Lemma 2.3.3,     is an ss-injective. Since 

  is a pure submodule of     ( by Theorem 1.2.47  (1)) and since     is a 

closed under pure submodule ( by hypothesis) it follows that   is an ss-

injective. Hence for any right  -module  , we have that    is an ss-injective if 

and only if    is an ss-flat. Thus Theorem 2.3.10 implies that   is an ss-

coherent. □ 

Corollary 2.3.12. For a right min-coherent ring  , the following statements are 

equivalent: 

(1) Every ss-flat left  -module is flat. 

(2) Every ss-injective right  -module is   -injective. 

(3) Every ss-injective pure injective right  -module is injective. 

Proof. (1) (2) For any ss-injective right  -module  , then    is ss-flat by 

Theorem 2.3.9, and so    is flat by hypothesis. Thus     is an injective by 

Proposition 1.2.36. Since   is a pure submodule of    , then   is an   -

injective by [32, 35.8, p. 301]. 

(2) (3) By [28, Proposition 2.6] and Theorem 1.2.45. 

(3) (1) Assume that   is an ss-flat left  -module, thus    is an ss-injective 

pure injective by Lemma 2.3.3 and Theorem 1.2.47 (2). Thus    is an 

injective, and so   is a flat by Proposition 1.2.36. □ 

Proposition 2.3.13. For a right ss-coherent ring  , the following statements are 

equivalent: 

(1)   is a right ss-injective ring. 

(2) Every left  -module has a monic ss-flat preenvelope. 

(3) Every right  -module has epic ss-injective cover. 

(4) Every injective left  -module is ss-flat. 



 
 

 

(5) Every flat right  -module is ss-injective. 

Proof. (1) (2) Let   be a left  -module, then there is an epimorphism 

    
   

    for some index set   by [26, Theorem 2.35, p. 58], and so there 

is an  -monomorphism        
    by applying [13, Proposition XI.2.3, p. 

420], [32, 11.10 (2) (ii), p. 87] and Theorem 1.2.47 (1), respectively. In the 

other hand,    has ss-flat preenvelope       by Theorem 2.3.9. Since 

   
    is ss-flat by Theorem 2.3.9 again, thus there is an  -homomorphism 

       
    such that     , so this means that   is an  -monomorphism. 

(2) (4) Let   be an injective left  -module, then there is an  -monomorphism 

      with   is ss-flat. But          , so we have that   is ss-flat 

by Lemma 2.3.5 (4). 

(4) (5) Let   be a flat right  -module, then    is an injective and hence ss-

flat. Thus   is ss-injective by Theorem 2.3.10. 

(5) (1) Obvious, since    is flat. 

(1) (3) Let   be any right  -module, then   has ss-injective cover, say, 

      by Theorem 2.3.10. By [26, Theorem 2.35, p. 58], there is an  -

epimorphism     
   

   for some index set  . Since   
   

 is ss-injective by 

Corollary 2.1.26, then there is a  -homomorphism     
   

   such that 

    , so   is an  -epimorphism. 

(3) (1) Let        be an epic ss-injective cover. Since    is a projective, 

then there is an  -homomorphism        such that      , thus   is 

split, and so             for some ss-injective submodule   of  . 

Therefore            ⁄    is ss-injective. □ 

Proposition 2.3.14. The class     is closed under cokernels of 

homomorphisms if and only if        ) is an ss-injective for every ss-injective 

right  -module   and         . 

Proof. ( ) Clear. 

( ) Let   and   be any ss-injective right  -modules and   be any  -

homomorphism from   to  . Define           by  (     )  

(      ). Therefore,            ⁄                  ⁄    

        ⁄   is  an ss-injective. Thus        ⁄  is  an ss-injective. □ 



 
 

 

Proposition 2.3.15. The class     is closed under kernels of homomorphisms 

if and only if        is ss-flat, for every ss-flat left  -module   and   

      . 

Proof. ( ) Clear. 

( ) Let       be any  -homomorphism with   and   are ss-flat left  -

modules. Define           by  (     )  (      ). Thus        

          is ss-flat by hypothesis and hence        is an ss-flat. □ 

Theorem 2.3.16. If   is a commutative ring, then the following statements are 

equivalent: 

(1)   is  a min-coherent ring. 

(2)           is an ss-flat for all ss-injective  -modules   and all injective 

 -modules  . 

(3)           is an ss-flat for all injective  -modules   and  . 

(4)           is an ss-flat for all projective  -modules   and  . 

(5)           is an ss-flat for all projective  -modules   and all ss-flat  -

modules  . 

Proof. (1) (2) If   is a finitely generated semisimple small ideal of  , then   is 

finitely presented. By [13, Theorem XII.4.4 (3) ), p. 491], we have the exact 

sequence          ⁄                          . Thus 

the sequence                                       

            ⁄           is exact by [13, Theorem XII.4.4 (3) ), p. 491] 

again. Thus we have the exact sequence                 

                            ⁄     by [12, Theorem 3.2.11, p. 

78] and this implies that           is an ss-flat. 

(2) (3) Clear. 

(3) (1) By [6, Proposition 2.3.4, p. 66] and [26,Theorem 2.75, p. 92], we have 

that        (      
       ⁄  )

 
 (           )

 
 for any index 

set  . Thus                       is an ss-flat for any index set   by 

[32, 11.10 (2), p. 87] and since    and       are injective. Since    is a pure 

submodule of        by Theorem 1.2.47 (1) and [7, Lemma 1 (2)], so it 

follows from Lemma 2.3.5 (2) that    is an ss-flat for any index set  . Thus (1) 

follows from Theorem 2.3.9. 



 
 

 

(1) (5) Since   is a projective  -module, thus there is a projective  -module 

  such that          for some index set  . Therefore,           

                        (         )
 

    by [32, 11.10 and 

11.11, p. 87 and 88]. But    is an ss-flat by Theorem 2.3.9, thus           

is an ss-flat. 

(5) (4) Clear. 

(4) (1) For any index set  , by [32, 11.10 and 11.11, p. 87 and 88], we have 

that                . Thus    is ss-flat by (4), so it follows from 

Theorem 2.3.9 that (1) holds. □ 

Corollary 2.3.17. The following are equivalent for a commutative ss-coherent 

ring  : 

(1)   is an ss-injective  -module. 

(2)           is an ss-flat for any injective  -module  . 

(3)      is an ss-injective for any flat  -module  . 

Proof. (1) (2) By Theorem 2.3.16. 

(2) (3) By [26, Theorem 2.75, p. 92], we have that         

           for any  -module  . If   is flat, then    is an injective by 

Proposition 1.2.36, so         is an ss-flat by hypothesis. Therefore      

is an ss-injective by Theorem 2.3.10. 

(3) (1) This follows from [6, Proposition 2.3.4, p. 66], since   is a flat. □ 

Corollary 2.3.18. Let   be a commutative ss-coherent ring and     is closed 

under kernels of homomorphisms. Then the following statements hold for any 

 -module  : 

(1)           is an ss-flat for any ss-injective  -module  . 

(2)           is an ss-flat for any ss-flat  -module  . 

(3)      is an ss-injective for any ss-injective  -module  . 

Proof. (1) Let   be an ss-injective  -module. It is clear that the exact sequence 

          induces the exact sequence             

                      where    and    are injective  -modules. By 

Theorem 2.3.16, we have that            and            are ss-flat, thus 

          is an ss-flat by hypothesis. 



 
 

 

(2) Let   be an ss-flat  -module, so we have the exact sequence   

                                where    and    are free  -

modules. By Theorem 2.3.16, the modules            and            are 

ss-flat. Therefore,           is an ss-flat by hypothesis. 

(3) Let   be any ss-injective  -module, then                    is 

an ss-flat by [26, Theorem 2.75, p. 92] and applying (1), and hence      is 

ss-injective by Theorem 2.3.10. □ 

Theorem 2.3.19. Let   be a commutative ss-coherent ring. Then the following 

statements are equivalent: 

(1)   is an ss-injective ring. 

(2)           is an ss-injective for any projective  -module   and any flat 

 -module  . 

(3)           is an ss-injective for any projective  -modules   and  . 

(4)           is an ss-injective for any injective  -modules   and  . 

(5)           is an ss-flat for any flat  -module   and any injective  -

module  . 

(6)      is an ss-flat for any flat  -module   and any injective  -module  . 

Proof. (1) (2) Since   is an ss-injective, thus every flat  -module is an ss-

injective by Proposition 2.3.13. Let   be a projective  -module, then   

       for some projective  -module   and for some index set  . Thus for 

all flat  -module  , we have                                  

    by [32, 11.10 and 11.11]. Since    is an ss-injective, thus           

is an ss-injective. 

(2) (3) Clear. 

(3) (1) Since             by [32, 11.11, p. 88], thus   is an ss-injective 

ring. 

(1) (4)  By Theorem 1.2.31,     (       ⁄            )  

                 ⁄         for all injective  -modules   and  . By 

Proposition 2.3.13,   is an ss-flat. Thus             ⁄        and hence 

          is an ss-injective. 

(4) (1) To prove   is an ss-injective ring, we need prove that every injective 

 -module is ss-flat (see Proposition 2.3.13). Now, let   be any injective  -



 
 

 

module, then            is an ss-injective, so 

      (       ⁄             )                    ⁄        

             ⁄                      ⁄      by applying Theorem 

1.2.31, [26, Theorem 2.75, p. 92] and [6, Proposition 2.3.4, p. 66]. Therefore, 

            ⁄      , since   ⁄  is an injective cogenerator. Thus   is an 

ss-flat. 

(5) (1) and (6) (1) By taking     and using [32, 11.11, p. 88] and [6, 

Proposition 2.3.4, p. 66]. 

(1) (5) Let   be a flat  -module and   be an injective  -module, then 

          is injective. Therefore,           is an ss-flat by Proposition 

2.3.13. 

(1) (6) Let   be a flat  -module and let   be an injective  -module. Then   

is ss-flat by Proposition 2.3.13, so the sequence               is an 

exact. Since   is flat, then the sequence                     

is exact and this implies that      is an ss-flat. □ 

Proposition 2.3.20. Let   be a commutative ring. Then the following 

statements are equivalent: 

(1)   is an ss-flat. 

(2)           is an ss-injective for all injective  -module  . 

(3)      is an ss-flat for all flat  -module  . 

Proof. (1) (2)  Let   be any injective  -module. Since 

    (       ⁄            )                   ⁄           by 

Theorem 1.2.31, then           is an ss-injective. 

(2) (3) Let   be a flat  -module. Then    is an injective by Proposition 

1.2.36. So it follows from [26, Theorem 2.75, p. 92] that         

           is ss-injective. Thus      is an ss-flat by Lemma 2.3.3. 

(3) (1) Follows from [6, Proposition 2.3.4, p. 66]. □ 

Proposition 2.3.21. Let   be a commutative ring and   be a semisimple  -

module. If   is an ss-flat, then        is an ss-injective as  -module. 



 
 

 

Proof. By [6, p. 157], there is a group epimorphism                 

    given by        for each generator              . Thus we 

have the commutative diagram: 

                                                    
      
→          

                                                                                                   

                                                   
                   
→         

where    and    are the inclusion maps, and   is an isomorphism defined by [6, 

Proposition 2.3.4, p. 66]. Since           is a  -monomorphism, then   is an 

isomorphism. Therefore                          by Remark 

1.1.7 (4). So it follows from [26, Theorem 2.75, p. 92] that            

             (           ). But the sequence       (   

        )      (       ⁄        )      (        )    is exact 

by [13, Theorem XII.4.4 (3) ), p. 491]. Thus     (       ⁄        )    

and hence        is an ss-injective as  -module. □ 

Proposition 2.3.22. Let   be a commutative ring and   be a simple  -module. 

Then   is ss-flat if and only if   is ss-injective. 

Proof. ( ) Let      be a simple  -module. Define               

   by          . We assert that   is a well define  -homomorphism. Let 

     , then            , so            . Now, let              

and        , then                                       

                                          proving the assertion. 

Since  (      )    and                           

                                        , then         

  and hence   is an ss-injective by Proposition 2.3.21. 

( ) Let         be a family of all simple  -modules and            . 

Then             by the proof of [31, Lemma 2.6], so it follows from 

Theorem 1.2.31 that             ⁄                      ⁄       . 

Since   is an ss-injective, then                  ⁄         . But   is 

an injective cogenerator ( by using [3, Corollary 18.19, p. 212]), thus we get 

            ⁄       (see [12, definition 3.2.7, p. 77]) and hence   is an 

ss-flat. □ 



 
 

 

     The following corollary extends Proposition 1.2.13.  

Corollary 2.3.23. The following statements are equivalent for a commutative 

ring  : 

(1)   is a universally mininjective. 

(2)   is a   -ring. 

(3)   is an   -ring. 

(4)    is an ss-flat. 

Proof. By Proposition 2.3.22 and Corollary 2.1.12. □ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Chapter Three 

Section One 
 

3.1 Strongly SS-Injective Modules 

 

     In this section, we will introduce and study the concept of strongly ss-

injective modules and we will characterize semiprimitive rings, artinian rings 

and    rings in terms of this concept. 

Definition 3.1.1. A right  -module   is said to be strongly ss-injective if   is 

ss- -injective, for all right  -module  . A ring   is said to be strongly right ss-

injective if the right  -module    is strongly ss-injective. 

Example 3.1.2. 

(5) Every strongly soc-injective module is strongly ss-injective, but not 

conversely (see Example 3.2.9). 

(6) Every strongly ss-injective module is ss-injective, but not conversely (see 

Example 3.2.8). 
 

Proposition 3.1.3. A right  -module   is a strongly ss-injective if and only if 

every  -homomorphism       extends to  , for all right  -module  , 

where     and      is a semisimple submodule in  . 

Proof. ( ) Clear. 

( ) Let   be a small submodule of  , and       be an  -homomorphism 

with      is a semisimple submodule of  . If         , then   induces an 

 -homomorphism  ̃   ⁄    defined by  ̃          , for all    . 

Clearly,  ̃ is well define because if           we have        , so 

           , that is  ̃        ̃      . Since   is strongly ss-

injective and   ⁄  is semisimple and small in   ⁄ , thus  ̃ extends to an  -

homomorphism     ⁄   . If       ⁄  is the canonical map, then the 

 -homomorphism          is an extension of   such that if    , 

then                      ̃           as desired. □ 

Corollary 3.1.4. The following statements hold: 



 
 

 

𝑖  𝑖  

(3) A finite direct sum of strongly ss-injective modules is again strongly ss-

injective. 

(4) A direct summand of strongly ss-injective module is again strongly ss-

injective. 

Corollary 3.1.5. Let   be a ring. Then: 

(1) If   is a semisimple strongly ss-injective right  -module, then   is a small 

injective. 

(2) If every simple right  -module is strongly ss-injective, then   is a 

semiprimitive ring. 

Proof. (1) By Proposition 3.1.3. 

(2) By (1) and applying Theorem 1.2.17. □ 

Remark 3.1.6. The converse of Corollary 3.1.5 is not true ( see Example 

3.1.11). 

Theorem 3.1.7. If   is a strongly ss-injective ( or just ss-    -injective) right 

 -module, then for every semisimple small submodule   of  , there is an 

injective  -module    such that         where      with       . 

Moreover, if    , then    can be taken        . 

Proof. Let   be a semisimple small submodule of  . If    , we end the 

proof by taking      and     . Suppose that     and consider the 

following diagram: 

                                                                

                                                              

                                                                                              

                                                                                                     

                                                               

where       and    are inclusion maps and         is the injective hull of   

in     . Since   is strongly ss-injective, thus   is ss-    -injective. Since   

is a semisimple small submodule of  , so it follows from Lemma 1.1.2 (1) that 

  is a semisimple small submodule in      and hence there exists an  -

homomorphism          such that         . Put           , 

thus   is an extension of   . Let           , then          and   



 
 

 

        and hence  (     )        . Therefore,         

 (     )   , and so           . Since        , thus   is an  -

monomorphism. Put         . Since    is an injective submodule of  , 

thus         for some     . Since       , thus            

and this means that       . Moreover, define  ̃         , thus  ̃ is 

an isomorphism. Since        , thus  ̃         . But  ̃          , 

so        . □  

Corollary 3.1.8. If   is a right  -module has a semisimple small submodule   

such that       , then the following statements are equivalent: 

(1)   is injective. 

(2)   is strongly ss-injective. 

(3)   is ss-    -injective. 

Proof. (1) (2) and (2) (3) are obvious. 

(3) (1) By Theorem 3.1.7, we can write         where    injective and 

      . Since       , thus      and hence     . Therefore   is an 

injective right  -module. □ 

Example 3.1.9.    as  -module is not strongly ss-injective. 

Proof. Assume that    is strongly ss-injective  -module. Let     ̅   

  ̅  ̅ . It is clear that   is a semisimple small and essential submodule of    as 

 -module. By Corollary 3.1.8,    is injective  -module and this a 

contradiction. Thus    as  -module is not strongly ss-injective. Moreover, 

Since            as  -module ( see [24, p. 6]), thus    is not ss-   -

injective, by Corollary 3.1.8. □ 

Corollary 3.1.10. Let   be a right  -module such that               

(in particular, if   is finitely generated). If   is strongly ss-injective, then 

     , where   is injective and                . Moreover, if 

             , then we can take                 . 

Proof. By taking               and applying Theorem 3.1.7. □ 

    The following example shows that the converse of Theorem 3.1.7 and 

Corollary 3.1.10 is not true. 



 
 

 

Example 3.1.11. Let      as  -module. Since        and         , 

thus              . So, we can write       with   

(           )   . Let      as  -module. Since        ̅   and 

         ̅  . Define                 by    ̅   ̅, thus   is a  -

homomorphism. Assume that   is strongly ss-injective, thus   is ss- -

injective, so there exists  -homomorphism       such that      , 

where   is the inclusion map from             to  . Since  (    )  

    , thus  ̅     ̅     ̅   (    )         and this contradiction, so 

  is not strongly ss-injective  -module. 

     We can prove the following corollary by using Proposition 2.1.11. 

Corollary 3.1.12. The following statements are equivalent: 

(1)              , for all right  -module  . 

(2) Every right  -module is strongly ss-injective. 

(3) Every simple right  -module is strongly ss-injective. 
 

      In the next results, we will give the connection  between strongly ss-

injective modules and strongly soc-injective modules and we provide many 

new equivalences of artinian rings and    rings. 

Theorem 3.1.13. If   is a right perfect ring, then   is a strongly soc-injective 

right  -module if and only if   is a strongly ss-injective. 

Proof. ( ) Clear. 

( ) Let   be a right perfect ring and   be a strongly ss-injective right  -

module. Since   is a semilocal ring, thus it follows from [18, Theorem 3.5] that 

every right  -module   is semilocal and hence      ⁄  is semisimple right  -

module. Since   is a right perfect ring, thus it is right max (see [14, Theorem 

4.3, p. 69]) and hence the Jacobson radical of every right  -module is small by 

Theorem 1.1.22. Thus      ⁄  is semisimple and       , for any    

Mod- . Since   is strongly ss-injective, thus every  -homomorphism from a 

semisimple small submodule of   to   extends to  , for every    Mod- , 

and this implies that every  -homomorphism from any semisimple submodule 

of      to   extends to  , for every    Mod- . Since      ⁄  is semisimple 

right  -module, for every    Mod- . Thus Lemma 2.1.31 implies that every 



 
 

 

 -homomorphism from any semisimple submodule of   to   extends to  , for 

every    Mod-  and hence   is strongly soc-injective. □ 

     The result [2, Proposition 3.7] is improved by below corollary. 

Corollary 3.1.14. A ring   is    if and only if every strongly ss-injective right 

 -module is projective. 

Proof. ( ) If   is    ring, then   is a right perfect ring, so by Theorem 3.1.13 

and [2, Proposition 3.7] we have that every strongly ss-injective right  -module 

is projective. 

( ) By hypothesis we have that every injective right  -module is projective 

and hence   is    ring ( see Proposition 1.2.11). □ 

     The results of I. Amin, M. Yousif and N. Zeyada [2, Theorem 3.3 and 3.6] 

gave a equivalent statements to characterize the noetherian rings and 

semiartinian rings. In the next theorem we obtain characterizations to artinian 

rings in terms of strongly ss-injective and strongly soc-injective modules. 

Theorem 3.1.15. The following statements are equivalent for a ring  : 

(1) Every direct sum of strongly ss-injective right  -modules is injective. 

(2) Every direct sum of strongly soc-injective right  -modules is injective. 

(3)   is right artinian. 

Proof. (1) (2) Clear. 

(2) (3) Since every direct sum of strongly soc-injective right  -modules is 

injective. Thus   is right noetherian and right semiartinian by [2, Theorem 3.3 

and Theorem 3.6], so it follows from [29, Proposition VIII.5.2, p. 189] that   is 

right artinian. 

(3) (1) By hypothesis,   is right perfect and right noetherian. It follows from 

Theorem 3.1.13 and [2, Theorem 3.3] that every direct sum of strongly ss-

injective right  -modules is strongly soc-injective. Since   is right 

semiartinian, so [2, Theorem 3.6] implies that every direct sum of strongly ss-

injective right  -modules is injective. □ 

     Recall that a submodule   of a right  -module   is called  -essential in   

(written       ) if for every submodule   of  ,           implies that 

        (see [4]). A right  -module   is said to be  -semisimple if every 



 
 

 

submodule   of   there exists a direct summand   of   such that        

(see [4]). A ring   is said to be right   -ring (resp.   -ring) if every simple 

singular (resp. singular) right  -module is injective (see [36]). In the next 

results, we will give the connection  between injectivity and strongly s-

injectivity and we characterize  -rings,   -rings,   -rings and semisimple 

rings by this connection. 

Theorem 3.1.16. If   is a right  -semisimple, then a right  -module   is 

injective if and only if   is strongly s-injective. 

Proof. ( ) Obvious. 

( ) Let   be a strongly s-injective, thus       is injective by [36, Proposition 

3, p. 27]. Thus every  -homomorphism      , where     
  extends to 

  by [36, Lemma 1, p. 26]. Since   is a right  -semisimple, thus    
 ⁄  is a 

right semisimple by [4, Theorem 2.3]. So by applying Lemma 2.1.31, we 

conclude that   is injective. □ 

Corollary 3.1.17. A ring   is right    and right  -semisimple if and only if it is 

semisimple. 

Proof. ( ) Since   is a right   -ring, thus every right  -module is strongly s-

injective by [36, Theorem 1, p. 29]. By Theorem 3.1.16, we have that every 

right  -module is injective and hence   is semisimple ring. 

( ) Clear. □ 

Corollary 3.1.18. If   is a right  -semisimple ring. Then   is right  -ring if 

and only if    is right   -ring. 

Proof. By [36, Proposition 5, p. 28] and Theorem 3.1.16. □ 

Corollary 3.1.19. If   is a right  -semisimple ring, then    ⁄  is noetherian 

right  -module if and only if   is right noetherian. 

Proof. If    ⁄  is noetherian right  -module, then every direct sum of injective 

right  -modules is strongly s-injective by [36, Proposition 6]. Since   is right 

 -semisimple, so it follows from Theorem 3.1.16 that every direct sum of 

injective right  -modules is injective and hence   is right noetherian. The 

converse is clear. □ 



 
 

 

 

Section Two 
 

3.2 Strongly SS-Injective Rings 

 

     In this section, we will give some results on strongly ss-injective rings and 

we will characterize semisimple and    rings. 

     A ring   is strongly right soc-injective iff every finitely generated projective 

right  -module is strongly soc-injective.  

Proposition 3.2.1. A ring   is strongly right ss-injective if and only if every 

finitely generated projective right  -module is a strongly ss-injective. 

Proof. Since a finite direct sum of strongly ss-injective modules is a strongly 

ss-injective, so every finitely generated free right  -module is strongly ss-

injective. But a direct summand of strongly ss-injective is a strongly ss-

injective. Therefore, every finitely generated projective is a strongly ss-

injective. The converse is clear. □ 

      A ring   is said to be right Ikeda-Nakayama ring if             

     for all right ideals   and   of   (see [24, p. 148]). In the following  

proposition, the strongly ss-injectivity gives a new version of "Ikeda-Nakayama 

rings". 

Proposition 3.2.2. Let   be a strongly right ss-injective ring, then        

          for all semisimple small right ideals   and all right ideals   of  . 

Proof. Suppose that          and define          by        

   for all     and    . Clearly,   is well define, because if       

     , then            , that is           , so          

        . Define the  -homomorphism  ̃       ⁄     by  ̃   

      for all     which induced by  . Since       ⁄        ⁄   

    ⁄   and   is a strongly right ss-injective,  ̃ can be extended to an  -

homomorphism     ⁄    . If         , for some    , then 

         , for all     and    . In particular,       for all     

and      for all    . Hence                    . Therefore, 



 
 

 

                . Since the converse is always holds, thus the proof is 

complete. □ 

Corollary 3.2.3. Every strongly right ss-injective ring is a right simple  -

injective. 

Proof. By Proposition 3.1.3. □ 

Remark 3.2.4. The converse of Corollary 3.2.3 is not true (see Example 3.2.8). 

Proposition 3.2.5. Let   be a right Kasch and strongly right ss-injective. Then: 

(1)        , for every small right ideal   of  . Moreover,   is right 

minannihilator. 

(2) If   is left Kasch, then           . 

Proof.(1) By Corollary 3.2.3 and [35, Lemma 2.4]. 

(2) Let   be a right ideal of   and         . Then         and we 

obtain          , because   is left Kasch. By (1), we have  (      )  

         and this means that          ( since   is left Kasch). Thus 

    and hence           . □ 

Lemma 3.2.6 [17, Corollary 3.73, p. 97]. A commutative ring   is von 

Neumann regular if and only if every simple  -module is injective. 

     The following examples show that the three classes of rings: strongly ss-

injective rings, soc-injective rings and small injective rings are different. 

Example 3.2.7. Let          
 

 
       does not divide   , the localization 

ring of   at the prime  . Then   is a commutative local ring and it has zero 

socle but not principally small injective (see [33, Example 4]). Since     , 

thus   is strongly soc-injective ring and hence   is strongly ss-injective ring. 

Example 3.2.8. Let   {(
  
  

)             }. Thus   is a commutative 

ring,      {(
  
  

)          } and   is small injective ( see [30, Example 

(i)]). Let     and   {(
   
   

)        }, then      {(
   
   

)       

      } and      {(
  
  

)          }. Thus 



 
 

 

          {(
   
   

)             }. Since      , then     

     and this implies that                 . Therefore   is not 

strongly ss-injective and not strongly soc-injective by Proposition 3.2.2. 

Example 3.2.9. Let      be the field of two elements,      for         

,       
   ,       

   . If   is the subring of   generated by   and  , then   

is a von Neumann regular ring ( see [36, Example (1), p. 28]). Since   is 

commutative, thus every simple  - module is injective by Lemma 3.2.6. Thus 

  is  -ring and hence and hence        for every right  -module  . It 

follows from Corollary 3.1.12 that every  -module is a strongly ss-injective. In 

particular,   is a strongly ss-injective ring. But   is not soc-injective ( see [36, 

Example (1)]). 

Example 3.2.10. Let               where    is the field of two elements, 

  
    for all  ,        for all     and   

    
    for all   and  . If 

    
 , then   is a commutative, local, soc-injective ring with   

               , and   has simple essential socle        ( see [2, 

Example 5.7]). It follows from [2, Example 5.7] that the  -homomorphism 

      which is given by         for all     with simple image can not 

extend to  , then   is not simple  -injective and not small injective, so it 

follows from Corollary 3.2.3 that   is not strongly ss-injective. 

    Recall that a ring   is called right minsymmetric if    is simple,    , 

implies that    is simple. 

Theorem 3.2.11. A ring   is    if and only if   is a strongly right ss-injective 

and right noetherian ring with         . 

Proof. ( ) This is clear. 

( ) By Corollary 2.2.3 (1),   is a right minsymmetric. It follows from [30, 

Lemma 2.2] that   is right perfect. Thus,   is strongly right soc-injective, by 

Theorem 3.1.13. Since         , so it follows from [2, Corollary 3.2] that   

is a self-injective and hence   is   . □ 

Corollary 3.2.12. For a ring  , the following statements are true: 

(1)   is a semisimple if and only if          and every semisimple right  -

module is strongly soc-injective. 



 
 

 

(2)   is    if and only if   is a strongly right ss-injective, semiperfect with 

essential right socle and    ⁄  is noetherian as right  -module. 

Proof. (1) Suppose that          and every semisimple right  -module is 

strongly soc-injective, then   is a right noetherian right  -ring by [2, 

Proposition 3.12], so it follows from Corollary 3.1.12 that   is a strongly right 

ss-injective. Thus   is    by Theorem 3.2.11. But    , so   is a semisimple. 

The converse is clear. 

(2) By [23, Theorem 2.9],     . Since    
 ⁄  is a homomorphic image of 

   ⁄  and   is a semilocal ring, thus   is a right  -semisimple. By Corollary 

3.1.19,   is right noetherian, so it follows from Theorem 3.2.11 that   is   . 

The converse is clear. □ 

Theorem 3.2.13. A ring   is    if and only if   is strongly right ss-injective, 

      is a countable generated left ideal,          and the chain       

                           terminates for every infinite sequence 

        in  . 

Proof. ( ) Since   is    , then   is right self-injective, right noetherian and 

right semiartinian. Therefore,   is strongly right ss-injective,       is a 

countable generated left ideal,          and the chain               

                   terminates for every infinite sequence         in 

 .  

( ) By [30, Lemma 2.2],   is right perfect. Since         , thus   is right 

Kasch  by [23, Theorem 3.7]. Since   is a strongly right ss-injective, thus   is a 

right simple  -injective, by Corollary 3.2.3. Now, by Proposition 3.2.5 (1) we 

have              , so Corollary 2.2.15 (7) leads to       . By [24, 

Lemma 3.36, p. 73],   
       . The result now follows from [35, Theorem 

2.18]. □ 

Remark 3.2.14. The condition          in Theorem 3.2.11 and Theorem 

3.2.13 can not be deleted, because   is a strongly ss-injective noetherian ring 

but not   . 

     The following two results extend a result [2, Proposition 5.8] that a left 

perfect ring, strongly left and right soc-injective ring is   . 



 
 

 

Corollary 3.2.15. A ring   is    ring if and only if it is left perfect, strongly 

left and right ss-injective ring. 

Proof. By Corollary 3.2.3 and [35, Corollary 2.12]. □ 

Theorem 3.2.16. For a ring  , the following statements are equivalent: 

(1)   is a    ring. 

(2)   is a strongly left and right ss-injective, right Kasch and   is left  -

nilpotent. 

(3)   is a strongly left and right ss-injective, left Kasch and   is left  -nilpotent. 

Proof. (1) (2) and (1) (3) are clear. 

(3) (1) Suppose that    is simple right ideal. Thus either              

or    . If    , then          ( since   is right minannihilator by 

Proposition 3.2.5), so Theorem 3.1.7 implies that               . 

Therefore,       is an essential in a direct summand of    for every simple 

right ideal   . Let   be a left maximal ideal of  . Since   is a left Kasch, thus 

       by [17, Corollary 8.28, p. 281]. Choose         , so        

and we conclude that       . Since         ⁄ , thus    is simple left 

ideal. But   is a left mininjective ring, so    is a simple right ideal by [23, 

Theorem 1.14] and this implies that            for some        ( since 

          ). Thus   is semiperfect by [24, Lemma 4.1, p. 79] and hence   

is a left perfect ( since   is left  -nilpotent), so it follows from Corollary 3.2.15 

that   is   . 

(2) (1) is similar to proof of (3) (1). □ 

Theorem 3.2.17. The ring   is    if and only if   is a strongly left and right 

ss-injective, left and right Kasch, and the chain                 

             terminates for every           . 

Proof. ( ) Clear. 

( ) By Proposition 3.2.5,      is essential in R . Thus     . Let          , 

we have                              . Thus there exists     

such that                       (by hypothesis). Suppose that 

       , so                      ( since         is essential in R ). 

Thus          and              for some    , a contradiction. 



 
 

 

Therefore,         and hence   is left  -nilpotent, so it follows from 

Theorem 3.2.16 that   is   . □ 

Corollary 3.2.18. The ring   is    if and only if   is strongly left and right ss-

injective with essential right socle, and the chain               

            terminates for every infinite sequence         in  . 

Proof. By [30,Lemma 2.2] and Corollary 3.2.15. □               
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 الخلاصة
كتعميم لكل من المقاسات  ss -في هذا العمل, قدمنا ودرسنا مفهوم المقاسات الأغمارية من النمط        

والمقاسات الأغمارية الصغيرة. كذلك قمنا بتقديم ودراسة مفهوم المقاسات  soc -الأغمارية من النمط 

مفهوم المقاسات  .ss -كمفهوم رديف للمقاسات الأغمارية من النمط  ss -المسطحة من النمط 

كتعميم  ss -تم تعريفها باستخدام المقاسات الأغمارية من النمط  ss -الأغمارية القوية من النمط 

. تشخيصات مختلفة لهذه المقاسات والحلقات قد أعطيت. soc -للمقاسات الأغمارية القوية من النمط 

التشخيصات الجديدة الأخرى للحلقات , قدمنا العديد من ss -باستخدام المقاسات الأغمارية من النمط 

 min -شبه البسيطة, للحلقات شبه الفروبينوسية, للحلقات الارتينية والحلقات الأغمارية من النمط 

 الشاملة. العديد من النتائج في المصادر قد حسنت ووسعت بواسطة نتائج في هذه الرسالة. 
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