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Abstract

In this work, we introduce and study the concept of ss-injective modules as
a generalization of both soc-injective and small injective modules. Also, we
introduce and study the concept of ss-flat modules as a dual notion of ss-
injective modules. The notion strongly ss-injective modules is defined by using
ss-injectivity as a generalization of strongly soc-injective modules. Various
characterizations of these modules and rings are given. By using ss-injectivity,
we provide many other new characterizations of semisimple rings, quasi-
Frobenius rings, Artinian rings and universally mininjective rings. Several
results in the literature are improved and extended by some results of this
thesis.
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nL o product over R using left projective resolutions
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R subset of a right R-module M
r(X) = rg(X) (resp. I(X) = lg(X)), where X is a
r(X) (resp. 1(X)) subset of R
the set {m € M| mr = 0, for all r € X}, where X is a
I (X)

subset of R
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Introduction

Throughout this thesis, R stands for an associative ring with identity and all
modules are unitary. A right R-module M is said to be injective, if for every
right R-monomorphism f: N — K (where N and K are right R-modules) and
every right R-homomorphism g:N — M, there exists a right R-
homomorphism h: K — M such that g = hf [6]. Injective module has been
studied widely, and various generalizations for this module were given, for
examples, principally injective module [24], quasi-injective module [24], s-
injective module [36], and mininjective module [23].

I. Amin, M. Yousif and N. Zeyada in [2] introduced soc-injective modules
as a generalization of injective modules. A right R-module M is called soc-N-
injective (where N is a right R-module) if every R-homomorphism f: K — M
extends to N, where K is a semisimple submodule of N. A module M is called
soc-injective, if M is soc-R-injective and it is called strongly soc-injective, if M
is soc-N-injective for all N € Mod-R. In [27, 30], the notion of small injectivity
was discussed as a generalization of injective modules, a right R-module M is
called small injective if every R-homomorphism from a small right ideal of R
into M can be extended from Ry to M. Also, in [35], self-injective rings were
generalized by the concept simple J-injective rings. A ring R is called right
simple J-injective if, for any small right ideal I and any R-homomorphism
f: Iz — Ry with simple image can be extended to R.

In this thesis, we introduce the concept of ss-injective modules as a
generalization of both soc-injective modules and small injective modules. A
right R-module M is said to be ss-N-injective (where N is a right R-module), if
every right R-homomorphism f: K — M has an extension from N into M for
every semisimple small submodule K of N. A module M is said to be ss-
Injective (resp. strongly ss-injective) if it is ss-R-injective (resp. ss-N-injective,
for all N € Mod-R). Aring R is said to be right ss-injective (resp. strongly right
ss-injective), if a right R-module R is ss-injective (resp. strongly ss-injective).



Also, we introduce the notion of ss-flat modules as a dual concept of ss-
injective  modules. A left R-module M is said to be ss-flat, if
Tor®(R/(S, nJ),M) = 0. Min-flat modules were introduced in [19] as the
dual concept of the mininjective modules. The concept ss-flatness is stronger
than min-flatness and weaker than flatness.

This thesis consists of three chapters. In chapter one, we state some basic
concepts and results which are related to our work.

Chapter two is divided into three sections. In section 1, we introduce the
concept of ss-N-injective modules as a generalization of soc-N-injective
modules (where N is a right R-module); specially, the concept of ss-R-injective
(briefly, ss-injective) modules is a generalization of soc-injective and small
injective module. We give examples to show that the ss-injectivity is distinct
from that soc-injectivity, small injectivity, principally injectivity, and
mininjectivity ( see Example 2.1.2). Some elementary properties of ss-injective
modules are given, for example, we show that the class of ss-injective right R-
modules is closed under direct products, finite direct sums, summands, and
isomorphisms. Also we prove that if M € Mod-R, then Soc(M) nJ(M) = 0 if
and only if every simple submodule of M is ss-M-injective. Thus, we obtain
that a ring R is right universally mininjective if and only if every simple right
ideal is ss-injective. Many results are provided in terms of ss-injectivity. For
example, if M is a projective right R-module, then every quotient of an ss-M-
injective right R-module is ss-M-injective if and only if every sum of two ss-
M-injective submodules of a right R-module is ss-M-injective if and only if
soc(M) N J(M) is projective. In Theorem 2.1.20, we prove that if every simple
singular right R-module is ss-injective, then r(a) €® R, for everya € S, nJ
and S,. is projective. By using Lemma 2.1.31, we have establish the connection
between ss-injectivity and other injectivities (see Corollary 2.1.32).

In section 2, we study ss-injective rings and give some properties and
characterizations of its. For example, in Proposition 2.2.1, we state some
characterizations of ss-injective rings. The results [2, Proposition 4.6 and
Theorem 4.12] have been improved by ss-injectivity (see Proposition 2.2.14
and Corollary 2.2.15). We also give an example to show that the result [38,
Theorem 2.12] is not true and we rewrite [38, Theorem 2.12] in a correct
version by using ss-injectivity.



We introduce in section 3 the concept of ss-flat modules as a dual of ss-
injective modules. We show that the three classes of modules: ss-flat modules,
min-flat modules, and flat modules are different (see Example 2.3.2). We also
show that the classes of all ss-flat left R-modules and all ss-injective right R-
modules are form an example of almost dual pair (see Corollary 2.3.4). The
notion min-coherent rings was introduced by L. Mao [19]. In this section, we
generalize the concepts of coherent rings to ss-coherent rings. A ring R is said
to be right ss-coherent ring if it is a right min-coherent and S, N J is a finitely
generated. Some characterizations of ss-coherent and min-coherent rings are
given (see Theorem 2.3.9, Theorem 2.3.10, and Corollary 2.3.11). For a right
min-coherent ring R, we prove that every ss-flat left R-module is flat if and
only if every ss-injective right R-module is FP-injective if and only if every ss-
injective pure injective right R-module is injective. Some equivalence
statements of ss-injective ring are given by using ss-flatness and ss-injectivity;
for example, if R is a right ss-coherent, then R is a right ss-injective ring if and
only if every left R-module has a monic ss-flat preenvelope if and only if every
right R-module has epic ss-injective cover if and only if every injective left R-
module is ss-flat if and only if every flat right R-module is ss-injective.

Chapter three is divided into two sections. In section 1, examples are given
to distinguish strongly ss-injectivity from ss-injectivity and strongly soc-
injectivity (see Example 3.1.2). We prove that a right R-module M is strongly
ss-injective if and only if every small submodule A of any right R-module N,
every R-homomorphism a: A — M with semisimple image extends to N, for
all N € Mod-R. In particular, if every simple right R-module is strongly ss-
injective, then R is a semiprimitive ring, but not conversely (see Example
3.1.11). If R is a right perfect ring, we show that the class of strongly ss-
injective right R-modules and the class of strongly soc-injective right R-
modules are equal (see Theorem 3.1.13). Also, we extend the results ( [2,
Theorem 3.3, Theorem 3.6 and Proposition 3.7]) by the following results: a
ring R is right Artinian if and only if any direct sum of strongly ss-injective
right R-modules is injective, and a ring R is QF ring if and only if every
strongly ss-injective right R-module is projective.

In section 2, we show that every strongly ss-injective ring is right simple J-
injective ring, but not conversely (see Example 3.2.8). Also, we prove that a
ring R is QF if and only if R is strongly ss-injective and right noetherian with
essential right socle. I. Amin, M. Yousif and N. Zeyada [2] proved that if a ring
R is left perfect and two-sided strongly soc-injective, then R is QF ring. We



extend their result by Corollary 3.2.15. Finally, we improve Corollary 3.2.15 as
follows: a ring R is QF if and only if R is two-sided strongly ss-injective, left
Kasch, and J is left t-nilpotent (see Theorem 3.2.16).



Chapter one
Section one

1.1 Preliminaries

In this section, we recall some basic concepts of modules and rings and we
state some of their properties and results which are related to our work.

Definition 1.1.1 [16, p. 106]. A submodule N of a right R-module M is said to
be small (resp. essential) in M, notationally N < M (resp. N €*° M), if every
submodule K of M with K + N = M (resp. with K N N = 0) implies K = M
(resp. implies K = 0).

Lemma 1.1.2 [16, Lemma 5.1.3 and 5.1.5, p. 108 and 109]. The following
holds for right R-modules M and N':

(1) fAs B Mo NandB <K M,then A < N.

(2) A, «KM,i=1,2,..,n,then Y A; K M.

(3) IfA K Manda € Homgz(M, N), then a(4) < N.

(4) fAsBS Mo NandA €% N, then B €*° M.

(5) If A c*s Nanda € Homgz(M, N), then a~1(A4) € M.

Definition 1.1.3 [16, p. 107]. A right R-module M is called semisimple if every
submodule of M is a direct summand. A ring R is called semisimple if R is
semisimple as right (or left) R-module; equivalently, if every right (or left) R-
module is semisimple.

Example 1.1.4.
(1) < 2> is small submodule in the Zg-module Zg, but not semisimple Zg-
module.
(2) < 2 >issimple right ideal of Z, but not small submodule of the Z-module
Zs.

(3) The Z-module <2 > @ < 2 > is semisimple small submodule of the Z-
module Z,®Z,, but not simple submodule.

Definition 1.1.5 [6, p. 16 and 27] and [16, p. 144]. Let X be a subset of a right
R-module M, the right (resp. left) annihilator of X in R is defined by rz(X) =



{reR| xr=0,forall x € X} (resp. [x(X) ={r eR| rx =0, forall x € X}.
If M =R, we write 7x,(X) =r(X) and [z(X) = [(X). Similarly, we define
ls(X) where S = End(M).

Definition 1.1.6 [16, p. 214]. The Jacobson radical (resp. the socle) of a right
R-module M is denoted by J(M) (resp. soc(M)) and defined by J(M) =
ZA«MA = Ngcmaxy B ( resp. SOC(M) = ZAissimpleA = (gcessy B)

inM

Remark 1.1.7. Let M and N be right R-modules, then:

(1) If @ € Homg(M, N), then a(](M)) S J(N) and a(soc(M)) < soc(N) (see
[16, Theorem 9.1.4, p. 214]).

(2) Letm e M, we have mR « M if and only if m € J(M) (see [16, Corollary
9.1.3, p. 214])).

(3) If M is finitely generated, then J(M) «< M (see [16, Theorem 9.2.1, p.218]).

(4) MJ < J(M) (see [16, Theorem 9.2.1, p. 218]).

(5) If NoM and J(M/N) =0, then J(M) & N (see [16, Theorem 9.1.4, p.
214]).

Definition 1.1.8 [25, p. 96]. A ring R is said to be local if R/] is a division
ring; equivalently, J is a maximal right ( or left) ideal of R.

Definition 1.1.9 [6, p. 13 and 242]. An element e € R is said to be idempotent
if e2 = e. The idempotents e and f are called orthogonal if ef = fe = 0. An
idempotent e is called local if eRe is a local ring.

Definition 1.1.10 [17, p. 246]. Let M be a right R-module. An element m € M
is called singular element of M if rz(m) <**° Rg. The set of all singular
elements of M is denoted by Z(M). We say M is singular (resp. nonsingular) if
Z(M) =M (resp. Z(M) = 0).

Definition 1.1.11 [4, 36]. The second singular submodule of a right R-module
M is denoted by Z,(M) and defined by the equality Z,(M)/Z(M) =
Z(M/Z(M)). The second singular right ideal of R is defined by Z} = Z,(Rg).

Definition 1.1.12 [5, p. 15]. A functor p: Mod-R —Mod-R is said to be
preradical if the following hold:

(1) p(M) < M forall M € Mod-R.
(2) For any R-homomorphism a: M — N we have that a(p(M)) C p(N).



Definition 1.1.13 [3, p. 175]. A ring R is called Von Neumann regular if
a € aRa, for every a € R.

Definition 1.1.14 [22]. A right ideal I of R is said to be lie over a summand of
Ry, if there exists a direct decomposition R = Ap @ By with A - I and
BNI <K Rg(itisclearthatl] =A@ (BNnI)).

Definition 1.1.15 [22]. A ring R is said to be semiregular if every finitely
generated right ideal of R lies over a direct summand of Rj.

Definition 1.1.16 [18]. A right R-module M is called semilocal if M/J(M) is
semisimple. A ring R is said to be semilocal if R, (or zR) is a semilocal R-
module.

Definition 1.1.17 [29, p. 187]. A ring R is said to be a semiperfect ring if it
satisfies the following conditions:

(1) R issemilocal ring.
(2) ldempotents can be lifted modulo J (i.e.,if for every idempotent f € R/],
there exists idempotent e € R such thate + ] = f).

Definition 1.1.18 [24, p. 152]. A ring R is called right semiartinian if every
nonzero right R-module has a nonzero socle.

Recall that a subset K of a ring R is said to be left t-nilpotent if for each
sequence a4, a,, as, ... of elements of K, a,a, ...a,, = 0 for some n € N (see [6,
p. 239]).

Proposition 1.1.19 [29, Proposition VI111.5.1,p.189]. The following statements
are equivalent for a ring R:

(1) R isright semiartinian and semilocal.
(2) R isright semiartinian and semiperfect.
(3) Jis left t-nilpotent and R is semilocal.

Definition 1.1.20 [29, p. 189]. A ring R is said to be left perfect if it satisfies
the conditions of Proposition 1.1.19.

Definition 1.1.21 [14, p. 68]. A ring R is called right max if every nonzero
right R-module has a maximal submodule.



Theorem 1.1.22 [14, Theorem 4.4, p. 69]. A ring R is right max if and only if
J(M) « M for every nonzero right R-module M.

Definition 1.1.23 [29, p. 12]. A right R-module M is called noetherian if every
submodule of M is finitely generated; equivalently, if every strictly ascending
chain of submodules (ascending chain condition; briefly, ACC) is finite. A ring
R is said to be right noetherian if it is noetherian as right R-module.

Definition 1.1.24 [29, p. 13]. A right R-module M is called artinian if every
strictly descending chain of submodules (descending chain condition; briefly,
DCC) is finite. A ring R is said to be right artinian if it is artinian as right R-
module.

Remark 1.1.25 [16, p. 274]. Every right (or left) artinian ring is right perfect.

Corollary 1.1.26 [16, Corollary 9.3.12, p. 225]. If R is a right artinian ring,
then R is a right noetherian.

Definition 1.1.27 [17, p. 189]. A ring R is called right Kasch if every simple
right R-module is isomorphic to a simple right ideal of R.

Definition 1.1.28 [24, p. 49]. The dual of right R-module M is M% =
Homg (M, Rg) which is a left R-module via (ra)(m) = r - a(m) for all r € R,
a €M% and m € M.

Definition 1.1.29 [6, p. 155]. The character module of a right R-module M is
M* = Homgy(M, Q/Z) which is a left R-module via (ra)(m) = a(mr) for all
re€R,a € M, and m € M.

Definition 1.1.30 [23]. A ring R is called right minannihilator if rI(K) = K for
every simple right ideal K.



Section Two

1.2 Injective Modules And Some Related Concepts

In this section, we recall the definitions of injective module, flat module,
concepts in homological algebra, and some special rings and we list some of
their characterizations and properties which are relevant to our work.

Definition 1.2.1 [6, p. 135]. A right R-module M is said to be injective, if
every diagram with exact row:

of right R-modules and right R-homomorphisms can be completed
commutatively by an R-homomorphism h: B — M. Equivalently, we can
assume that A is a submodule of B and f can be replaced by the inclusion map
i:A— B. Aring R is called right self-injective, if Ry is injective.

Example 1.2.2 [6, p. 136].

(1) The Z-module < 2 >C Z is not injective.
(2) Qs an injective Z-module.

Proposition 1.2.3 [6] and [16]. Let M and N be a right R-modules, then:

(1) Il M; is an injective right R-module if and only if each M; is injective.
(2) A finite direct sum of injective right R-modules is injective.

(3) If N isinjectiveand N - M, then N €® M.

(4) If M injective and N €® M, then N is injective.

(5) If M isinjective and M = N, then N is injective.



Definition 1.2.4 [21, p. 1]. Let M and N be R-modules. M is said to be N-
injective if for every submodule K of N, any R-homomorphism f: K — M can
be extended to an R-homomorphism g: N — M.

Definition 1.2.5 [24, p. 11]. A right R-module M is said to be quasi-continuous
iIf it satisfies the following conditions:

(1) (C1-condition) If every submodule of M is essential in a direct summand of
M.
(2) (C3-condition) IfFN c® M, K €® M,and NN K = 0,then N @ K c® M.
Definition 1.2.6 [24, p. 96]. A right R-module M is called right principally
Injective, if every R-homomorphism f:aR — M, a € R, extends to R.

Definition 1.2.7 [6, p. 144]. A right R-module M is said to be projective if each
diagram with exact row:

M
9,/ lf

I’A

A— 5B 0

of right R-modules and R-homomorphisms can be completed commutatively
by an R-homomorphism g: M — A.

Theorem 1.2.8 [16, Theorem 5.3.1, p. 115]. A right R-module M is injective
(resp. projective) if every R-monomorphism (resp. R-epimorphism) a: M — N
(resp. B: N — M) is split.

Definition 1.2.9 [24, p.33]. A ring R is called right pseudo-Frobenius (or right
PF) if R is right self-injective and semiperfect with S,. ©°° Rj.

Definition 1.2.10 [24, p. 20]. A ring R is called quasi-Frobenius (briefly, QF
ring) if it is left and right self-injective artinian ring.

Proposition 1.2.11 [6, Proposition 12.5.13, p. 427]. Aring R is QF if and only
if every injective right R-module is projective.

Definition 1.2.12 [34]. A ring R is said to be right PS-ring ( resp. FS-ring) if S,
IS projective (resp. flat).



Proposition 1.2.13 [34, Proposition 8]. Let R be a commutative ring. Then R
Is an FS-ring if and only if it is PS-ring.

Definition 1.2.14 [2]. Let M and N be right R-modules. M is called soc-N-
injective if every R-homomorphism f: K — M extends to N, where K is a
semisimple submodule of N; equivalently, for any R-homomorphism
fisoc(N) — M extends to N. M is called soc-injective, if M is soc-R-
injective. M is called strongly soc-injective, if M is soc-N-injective for all N €
Mod-R. A ring R is called right soc-injective (resp. strongly right soc-
injective), if Ry is soc-injective (resp. strongly soc-injective).

Definition 1.2.15 [27]. A right R-module M is called small injective if every R-
homomorphism from a small right ideal of R into M can be extended from R,
to M. Aring R is called right small injective, if Ry is small injective.

Definition 1.2.16 [3, p. 169]. A ring R is called semiprimitive if ] = 0.

Theorem 1.2.17 [30, Theorem 2.8]. Let R be a ring. Then the following
statements are equivalent:

(1) R issemiprimitive.
(2) Every right (or left) R-module is small injective.
(3) Every simple right (or left) R-module is small injective.

Definition 1.2.18 [33]. A right R-module M is called principally small injective
if every R-homomorphism from aR to M can be extended from Ry, to M, for all
a €J. Aring R is called right principally small injective, if Ry is principally
small injective.

Definition 1.2.19 [23]. A right R-module M is called mininjective if, for each
simple right ideal K of R, every R-homomorphism f: K — M extends to R. A
ring R is called right mininjective, if Ry is mininjective.

Definition 1.2.20 [23]. A ring R is called right universally mininjective if
S,njJ=0.

Definition 1.2.21 [24, p. 68]. A ring R is called right min-PF, if it is a
semiperfect, right mininjective, S, €°° R, and Ir(K) = K for every simple
left ideal K < Re for some local idempotent e € R.



Definition 1.2.22 [24, p. 62]. A ring R is said to be right minfull if it is
semiperfect, right mininjective and soc(eR) # 0 for each local idempotent
e ER.

Definition 1.2.23 [35]. A ring R is called right simple J-injective if, for any
small right ideal I and any R-homomorphism f: I — Ry with simple image
can be extended to R.

Definition 1.2.24 [36]. A right R-module M is called strongly s-injective if
every R-homomorphism from K to M extends to N, for every right R-module
N, where K € Z(N).

Definition 1.2.25 [12, p. 129]. Let R be a ring and F be a class of right R-
modules. An R-homomorphism f: M — N is said to be F-preenvelope of M
where N € F if, for every R-homomorphism g:M — F with F € F, there is
h:N — F such that hf = g. If every h € End(N) such that hf = f is an
isomorphism, then £ is called an F-envelope of M.

Definition 1.2.26 [12, p. 105]. Let R be a ring and F be a class of right R-
modules. An R-homomorphism f:N — M is said to be F-precover of M
where N € F if, for every R-homomorphism g:L — M with L € F, there is
h:L — N such that fh = g. If every h € End(N) such that fh = f is an
isomorphism, then £ is called an F-cover of M.

Definition 1.2.27 [20, Definition 4.2.1, p. 66]. Let F (resp. G) be a class of left
(resp. right) R-modules. The pair ( F,G ) is said to be almost dual pair if for any
left R-module M, M € F if and only if M* € G; and G is closed under direct
summands and direct products.

Remark 1.2.28 [12, Definition 2.1.1 and Remark 3.1.8, p. 40 and 70]. Let M
be a right R-module, then:

(1) There is an exact sequence -+ — P, — P, — M — 0 with each P,
projective. This sequence is called projective resolution of M.

(2) There is an exact sequence 0 - M — E, — E; — ---with each E;
injective. This sequence is called injective resolution of M.

Definition 1.2.29 [12, p. 25 and 26]. A sequence C : -+ — C, =, C; iR Co

[247) a_q

— (C_; — C_, — -+ is called chain complex if a,,_,a, = 0 for all n € Z.
ker(a,)/im(a,,,) is called the nth homology module and is denoted by



H,(C). A chain complex of the foom D: -+ — D_, — D_; ﬂ D, ﬁ D,

i D, — --- is called a cochain complex. ker(f,)/im(B,,—1) is called the nth

cohomology module and is denoted by H™ (D).

Definition 1.2.30 [12, p. 41 and 70]. Let -+ - P, > P,— M — 0 be a
projective resolution of right R-module M and consider the deleted projective
resolution -+ — P, — P, — 0. If N is a right R-module and L is a left R-
module, then:

(1) The ith  cohomology module of the complex sequence
0 — Homg(Py, N) — Homg (P, N) — --- is denoted by Exth(M,N)
(briefly, Ext!(M, N)).

(2) The ith homology module of complex :-+ — P;®rL — Py®zL — 0 is
denoted by Tor? (M, L) (briefly, Tor;(M, L)).

Theorem 1.2.31[12, Theorem 3.2.1, p. 75]. Let R and S be rings and consider
the situation (Ag, rBs, Cs). If C is injective, then Ext'(A, Homg(B,()) =
Homg(Tor;(4, B),C), forall i > 0.

Theorem 1.2.32 [12, Theorem 3.1.9, p. 70]. The following statements are
equivalent for a right R-module E:

(1) E isinjective.
(2) Ext!(M,E) = 0 for all right R-module M.
(3) Extl(M,E) = 0 for all right R-module M.

Theorem 1.2.33 [26, Corollary 7.25, p. 421] and [13, Theorem XlI1.4.4, p.
491]. The following statements are equivalent for a right R-module P:

(1) P is projective.

(2) Exti(P,M) = 0 for all right R-module M.

(3) Extl(P,M) = 0 for all right R-module M.

Definition 1.2.34 [12, p. 40]. A left R-module M is said to be flat if given any
exact sequence 0 — A — B of right R-modules, the tensored sequence
0 — AQ®;M — BQ®;M is exact.

Example 1.2.35.
(1) Every projective R-module is flat (see [6, Examples (1), p. 155]).
(2) The Z-module ZN is flat (since Z is coherent ring), but not projective (see [6,
Examples (3), p. 145]).



Proposition 1.2.36 [26, Proposition 3.54, p. 136]. A left R-module M is flat if
and only if M* is injective.

Theorem 1.2.37 [12, Theorem 2.1.8 and 3.2.10, p. 41 and 78]. The following
statements are equivalent for a left R-module F:

(1) Fisflat.

(2) Tor;(M,F) = 0 for all right R-module M.
(3) Tory(M, F) = 0 forall right R-module M.
(4) Tor;(R/I,F) = 0 for all right ideal 1.

(5) Tory(R/I,F) = 0 for all right ideal 1.

Definition 1.2.38 [6, p. 159]. A right R-module M is said to be finitely
presented if there is an exact sequence 0 — K — F — M — 0 of right R-
modules, where F is finitely generated free and K is finitely generated,;
equivalently, if there is an exact sequence F;, — F, — M — 0, where F, and
F, are finitely generated free right R-modules.

Definition 1.2.39 [17, p.138]. A ring R is said to be right coherent if every
finitely generated right ideal of R is finitely presented.

It is clear that every right noetherian ring is right coherent.

Definition 1.2.40 [9]. A right R-module M is called n-presented if there is an
exact sequence F, — F,_; — -+ — F, — M — 0 such that each F; is a
finitely generated free right R-modules.

Lemma 1.2.41[9, Lemma 2.7]. Let R and S be rings and consider the situation
(Agr,sBr,sC) with Ap is mn-presented and sC is injective, then
Tor,_; (A Homg (B, C)) = Homg(Ext" (4, B), C).

Definition 1.2.42 [32, p. 197]. A direct system of R-modules (M, f;i)a
consists of a family of right R-modules {M;}, and a family of R-
homomorphisms f;;: M; — M; withi < j satisfying f; = Iy, and fj.fij = fu
for i <j <k. A direct system of R-homomorphisms from (M;, f;;)a into a
right R-module M is a family of an R-homomorphisms {f;: M; — M}, with
fifij = fi whenever i < j. A direct system of R-homomorphisms {f;: M; —
M3}, is said to be a direct limit of (M, f;;), if, for every direct system of R-



homomorphisms {u;: M; — L},, L € Mod-R, there is a unique R-
homomorphism u: M — L such that uf; = u; for all i € A. The direct limit is
unique and denoted by M = limM,;.

_>

Definition 1.2.43 [32, p. 274 and 278]. An exact sequence 0 —>Ai>B

2 ¢ —0o0f right R-modules is called pure if every finitely presented right R-
module P is projective with respect to this sequence; equivalently, if the
sequence 0 — Homg (P, A) — Homy(P,B) — Homg(P,C) — 0 is exact. In
this case we call f(A4) is a pure submodule of B. A right R-module M is called
pure injective if M is injective with respect to every pure exact sequence.

Theorem 1.2.44 [32, 34.5, p. 286]. The exact sequence of right R-modules
0 —-A— B — C — 0ispure if and only if the sequence 0 — C* — B* —
At — 0 is split.

Theorem 1.2.45 [32, 33.7, p. 279]. A right R-module N is pure injective if and
only if every pure sequence 0 - N — M — L — 0 is split.

Theorem 1.2.46 [15, Theorem 2.5]. Let F be a class of right R-modules. If F
Is closed under pure quotient, then the following statements are equivalent:

(1) F is closed under direct sums.
(2) F is precovering.
(3) F is covering.

Theorem 1.2.47 [32, 34.6, p. 289]. For every left R-module M, then:
(1) M is pure submodule of M*+*,
(2) M is pure injective.

Definition 1.2.48 [20, Definition 2.4.1, p. 29]. A subclass F of Mod-R is said
to be definable if it is closed under direct products, direct limits and pure
submodules.

Definition 1.2.49 [12]. A right R-module M is said to be FP-injective (or
absolutely pure) if Ext!(N, M) = 0 for every finitely presented right R-module
N.

Proposition 1.2.50 [10]. Let N be a finitely generated right R-module and
K < N. If every R-homomorphism f:K — M extends to N for every FP-
injective right R-module M, then K is finitely generated.



Remark 1.2.51 [10]. A right R-module P is finitely presented if and only if
Ext!(P, M) = 0 for all FP-injective right R-module M.

Definition 1.2.52 [19]. A left R-module M is said to be min-flat if
Tor,(R/I,M) = 0 for any simple right ideal I of R, equivalently, the sequence
0 — IQ:M — RQy;M is exact for any simple right ideal I of R.

Definition 1.2.53 [19]. A ring R is called right min-coherent if every simple
right ideal of R is finitely presented.

It is clear that a ring R is right min-coherent if and only if every finitely
generated semisimple small right ideal of R is finitely presented.

Lemma 1.2.54 [19, Lemma 3.2]. A left R-module M is min-flat if and only if
M™ is mininjective.



Chapter Two
Section One

2.1 SS-Injective Modules

As a generalization of both soc-injective modules and small injective
modules, we will introduce in this section the concept of ss-injective modules
and we will give some characterizations and properties of it.

Definition 2.1.1. Let N be a right R-module. A right R-module M is said to be
ss-N-injective, if for any semisimple small submodule K of N, any right R-
homomorphism f: K — M extends to N. A module M is said to be ss-quasi-
injective if M is ss-M-injective. M is said to be ss-injective if M is ss-R-
injective. A ring R is said to be right ss-injective if the right R-module Ry, is ss-
injective.

Example 2.1.2.

(1) Every soc-injective module is ss-injective, but not conversely (see
Example 3.2.9).

(2) Every small injective module is ss-injective, but not conversely (see
Example 3.2.7).

(3) Every Z-module is ss-injective. In fact, if M is a Z-module, then M is small
injective (by Theorem 1.2.17) and hence it is ss-injective.

(4) The two classes of principally small injective rings and ss-injective rings
are different ( see Example 2.2.4 and Example 3.2.7).

In the following theorem, we will give som basic properties of ss-N-
injective modules.

Theorem 2.1.3. The following statements hold:

(1) Let N be a right R-module and let {M;:i € I} be a family of right R-
modules. Then the direct product [, M; is ss-N-injective if and only if
each M, is ss-N-injective, i € I.

(2) Let M, N and K be right R-modules with K € N. If M is ss-N-injective,
then M is ss-K -injective.



(3) Let M, N and K be right R-modules with M = N. If M is ss-K-injective,
then N is ss-K-injective.

(4) Let M, N and K be right R-modules with K = N and M is ss-K-injective.
Then M is ss-N-injective.

(5) Let M, N and K be right R-modules with N is a direct summand of M. If M
IS ss-K-injective, then N is ss-K-injective.

Proof. (1) (=) Suppose that [];.,M; is ss-N-injective. Let j € I and consider the

following diagram:

where K is a semisimple small submodule of N. Thus we have the following
diagram:

f}' gj// /

’
’
i ;
T[],[ lj II
v

HieIMi

where i;: M; — [[,,M; and m;: [[,¢,M; — M; are the injection and projection
right R-homomorphisms, respectively. Since [],;M; is ss-N-injective by
hypothesis, thus there exists a right R-homomorphism h: N — [],;M; such
that hi=if;. Put g;=mh:N — M;. Thus, we have g;i= (m;h)i=
7;(i;f;) = f;. Hence M; is an ss-N-injective R-module, for all j € I.

(<) Suppose that for each j € I, the right R-module M; is an ss-N-injective.
Consider the following diagram:



where K is a semisimple small submodule of N. For each j€l, let
7;: [[;,e;M; — M; be the projection R-homomorphism. Since each M; is ss-N-
injective, thus there is a right R-homomorphism g;: N — M; such that
gji = m;f. Define g:N — M by g(b) = (g;(b))je; for every b € N. It is
clear that g is an R-homomorphism. For every k € K, we have that (gi)(k) =
(9; (k) jer = (m;(F (V) )jer = £ (k). 50 [T, M; s an ss-N-injective.

(2) Suppose that M is an ss-N-injective R-module and let K & N. Consider the
following diagram:

where A is a semisimple small submodule of K and i; and i, are the inclusion
maps. Clearly, A is a semisimple small submodule of N and by hypothesis there
exists right R-homomorphism h: N — M is an extension of f and hence
hi,: K — M is an extension of f . Therefore, M is an ss-K-injective.

(3) Suppose that a: N — M is an isomorphism with M is an ss-K-injective and
let A be a semisimple small submodule of K, thus we have the following
diagram:
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where g any R-homomorphism from A to N and i is the inclusion map. By
hypothesis there is an R-homomorphism h: K — M such that hi = ag. Put
f =a th:K — N. Thus we have i = a thi = a lag = g. Hence N is an
ss-K -injective.

(4) Suppose that M is ss-K-injective right R-module and let f: K — N be an
isomorphism. Consider the following diagram, where g:A — M is an R-
homomorphism, A is a semisimple small submodule of N and i is the inclusion

mapping:

0 A—L SN

M

The restricion of f to f71(4) induces an isomorphism
a = fr-14):f " (A) — A, and so we have the following diagram:

fHA) — K

a h, |f




where i; is the inclusion map. We note that f~1i = i;a~! because let a € A
and x = f~1(a), then x € f71(4). Hence a(x) = f(x) = f(f*(a)) = a.
Thus for all a € A we have a~(a) = x = f~1(a) and hence (f~1i)(a) =
@) =i,(f @) = ih(a (@) = (i e a™1)(a). Now, since f1(A) is
semisimple small submodule of K and M is ss-K-injective, then there is an R-
homomorphism h: K — M such that hi; = ga. Put § = hf 1, so we have
pi=hf"ti =hija™! = gaa™! = g. Hence M is ss-N-injective.

(5) This follows from (1). O
Corollary 2.1.4. The following statements hold:

(1) If N is aright R-module, then a finite direct sum of ss-N-injective modules
IS again ss-N-injective. Moreover, a finite direct sum of ss-injective
modules is again ss-injective.

(2) A direct summand of an ss-quasi-injective (resp., ss-injective) module is
again ss-quasi-injective (resp., ss-injective).

Proof. (1) By taking I to be a finite set and applying Theorem 2.1.3 (1).

(2) This follows from Theorem 2.1.3 (5). O
Lemma 2.1.5. Every ss-injective right R-module is a right mininjective.

Proof. Let I be a simple right ideal of R. By [25, Lemma 3.8, p. 29] we have
that either I is nilpotent or a direct summand of R. If I is a nilpotent, then I < J
by [6, Proposition 6.2.7, p. 181] and hence I is a simple small right ideal of R.
If I =® Ry, then every right R-homomorphism f:1 — M (where M is a right
R-module) can be extended by fi, (where i, is the injection map from R onto
I). Thus every ss-injective right R-module is right mininjective. O

Proposition 2.1.6. Let N be a right R-module. If J(N) « N, then a right R-
module M is ss-N-injective if and only if any R-homomorphism f:soc(N) N
J(N) — M extends to N.

Proof. (=) Since J(N) K N, then soc(N)NnJ(N) is semisimple small
submodule of N and hence any R-homomorphism f:soc(N)NJ(N) — M
extends to N.



(&) Let K be any semisimple small submodule of N. Since J(N) is the largest
small submodule in N and soc(N) is the largest semisimple submodule in N,
then K € soc(N) nJ(N) and we have the following diagram:

K —2—>soc(N) N J(N) —2—N
fl 9. -Th
Vgl

M <

-

where i; and i, are the inclusion maps and f:K — M is any R-
homomorphism. Since K is a direct summand of soc(N) N J(N), then
soc(N)NJ(N) =K @ L forsome L < N. Define g:soc(N)nJ(N) — M by
g(a) =f(k)wherea=k+ 1,k €K,l€L,sowehave f = gi,. Thus there is
an R-homomorphism h: N — M such that hi, = g and hence f = gi; = hi,i;,
S0 M is ss-N-injective. O

Corollary 2.1.7. If N is a finitely generated right R-module, then a right R-
module M is ss-N-injective if and only if any R-homomorphism f:soc(N) N
J(N) — M extendsto N.

Proof. By Remark 1.1.7 (3) and Proposition 2.1.6. O

Proposition 2.1.8. Let N be a right R-module and {4;:i =1,2,...,n} be a
family of finitely generated right R-modules. Then N is ss-@-, A;-injective if
and only if N is ss-A;-injective, foralli = 1,2, ..., n.

Proof. (=) This follows from Theorem 2.1.3 ((2), (4)).

(<) By [5, Proposition (1.4.1) and Proposition (1.1.2), p. 28 and 16] we have
soc(DiL, 4;) N J(DBL, 4;) = (soc N (DI, A;) =B, (socn])(4;) =
n, (soc(4;) N J(AD). Forj = 1,2, ...,n consider the following diagram:



K; = soc(4;) nJ(4;) 4
in h] /,’/, iA]
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N

where i; andi, are inclusion maps, and ik, and iy; are injection maps. By

hypothesis, there is an R-homomorphism h;: A; — N such that h;i, = fik;,

also there exists exactly one R-homomorphism h:@-, A; — N satisfying
hj = hiy; by [16, Theorem 4.1.6 (2), p. 83]. Thus fik;, = hjiz = hiy i, =

hiyig; for all j=1,2,..,n. Let (aq,a,, .
thus a; € soc(4;) NnJ(4;), forallj = 1,2, ...

. ay) € B, (soc(4;) nJ(4))),

,n, and

f((ay, az, .., a)) = f((ay,0,...,0) + (0,a,,0,..,0) + - + (0,0, ...,0,a,))

= f((ay,0,..,0)) + £((0,a,,0, ...,0)) + -+ £((0,0, ...,0, a,))
=f (iKl(al)) +f (iKz (az)) +otf (iKn(an))

= (hiyig,)(ay) + (hiyig,) (@) + - + (hiyig,)(an)

= (hiy)((ay,0,...,0) + (0,a,,0,...,0) + -+ (0, ...,0, a,))

= (hil)((ali Az, - an))

Thus f = hi; and the proof is complete. O

Corollary 2.1.9. The following statements are hold for a right R-module M:

(1) Let1=¢e;+e,+ -+ e, In R, where the e; are orthogonal idempotents.
Then M is ss-injective if and only if M is ss-e;R-injective for every i =

1,2, ..,n.

(2) For idempotents e and f of R. If eR = fR and M is ss-eR-injective, then M

IS sS-f R-injective.



Proof. (1) From [3, Corollary 7.3, p. 96], we have R =@%, e;R, thus it follows
from Proposition 2.1.8 that M is ss-injective if and only if M is ss-e; R-injective
foralli =1,2,..,n.

(2) This follows from Theorem 2.1.3 (4). O

Proposition 2.1.10. A right R-module M is ss-injective if and only if M is ss-P-
injective, for every finitely generated projective right R-module P.

Proof. (=) Let M be an ss-injective right R-module, thus it follows from
Proposition 2.1.8 that M is ss-R™-injective for any positive integer number n.
Let P be a finitely generated projective R-module, thus by [1, Corollary 3.5.5,
p. 138], we have that P is a direct summand of a module isomorphic to R™ for
some positive integer number m. Since M is ss-R™-injective, thus M is ss-P-
injective by Theorem 2.1.3 ((2),(4)).

(<) By the fact that R is projective. O

Proposition 2.1.11. The following statements are equivalent for a right R-
module M:

(1) Every right R-module is ss-M-injective.
(2) Every simple submodule of M is ss-M-injective.
(3) soc(M)njJ(M) = 0.

Proof. (1)=(2) and (3)=(1) are clear.

(2)=(3) Assume that soc(M) nJ(M) # 0, thus soc(M)nJ(M) =@, x;R
where x;R is a simple small submodule of M, for each i € I. Therefore x;R is
ss-M-injective for each i € I by hypothesis. For any i € I, the inclusion map
from x;R to M is split, so we have that x;R €® M. Since x;R is small
submodule of M, thus x;R =0 and hence x; =0 for all i €/ and this a

contradiction. O
Corollary 2.1.12. The following statements are equivalent for aring R:

(1) R is right universally mininjective.

(2) R is right mininjective and every quotient of a soc-injective right R-module
IS soc-injective.

(3) R is right mininjective and every quotient of an injective right R-module is
soc-injective.



(4) R is right mininjective and every semisimple submodule of a projective
right R-module is projective.
(5) Every right R-module is ss-injective.
(6) Every simple right ideal is ss-injective.
Proof. (1) (2)<(3)<(4) By [23, Lemma 5.1] and [2, Corollary 2.9].

(1) (5)<(6) By Proposition 2.1.11. O

Lemma 2.1.13. Let M be an ss-quasi-injective right R-module and S =
End(Mpy), then the following statements hold:

(1) [yrg(m) =Smforallm € soc(M) nJ(M).
(2) rx(m) € rg(n), where m € soc(M) N J(M),n € M implies Sn € Sm.
() Is(mR nry(a)) = ls(m) + Sa, where m € soc(M) N J(M), a € S.
(4) If kR is asimple submodule of M, then Sk is a simple left S-module. For all
k € J(M). Moreover, soc(M) N J(M) < soc(sM).
(5) soc(M) NJ(M) S 1y (J(s9)).
(6) (AN B) = 15(A) + l5(B), for every semisimple small right submodules A
and B of M.
Proof. (1) Let n € lyrgx(m), then rzx(m) < rx(n). Now, let y:mR — M is
given by y(mr) = nr, thus y is well define R-homomorphism. By hypothesis,
there exists an endomorphism g of M such that B,z = y. Therefore, n =
y(m) = f(m) € Sm, that is lyrzx(m) S Sm. Conversely, let sm € SM. Thus
smr = 0 for all r € r,(m) and hence sm € [z (m). Therefore, [,rz(Mm) =
Sm.

(2) Let neM and m € soc(M) N J(M). Since rzx(m) € rz(n), then n €
Ly rr(m). By (1), we have n € Sm as desired.

(3) If f € ls(m) + Sa, then f = f; + f, such that f;(m) = 0 and f, = ga for
some g € S. For all n € mR N ry(a), we have n = mr and a(n) = 0 for some
r € R. Since f,(n) = fi(mr) = fi(m)r = 0 and f,(n) = g(a(n)) = g(0) =
0, thus f € ls(mR Nnry(a)) and this implies that ls(m) + Sa < Ig(mR N
ry(a)). Now, we will prove the other inclusion. Let g € Ig(mR N1y (). If
rE rR(a(m)), then a(mr)=0. So, mr € mRnry(a) which yields
rR(a(m)) c rR(g(m)). Since m € soc(M) N J(M), thus a(m) € soc(M) N
J(M). By (2), we have that g(m) = ya(m) for some y € S. Therefore,



g —va € lg(m) which leads to g € Is(m) + Sa. Thus Ig(mR Nry(a)) =
ls(m) + Sa.

(4) To prove Sk is simple left S-module, we need only show that Sk is cyclic
for any nonzero element in it. If 0 = a(k) € Sk, then a: kR — a(kR) is an
isomorphism. Since a € S, then a(kR) < M. Since M is ss-quasi-injective,
thus a~:a(kR) — kR has an extension B €S and hence B(a(k)) =
a~(a(k)) = k, so k € Sak which leads to Sk = Sak. Therefore, Sk is simple
left S-module and this leads to soc(M) N J(M) < soc(sM).

(5) If mR is simple and small submodule of M, then m # 0. We claim that
a(m) =0 for all a € J(sS), thus mR < r,(J(sS)). Otherwise, a(m) + 0 for
some a € J(sS). Thus a: mR — a(mR) is an isomorphism. Now, we need to
prove that 7z (a(m)) = rx(m). Let r € rx(m), s0 a(m)r = a(mr) = a(0) =
0 which leads to rz(m) € rg(a(m)). The other inclusion, if r € rz(a(m)),
then a(mr) = 0, that is mr € ker(a) = 0, so r € rz(m). Hence ry (a(m)) =
rgr(m). Since m,a(m) € soc(M) N J(M), thus Sam = Sm by (2), and this
implies that m = Ba(m) for some B €S, so (1 —Ba)(m)=0. Since a €
J(sS), then the element Ba is quasi-regular by [3, Theorem 15.3, p.166]. Thus
1 — Ba is invertible and hence m = 0 which is a contradiction. This shows that

soc(M) N J(M) € ry(J(s5)).

(6) Let a € [4(AN B) and consider f:A+ B — M is given by f(a+b) =
a(a), for all a € A and b € B. Since M is ss-quasi-injective, then there exists
f €S such that f(a+b)=pB(a+b). Thus f(a+b) =a(a), sO (a—
B)(a) = B(b) which vyields a —p € ls(A). Therefore, a =a—-—B+p €
ls(A) + lg(B) and this implies that I[s(AN B) € l(A) + Ig(B). The other
inclusion is obtained by [3,Proposition 2.16,p.38], then the proof is complete. O

Remark 2.1.14. Let M be a right R-module, then D(S)={a €S =
End(M)| ry (@) N mR # 0 for each 0 #= m € soc(M) nJ(M)} is a left ideal in
S.

Proof. If « € D(S) and 0 #+= m € soc(M) N J(M), thus 0 + ma € r,(a) N MR,
for some a € R and so a(ma) = 0. Since (—a)(ma) = a(ma)(—1) = 0, then
ma € n,(—a) and hence r,(—a) NmR # 0. Thus —a € D(S). Now, let
a,a, €ED(S) and 0+ meEsoc(M)NnjJ(M). We have that 0 # ma €
ry(a;) N mR for some a € R. Since a, € D(S), then —a, € D(S) and hence



0 # mab € ry(—a,) N mR for some b € R. Therefore, 0 # mab € ry(a;) N
mu(—az) NmR. Since ry(ay) Nry(—a,) = ry(a, + (—a,)) = ry(a, — a,)
by [3, Proposition 2.16, p.38], thus ry(a, —a,) NmR # 0 for all 0 #m €
soc(M) n J(M) and hence a; —a, € D(S). Also, let y €S and a € D(S).
Since ry(a) € ry(ya), thus ry(ya) nmR # 0 for all 0 #m € soc(M) N
J(M), that is ya € D(S). Thus D(S) is a left ideal of S. O

Proposition 2.1.15. Let M be an ss-quasi-injective right R-module. Then
ry(a) € ry(a — aya), forall « € D(S) and for some y € S = End(M).

Proof. For all « € D(S). By hypothesis, we can find 0 #= m € soc(M) N J(M)
such that 7, (a) N mR = 0. Clearly, rz(a(m)) = rz(m), so Sm = Sam by
Lemma 2.1.13 (2). Thus m = ya(m) for some y € S and this implies that
(a — aya)(m) = 0. Therefore, m € r,(a — aya), but m & r,(a) and hence
the inclusion is strictly. O

Proposition 2.1.16. Let M is an ss-quasi-injective right R-module, then the set
{a € S = End(M)|1 — Ba is R-monomorphism for all g € S} is contained in
D(S). Moreover, J(sS) € D(S).

Proof. Let a € D(S), then there exists 0 # m € soc(M) N J(M) such that
@ NmR=0. If re rR(oc(m)), then a(mr) =0 and so mr € ry(a).
Since ry (@) N mR = 0, thus 7 € rx(m) and hence 1z (a(m)) S rg(m), so we
get Sm € Sam by Lemma 2.1.13 (2). Therefore, m € ker(1 — ya) for some
y €S. Since m # 0, thus 1 —ya is not R-monomorphism and hence the
inclusion holds. Now, let a € J(S), then we have Sa is quasi-regular element
by [3,Theorem 15.3, p. 166] and hence 1 — Sa is isomorphism for all g € S,
which completes the proof. O

Theorem 2.1.17. (ss-Baer’s condition) For a right R-module M, the following
statements are equivalent:

(1) M is an ss-injective right R-module.
(2) IfS,NnJ =A@ B, where A and B are riht ideals of R, and a: A — M is an
R-homomorphism, then there exists m € M such that a(a) = ma for all
a € Aand mB = 0.
Proof. (1)=(2) Define y:S, nJ] — M by y(a+ b) = a(a) forall a € A,b €
B. By hypothesis, there is a right R-homomorphism g: R — M is an extension



of y,so if m = (1), then a(a) = y(a) = f(a) = B(1)a = ma, for all a € A.
Moreover, mb = B(b) = y(b) = a(0) = 0 forall b € B, somB = 0.

(2)=(1) Let a:I — M be any right R-homomorphism, where I is any
semisimple small right ideal. By hypothesis, there exists m € M such that
a(a) = ma forall a € I. Define B: Ry — M by B(r) = mr for all r € R, thus

B extends a. O

Theorem 2.1.18. If M is a projective right R-module, then the following
statements are equivalent:

(1) Every quotient of an ss-M-injective right R-module is ss-M-injective.

(2) Every quotient of a soc-M-injective right R-module is ss-M-injective.

(3) Every quotient of an injective right R-module is ss-M-injective.

(4) Every sum of two ss-M-injective submodules of a right R-module is ss-M-

injective.

(5) Every sum of two soc-M-injective submodules of a right R-module is ss-M-
injective.

(6) Every sum of two injective submodules of a right R-module is ss-M-
injective.

(7) Every semisimple small submodule of M is projective.
(8) Every simple small submodule of M is projective.
(9) soc(M) nJ(M) is projective.
Proof. (1)=(2)=(3), (4)=(5)=(6) and (9)=(7)=(8) are obvious.

(8)=(9) Since soc(M) N J(M) is a direct sum of simple submodules of M and
since every simple in J(M) is small in M, thus soc(M) N J(M) is projective.

(3)=(7) Let D and N be right R-modules and consider the diagram:
D— sN— 50

i

0 sK—L sMm

where K is a semisimple small submodule of M, h is a right R-epimorphism, f
is a right R-homomorphism, and i is the inclusion map. We can take D to be
injective R-module (by [6, Proposition 5.2.10, p. 148]). Since N is ss-M-
injective, then we can extend f to an R-homomorphism a:M — N. By
projectivity of M, thus a can be lifted to an R-homomorphism @&: M — D such



that h@ = a. Let f: K — D be the restriction of & over K. Obviously, hf = f
and this implies that K is projective.

(7)=>(1) Let h: N — L be an R-epimorphism, where N and L are right R-
modules, and N is ss-M-injective. Consider the following diagram:

0 K—L sMm
fl
N—h 1 0

where K is a semisimple small submodule of M, f:K — L is an R-
homomorphism, and i is the inclusion map. By hypothesis, K is projective, thus
there is an R-homomorphism g: K — N such that hg = f. Since N is ss-M-
injective, then there exists R-homomorphism §: M — N such that §i = g. Put
B =hg:M — L. Thus Bi = hgi = hg = f. Hence L is an ss-M-injective right
R-module.

(1)=(4) Let N, and N, be two ss-M-injective submodules of a right R-module
N. Then N; + N, is a homomorphic image of the direct sum N; @ N,. Since
N; @ N, isss-M-injective, thus N; + N, is ss-M-injective by hypothesis.

(6)=(3) Let E be an injective right R-moduleand N > E.LetQ = E @ E,K =
{(m,n)] neN}LQ=Q/K,H={y+K€eQ| ye E®O} and H, =
{y+Ke€eQ| ye0O®DE}. Then Q = H, + H,. Since (E®0)NK =0 and
(OBEYNK=0,thusE=H;, i=1,2.Since HnH,={y+K€eEQ| yE
N®O}={y+KeQ| ye0DN}, thus H,nH, =N under y— y+K
for all y € N @ 0. By hypothesis, Q is ss-M-injective. Since H, is injective,
thus Q = H, @ A for some A - Q,s0 A= (H, + Hy)/H, = H,/(H, N H,) =
E/N. By Theorem 2.1.3 ((3),(5)), E/N is ss-M-injective. O

The following corollary gives a new characterizations of PS-rings.
Corollary 2.1.19. The following statements are equivalent for aring R:

(1) Every quotient of an ss-injective right R-module is ss-injective.
(2) Every quotient of a soc-injective right R-module is ss-injective.
(3) Every quotient of a small injective right R-module is ss-injective.



(4) Every quotient of an injective right R-module is ss-injective.
(5) Every sum of two ss-injective submodules of any right R-module is ss-
injective.
(6) Every sum of two soc-injective submodules of any right R-module is ss-
injective.
(7) Every sum of two small injective submodules of any right R-module is ss-
injective.
(8) Every sum of two injective submodules of any right R-module is ss-
injective.
(9) Every semisimple small submodule of any projective right R-module is
projective.
(10) Every semisimple small submodule of any finitely generated projective
right R-module is projective.
(11) Every semisimple small submodule of Ry is projective.
(12) Every simple small submodule of Ry is projective.
(13) S, N ] is projective.
(14) S, is projective ( R is a right PS-ring).
Proof. The equivalence between (1), (2), (4), (5), (6), (8), (11), (12) and (13) is
from Theorem 2.1.18.

(1)=(3)=(4), (5)=(7)=(8) and (9)=(10)=(13) are clear.
(14)=(9) By [2, Corollary 2.9].

(13)=(14) Let S, = (S, n]) @ A, where A =@, S; and S; is a simple right
ideal and direct summand of Ry, for all i € I. Thus A is projective, but S, N J is
also projective, so it follows that S,. is projective. O

Theorem 2.1.20. If every singular simple right R-module is ss-injective, then
r(a) €® Ry forevery a € S, N J and S, is projective.

Proof. Let a € S,, nJ and let A = RaR + r(a). Thus there exists B < Ry such
that A @ B <°° Ry. Assert that A@B # R, then we find I ™% R, such that
A@ B c I, and so I &*° Rg.Since R/I is singular right R-module by [17,
Example 7.6 (3), p. 247], then R/I is ss-injective. Consider the map a:aR —
R/I is given by a(ar) = r + I which is well define R-homomorphism. Thus,
there existsc e Rwith1+ 1 =ca+1andhence 1 —ca € I. Butca € RaR <
I which leads to 1 € I, a contradiction. Thus A®B = Ry and hence RaR +
(r(a) @ B) = R. Since RaR K Rg, then r(a) €® Ri. Put r(a) = (1 — e)R,



for some e? = e € R, so it follows that ax = aex (because (1 — e)x € r(a),
and so a(1 — e)x = 0) for all x € R and this leadsto aR = aeR. Lety:eR —
aeR be defined by y(er) = aer for all r € R. Then y is a well defined R-
epimorphism. Clearly, Kker(y) ={er: aer =0} ={er: er er(a)} =eRn
r(a) = 0. Hence y is an isomorphism and so aR is projective. Since S, nJ is a
direct sum of simple small right ideals, thus S,. N J is projective and it follows
from Corollary 2.1.19 that S, is projective. O

Corollary 2.1.21. A ring R is right mininjective and every singular simple right
R-module is ss-injective if and only if R is a right universally mininjective.

Proof. By Theorem 2.1.20 and [23, Lemma 5.1]. O

Recall that a ring R is called zero insertive if aRb = 0 for all a, b € R with
ab = 0 (see [30]).

Lemma 2.1.22 [30, Lemma 2.11]. Let R be a zero insertive ring, then RaR +
r(a) €°° Ry forevery a € R.

Proposition 2.1.23. Let R be a zero insertive ring. If every singular simple
right R-module is ss-injective, then R is right universally mininjective.

Proof. Let a € S,, nJ. We claim that RaR + r(a) = R, thus r(a) = R (since
RaR < R), so a = 0 and this means that S;- nJ = 0. Otherwise, if RaR +
r(a) S R, then there exists a maximal right ideal I of R such that RaR +
r(a) € 1. Since I &*° Ry by Lemma 2.1.22, then R/I is ss-injective by
hypothesis. Consider a:aR — R/I is given by a(ar) =r +1 for all r € R
which is well defined R-homomorphism. Thus 1 4+ I = ca + I for some ¢ € R.
Since ca € RaR < I, then 1 € I and this contradicts the maximality of I, so we

must have RaR + r(a) = R and this ends the proof. O

Theorem 2.1.24. If M is a finitely generated right R-module, then the
following statements are equivalent:

(1) soc(M) nJ(M) is a noetherian R-module.

(2) soc(M) nJ(M) is finitely generated.

(3) Any direct sum of ss-M-injective right R-modules is ss-M-injective.
(4) Any direct sum of soc-M-injective right R-modules is ss-M-injective.
(5) Any direct sum of injective right R-modules is ss-M-injective.



(6) K is ss-M-injective for every injective right R-module K and for any
index set S.
(7) KM is ss-M-injective for every injective right R-module K.
Proof. (1)=(2) and (3)=(4)=(5)=(6)=(7) Clear.

(2)=(3) Let E =,; M; be a direct sum of ss-M-injective right R-modules and
f:N — E be a right R-homomorphism where N is a semisimple small
submodule of M. Since soc(M) N J(M) is finitely generated, thus N is finitely
generated and hence f(N) €@, M; , for a finite subset I, of I. Since a finite
direct sums of ss-M-injective right R-modules is ss-M-injective, thus @D, M;
IS ss-M-injective and hence f can be extended to an R-homomorphism
g:M — E. Thus E is ss-M-injective.

(7)=(1) Let N, © N, < --- be a chain of submodules of soc(M) nJ(M). For
each i > 1, let E; = E(M/N;) and E =@, E; . For every i > 1, we put

Jj#i

Mi=H;?';1Ej=EiEB<H}?';1Ej>, then M; is injective. By hypothesis,

. M, = (D2 E)D ( 2. 17 Ej> is ss-M-injective, so it follows from

J#i

Theorem 2.1.3 (5) that E is ss-M-injective. Define f:U = U2, N; — E by
f(m) = (m+ N;); . Itisclear that f is a well defined R-homomorphism. Since
M is finitely generated, thus soc(M) N J(M) is a semisimple small submodule
of M and hence U2, N; is a semisimple small submodule of M, so f can be
extended to a right R-homomorphism g: M — E. Since M is finitely generated,
then we have g(M) <@, E(M/N;) for some n and hence f(U) S

r,E(M/N;). Since m;f(x) = m; ((x + N]-)J_Zl) =x+ N, for all x e U and
i > 1, where m;:;>; E(M/N;) — E(M/N;) be the projection map. Thus
m;f(U)=U/N; for all i>1. Since fU)<Pr, E(M/N;). Thus
U/N; =m;f(U)=0,foralli =n+1,s0 U = N, forall i > n+ 1 and hence
the chain N; € N, € --- terminates at N,,,,. Thus soc(M)nJ(M) is a
noetherian R-module. O

Corollary 2.1.25. If N is a finitely generated right R-module, then the
following statements are equivalent:

(1) soc(N) nJ(N) is finitely generated.



(2) M® is ss-N-injective for every soc-N-injective right R-module M and for
any index set S.
(3) M® is ss-N-injective for every ss-N-injective right R-module M and for
any index set S.
(4) MM is ss-N-injective for every soc-N-injective right R-module M.
(5) MM js ss-N-injective for every ss-N-injective right R-module M.
Proof. By Theorem 2.1.24. O

Corollary 2.1.26. The following statements are equivalent for aring R:

(1) S, nJ is finitely generated.

(2) Any direct sum of ss-injective right R-modules is ss-injective.

(3) Any direct sum of soc-injective right R-modules is ss-injective.

(4) Any direct sum of small injective right R-modules is ss-injective.

(5 Any direct sum of injective right R-modules is ss-injective.

(6) MW is ss-injective for every injective right R-module M and for any index
set S.

(7) M js ss-injective for every soc-injective right R-module M and for any
index set S.

(8) MW js ss-injective for every small injective right R-module M and for any
index set S.

(9) M® is ss-injective for every ss-injective right R-module M and for any
index set S.

(10) MM js ss-injective for every injective right R-module M.

(11) M® js ss-injective for every soc-injective right R-module M.

(12) MM js ss-injective for every small injective right R-module M.

(13) M® js ss-injective for every ss-injective right R-module M.

Proof. By applying Theorem 2.1.24 and Corollary 2.1.25. O

Remark 2.1.27. Let M be a right R-module. We denote that n,(N) =
faeS,NJ| Na=0}and [,(K)={me M| mK =0} where NS M and
Kc<cS,nj. Clearly, n,(N)o (S,nJ))g and [y(K) <sM, where S =
End(Mp), and we have the following:

(1) N clyr,(N)forall N € M.
(2) K<nrlyK)forallK €S, njJ.
(3) nrlyr,(N)=rn,(N)forall N € M.



Proof. (1) Let x € N, then xr = 0 forall r € r,,(N), so x € [;1,(N).

(2) Similarly of (1).

(3) Let r € r,,(N), then xr = 0 for all x € [;n,(N), that is r € 1,1, (N), and
sor,(N) € r,lyr,(N). The second inclusion is obtained by (1).

(4) Similarly of (3). O

Lemma 2.1.28. For a right R-module M, the following statements are
equivalent:

(1) For right ideals of the form n,,(N), the ring R satisfies ACC, where N € M.
(2) The ring R satisfies the DCC for left S-modules of the form [,,(K), where
KcS.nj.
(3) For each semisimple small right ideal I of R, there exists a finitely generated
right ideal K < I such that ,,(I) = [, (K).
Proof. (1)=(2) Clear.

(2)=(3) Consider Q = {l,(A)| A is finitely generated right ideal and A C I}
which is nonempty set because M € Q. Now, let K be a finitely generated right
ideal of R contained in I such that [,,(K) is the minimal in Q. Put B = K + xR,
where x € I. Thus B is a finitely generated right ideal contained in I and
Ly (B) < [, (K). But since I, (K) is minimal in Q, then [,,(B) = l,;(K) which
yields [,,(K)x = 0, for all x € I. Therefore, 1,,(K)I = 0 and hence [,,(K) S
Ly (D). But Ly, () € 1,(K), so Iy, (I) = 1),(K).

(3)=(1) Suppose that r,(M;) € r,(M,) € -- € 1,,(M,,) € --- where M; S M
for each i. Put D; = ln,(M;) foreach i,and I = U2, ,(M;),thenI € S, n]J.
By hypothesis, there exists a finitely generated right ideal K of R contained in I
such that [,,(I) =l (K). Since K is a finitely generated, thus there exists
t € N such that K < r,(M,,) for all n > ¢, that is [,,(K) 2 ly1,(M,,) = D,, for
al nx=¢. Since Iy(K) =1y = (U2, n M) = N2, Iy (M) =

°.D; €D, , then l,(K) =D, for all n>t. Since D, = lyn,(M,), then
r,(M,) = n,lyn,(M,) = r,(D,) = nr,ly(K) for all n>t. Thus rn,(M,) =
r,(M;) for all n = t. Hence (3) implies (1), which ends the proof. O

The first part in the following proposition is obtained directly by Corollary
2.1.26, but we will prove it by different way.



Proposition 2.1.29. Let E be an ss-injective right R-module. Then E™ js ss-
injective if and only if the ring R satisfies the ACC for right ideals of form
r,(N), where N C E.

Proof. (=) Suppose that n,(N;) & nr,(N,) & -+ & 1,(N,,,) & -+ be a strictly
chain, where N; € E. Then we get, lzn,(N;) 2 g1, (Ny) 2 -+ 2 lg1,(Ny,) 2

- . For each i > 1, we can find t; € lzn,(N;) — lgr,(N;11) and a;.4 €
1, (N;4+1) such that t;a;,; # 0. Let L = U2, n,(N;), then for all £ € L there
exists m, = 1 such that ¢ € r,(N;) for all i = m, and this implies that t;# = 0
for all i >m,. Put £ = (t;);, we have t£ € E™) for every £ € L. Consider
ap:L — E®™ is given by az(£) =tf, then a; is a well define R-
homomorphism. Since L is semisimple small right ideal, thus a; extends to
v:R — EM (by hypothesis). Hence az(#) = t£ = y(£) = y(1)£. Thus there
exists k > 1 such that t;# = 0 for all i > k and all £ € L (since y(1) € EMV),
but this contradicts with t,a; ., # 0.

() Let a:1 — EM be an R-homomorphism, where I is a semisimple small
right ideal, then it follows from Lemma 2.1.28 that there is a finitely generated
right ideal K €1 such that [,,(I) = [,,(K). Since EN is ss-injective, thus
a = a - for some a € EN. Write K =@™, r;R, so we have a(r;) = ar; € EN,
i =1,2,..,m. Thus, there exists @ € EMN) such that a,,7; = d,r; for all n € N,
i=1,2,..,m, where a, is the nth coordinate of a. Since K is generated by
{r;, 15, ..., iy}, thus ar = ar for all r € K. Therefore, a,, — d, € ly(K) =
Ly (1) for all n € N which leads to a,r =a,r forall rel and n € N, so
ar = dar for all r € I. Thus there exists & € E™ such that a(r) = dr for all
r € I and this means that E™ is ss-injective. O

Theorem 2.1.30. Let R be a ring, then the following statements are equivalent:

(1) S, n]Jis finitely generated.
(2) @2, E(M;) is ss-injective right R-module for every family of simple right
R-modules {M;},cy-
Proof. (1)=(2) By Corollary 2.1.26.

(2)>() Let I, € I, & --- be a properly ascending chain of semisimple small
right ideals of R. It is clear that I = U2, I; is a semisimple small right ideal of
R. For every i>1, there exists a;€l, a; &1 and consider
N;/I; €™ (a;R + I;)/1;, s0 K; = (aq;R + I;)/N; is a simple right R-module.



Define a;: (aiR + Il)/Il — (CliR + Il)/Nl by ai(x + Il) =x+ NL' which is
right R-epimorphism. Consider the following diagram:

O—>(alR+Il)/Il—>I/Il

4
4

/
/
K; B,
i + Pi
4
4
4
] /
I’l /7
/

E (Ki;

where i; is the inclusion map. Thus there exists g;:1/1; — E(K;) such that
B = i;a;. Since a; & N;, then Bi(a; + I;) = ij(a;(a; + 1)) = a; + N; # 0 for
each i > 1. If b € I, then there exists n,, = 1 such that b € I, for all i > n,;, and
hence B;(b + I;) = 0 for all i > n,. Thus we can define y: I —-@2, E(K;) by
y(b) = (Bi(b + 1;)); . Then there exists : R — D72, E(K;) such that ¥, =y
by hypothesis. Put #(1) = (c;); , thus there exists n = 1 with ¢; = 0 for all
i =n.Since (B;(b+1;)); =y() =y(b) =7(1)b = (c;b),; for all b € I, thus
Bi(b+1;) =c;b for all i > 1, so it follows that 5;(b+1;) =0 forall i > n
and all b € I and this contradicts with 8, (a,, + I,;) # 0. Thus (2) implies (1). O

In the next results, we will give some relations between ss-injectivity and
other injectivities.

Lemma 2.1.31. Let Mand C be right R-modules and N < M with M/N is a
semisimple. Then every R-homomorphism from a submodule (resp.
semisimple submodule) A of M to C can be extended to an R-homomorphism
from M to C if and only if every R-homomorphism from a submodule (resp.
semisimple submodule) B of N to C can be extended to an R-homomorphism
from M to C.

Proof. (=) is obtained directly.

(<) Let A be a submodule of a right R-module M and let f be an R-
homomorphism from A to C. Since M/N is a semisimple, thus there exists
Lo Msuchthat A+ L=Mand AnL S N (see [18, Proposition 2.1]). Thus



there exists an R-homomorphism g:M — C such that g(x) = f(x) for all
x € ANL. Define h:M — C such that for any x =a+ ¥, a€ A, €L,
h(x) = f(a) + g(£). Thus h is a well define R-homomorphism, because if
a,+4,=a,+74,, a;€A, £;€L, i=12thena, —a,=¢,—¢; EANL,
that is f(a; —a,) = g(£, —¢;) which leads to h(a, +¥;) = h(a, +¥,).
Therefore h is a well define R-homomorphism and extension of f. O

Corollary 2.1.32. For right R-modules M and N, the following hold:

(1) If M is finitely generated and M /J(M) is semisimple right R-module, then
N is soc-M-injective if and only if N is ss-M-injective.

(2) If M/soc(M) is semisimple right R-module, then N is soc-M-injective if
and only if N is M-injective.

(3) If R/S, is semisimple as right R-module, then N is soc-injective if and only
if N is injective.

(4) If R/S, is semisimple as right R-module, then N is ss-injective if and only if
N is small injective.

Proof. (1) (=) Clear.

(<) Since N is a right ss-M-injective, thus every R-homomorphism from a
semisimple small submodule of M to N extends to M. Since M is finitely
generated, thus J(M) <« M and hence every R-homomorphism from any
semisimple submodule of J(M) to N extends to M. Since M/J(M) is
semisimple, thus every R-homomorphism from any semisimple submodule of
M to N extends to M by Lemma 2.1.31. Therefore, N is soc-M-injective right
R-module.

(2) (=) Since N is soc-M-injective. Thus every R-homomorphism from any
submodule of soc(M) to N extends to M. Since M /soc(M) is semisimple, thus
Lemma 2.1.31 implies that every R-homomorphism from any submodule of M
to N extends to M. Hence N is M-injective.

(<) Clear.

(3) By (2).

(4) Since R/S,. is semisimple as right R-module, thus J(R/S,) = 0. By Remark
1.1.7 (5), we have J € S, and hence ] =] N S,.. Thus N is ss-injective if and
only is N is small injective. O



Corollary 2.1.33. Let R be a semilocal ring, then S,. n J is finitely generated if
and only if S,. is finitely generated.

Proof. Suppose that S, nJ is finitely generated. By Corollary 2.1.26, every
direct sum of soc-injective right R-modules is ss-injective. Thus it follows from

Corollary 2.1.32 (1) and [2, Corollary 2.11] that S,. is finitely generated. O

Proposition 2.1.34. The following statements are equivalent for a right R-
module M:

(1) M is ss-injective.

(2) The sequence 0 — Homg(R/A, M) — Homg(R, M) — Homg (A4, M) —
0 is exact forall A < S,. nJ, where i and m are the inclusion and canonical
maps, respectively.

(3) The sequence 0 — Homg(R/S,.NJ,M) SN Homg (R, M) R Homg (S, N
J,M) — 0 is exact, where i and 7 are the inclusion and canonical maps,
respectively.

(4) Ext'(R/A,M)=0forallA- S, n]J.

(5) Ext'(R/S,njJ,M) =0.

Proof. (1)=(2) Let f € Homgz (A4, M), then there is g € Homg (R, M) such that
f =giandhence f =i*(g),soi*isan R-epimorphism.
(2)=>(1) Clear.

(1)=(3) is similar to (1)=(2).

(2)<(4) From the exactness of the sequence O—>H0mR(R/A,M)l>

Hompg (R, M) — Hompg (4, M) — Ext'(R/A,M) — 0 (see [13, Theorem
XI1.4.4, p. 491]).

(3)(5) is similar to (2)<(4). O



Section Two

2.2 SS-Injective Rings

In this section, we will study ss-injective rings with some characterizations
and properties of them.

Proposition 2.2.1. The following statements are equivalent for a ring R:

(1) R isaright ss-injective ring.

(2) If K is a semisimple right R-module, P and Q are finitely generated
projective right R-modules, f:K — P is an R-monomorphism with
B(K) K P and f: K — Q is an R-homomorphism, then f can be extended
to an R-homomorphism h: P — Q.

(3) If M be a right semisimple R-module and f is a nonzero R-monomorphism
from M to R, with f(M) < Rg, then M® = Rf.

Proof. (2)=(1) Clear.

(1)=(2) Consider the following diagram:

0 K-t .p

fl

where P and Q are finitely generated projective right R-modules, g is an R-
monomorphism and K is a semisimple R-module with S(K) « P. Since Q is
finitely generated, then there is an R-epimorphism a;: R™ — Q for some
positive integer number n. Since Q is a projective, then there is an R-
homomorphism a,: Q — R™ such that a;a, = I,. Thus we have the following
diagram:



fg_l //, //,
g// ,/
P
Q s h
//
a, /

/
2%
RTL

where 8:K — B(K) is defined by S(a) = B(a) for all a € K and i is the
inclusion map. Since R is a right ss-injective ring, it follows from Proposition
2.1.10 and Corollary 2.1.4 (1) that R™ is a right ss-P-injective R-module. So
there exists an R-homomorphism h:P — R™ such that hi = a,fB~1. Put
g=ah:P — Q. Thus gi=(yh)i=a,(ayff~t)=fB"" and hence

gp)(a) =g (i(ﬁ(a))) = (fF71)(B(@) = f(a) for all a € K. Therefore,
there is an R-homomorphism g: P — Q such that g = f.

(1)=>(3) Let g € M4, we have gf~1: f(M) — Ry, since f(M) is a semisimple
small right ideal of R and R is a right ss-injective ring ( by hypothesis), thus
there exists a € R such that (gf 1) (k) = ak , for all k € f(M).Now, let

m € M, then f(m) € f(M) and hence g (f_l(f(m))) = af (m). Therefore,
g(m) = af (m), for all m € M. Hence M¢ = Rf.

(3)=(1) Let f: K — R be a right R-homomorphism, where K is a semisimple
small right ideal of R and i: K — R be the inclusion map, thus by (3) we have
K% = Ri and hence f = ci in K% for some ¢ € R. Thus there is ¢ € R such that
f(a) = ca forall a € K and this implies that R is a right ss-injective ring. O

Example 2.2.2.

(1) Every universally mininjective ring is ss-injective, but not conversely (see
Example 3.2.8).

(2) The two classes of universally mininjective rings and soc-injective rings are
different ( see Example 3.2.8 and Example 3.2.9).

Corollary 2.2.3. Let R be a right ss-injective ring. Then:
(1) R is aright mininjective ring.
(2) Ir(a) =Raforallae s, nj.



(3) r(a) cr(b),a€S,.NJ,beRimplies Rb € Ra.
4) U(bRN7r(a)) =1(b) + Ra,forallae S, NnJ, b ER.
(5) l(KynK,)=I(K;)+ L(K,), for all semisimple small right ideals K; and K,
of R.
Proof. (1) By Lemma 2.1.5.

(2), (3), (4) and (5) are obtained by Lemma 2.1.13 and [32, 11.11, p. 88]. O

The following is an example of a right mininjective ring which is not right ss-
injective.

Example 2.2.4. (The Bjork Example [24, Example 2.5, p. 38]). Let F be a field
and let a — a be an isomorphism F — F € F, where the subfield F # F. Let
R denote the left vector space on basis {1, t}, and make R into an F-algebra by
defining t2 = 0 and ta = at for all a € F. By [24, Example 2.5 and 5.2, p. 38
and 97] we have R is a right principally injective and local ring. It is mentioned
in [2, Example 4.15], that R is not right soc-injective. Since R is local, thus by
Corollary 2.1.32 (1), R is not right ss-injective ring.

Theorem 2.2.5. Let R be a right ss-injective ring. Then:

1) S, njcZ,.

(2) If the ascending chain 1r(ay) € r(aya,) €--<r(a,..aa;) S -
terminates for any sequence a,,a,, .. in Z,. NS,, then S, NJ is right t-
nilpotentand S, NJ = Z,. N §,.

Proof. (1) Leta € S, nJ and bR nr(a) = 0 for any b € R. By Corollary 2.2.3
(4), I(b)+Ra=1UbRNr(a))=1(0)=R, so I(b)=R because a €],
implies that b = 0. Thus r(a) €*° Rz and hence S, NJ € Z,..

(2) For any sequence x4, x5, ... In Z, N S,., we have r(x;) € r(x,x;) € ---. By
hypothesis, there exists m € N such that 7(x,,, ... x,x1) = 7(Xypp1Xm - X2X1).
If x,, ... xox1 # 0, then (x,, ... x2x1)R N1 (Xpp41) # 0( because r(x,,41) S°°
Rg) and hence 0 # x,, ... xx%7 € r(x4,) for some reR. Thus
Xma1Xm - X2X,7 = 0 and this implies that x,, ...x,x,7 = 0, a contradiction.
Thus Z,. N S, is right t-nilpotent, so Z,. NS, € J. Therefore, S, NJ =Z, NS,
by (1). O

Proposition 2.2.6. Let R be a right ss-injective ring. Then :

(1) If Raisasimple left ideal of R, then soc(aR) N J(aR) is zero or simple.



(2) ri(S,nJ)=S5,n]Jifand only if rI(N) = N for all semisimple small right
ideals N of R.
Proof. (1) Suppose that soc(aR) N J(aR) is a nonzero. Let x; R and x,R be any
simple small right ideals of R with x; € aR, i =1,2. If x;R N x,R = 0, then
by Corollary 2.2.3 (5), I(x;) + l(x,) = R. Since x; € aR, thus x; = ar; for
some r; ER, i =1,2, that is l(a) € l(ar;) = l(x;), i =1,2. Since Ra is a
simple, then [(a) €™** R, that is I(x;) = l(x,) = l(a). Therefore, I[(a) =R
and hence a = 0 and this contradicts the minimality of Ra. Thus soc(aR) N
J(aR) is simple.

(2) Suppose that ri(S,NnJ) =S, NJ and let N be a semisimple small right
ideal of R, trivially we have N € rI(N). If N nxR = 0 for some x € rl(N),
then by Corollary 2.2.3 (5), I(NNnxR)=1I(N)+ l(xR) =R, since x €
ri(N) crli(S,n])=S,.n]. If y e [(N), then yx = 0, that is y(xr) = 0 for
all r € R and hence [(N) € [(xR). Thus [(xR) = R, so x = 0 and this means
that N c** rl[(N). Since N c** rl(N) € rl(S, nJ) =S, n], it follows that
N = rl(N). The converse is trivial. O

Lemma 2.2.7. Let R be a ring then rI(N) = N, for all semisimple small right
ideals N of R if and only if r(I(N) n Ra) = N + r(a), for all semisimple small
right ideals N of R and all a € R.

Proof. By the same argument of [2, Lemma 4.7]. O

Lemma 2.2.8. Let K be an m-generated semisimple right ideal lies over
summand of R. If R is a right ss-injective ring, then every R-homomorphism
from K to R can be extended to an endomorphism of Rj.

Proof. Let a: K — R be a right R-homomorphism. By hypothesis, K = eR @
B, for some e? = e € R, where B is an m-generated semisimple small right
ideal of R. Now, we need to prove that K = eR @ (1 — e)B. Clearly, eR +
(1 —e)B is adirect sum. Let x € K, then x = a + b, for some a € eR,b € B,
SO we can write x =a+eb+ (1 —e)b and this implies that x € eR @
(1 —e)B. Conversely, let x e eR@ (1 —e)B. Thus x =a + (1 —e)b, for
some a € eR,b € B. We obtainx =a+ (1 —e)b=(a—eb)+b € eR © B.
It is obvious that (1 —e)B is an m-generated semisimple small right ideal.
Since R is a right ss-injective, then there exists y € End(Rg) such that

Yia-e)s = Aja1-e)p- Define B: Ry — Ry by B(x) = a(ex) +y((1 — e)x), for



all x € R which is well defined R-homomorphism. If x € K, then x =a + b
where a € eR and b € (1 —e)B, s0 B(x) = alex) +y((1 — e)x) = a(a) +
y(b) = a(a) + a(b) = a(x) which yields £ is an extension of a. O

Corollary 2.2.9. Let R be a ring such that every finitely generated semisimple
right ideal lies over a summand of Ry (in particular, R is a semiregular ring) . If
R is a right ss-injective ring, then every R-homomorphism from a finitely
generated semisimple right ideal to R extends to R.

Proof. By Lemma 2.2.8. O

Corollary 2.2.10. Let S, be a finitely generated and lies over summand of Ry.
Then R is a right ss-injective ring if and only if R is a right soc-injective ring.

Proof. By Lemma 2.2.8. O

Lemma 2.2.11. A ring R is a right minannihilator if and only if rI(K) = K for
any simple small right ideal K of R.

Proof. (=) This is clear.

(&) Let K be any simple right ideal of R. Thus either K = eR for some
e?=e €Ror K cJby[25 Lemma 3.8, p. 29]. If K = eR with e? = e, then
rl(K) = rl(eR) = rl(e). Let x € rl(e). Since e? = e, thus (e — 1)e = 0 and
hence e — 1 € I(e) and this implies that (e — 1)x = 0. Thus x = ex and hence
x € eR. Therefore, rl(e) € eR. Since eR < rl(e), thus rl(e) = eR and hence
R is a right minannihilator. O

Similarly, we can prove the following lemma.

Lemma 2.2.12. A ring R is a left minannihilator if and only if Ir(K) = K for
any simple small left ideal K of R.

Corollary 2.2.13. For a right ss-injective ring R, the following hold:

(1) If ri(S, nJ) =S, n]J,then R is right minannihilator.
(2) IfS, < S, then:
@ S,=S5,.
(b) R is a left minannihilator ring.
Proof. (1) Let aR be a simple small right ideal of R, thus ri(a) = aR by
Proposition 2.2.6 (2). Therefore, R is a right minannihilator ring.



(2) (a) Since R is a right ss-injective, then it is right mininjective and it follows
from [23, Proposition 1.14 (4)] that S, = S,..

(b) If Ra is a simple small left ideal of R, then Ir(a) = Ra by Corollary 2.2.3
(2) and hence R is a left minannihilator ring. O

The following two results extend the results [2, Proposition 4.6 and
Theorem 4.12] from the soc-injective rings to the ss-injective rings.

Proposition 2.2.14. The following statements are equivalent for a right ss-
injective ring R:

(1) S, cS,.
(2) S{z = ST'
(3) R isa left mininjective ring.
Proof. (1)=(2) By Corollary 2.2.13 (2) (a).

(2)=(3) By Corollary 2.2.13 (2) and [24, Corollary 2.34, p. 53], we must show
that R is right minannihilator ring. Let aR be a simple small right ideal, then
Ra is a simple small left ideal by [23, Theorem 1.14]. Let 0 # x € rl(aR), then
[(a) € I(x). Since l(a) €™ R, thus l(a) = [(x) and hence Rx is simple left
ideal, that is x € S,.. Now, if Rx = Re for some e? = e € R, then e = rx for
some 0 = r € R. Since (e —1)e = 0, then (e — 1)rx = 0, thatis (e — 1)ra =
0 and this implies that ra € eR. Thus raR < eR, but eR is semisimple right
ideal, so raR <® R and hence ra = 0. Therefore, rx =0, that is e =0, a
contradiction. Thus x € J and hence x € S, nJ. Therefore, aR € rl(aR) S
S, NJ. Now, let aR nyR =0 for some y € rl(aR), thus I(aR) + [(yR) =
l(aR NnyR) = R. Since y € rl(aR), thus [(aR) € I(yR) and hence [(yR) =
R, thatis y = 0. Therefore, aR <°** rl(aR), so aR = rl(aR) as desired.

(3)=(1) Follows from [24, Corollary 2.34, p. 53]. O

Corollary 2.2.15. Let R be a right ss-injective ring, semiperfect with
S, ©°% Ri. Then R is a right minfull ring and the following statements hold:

(1) Every simple right ideal of R is essential in a summand.

(2) soc(eR) is simple and essential in eR for every local idempotent e € R.
Moreover, R is right finitely cogenerated.

(3) For every semisimple right ideal I of R, there exists e? = e € R such that
I €% rl(I) & eR.



(4) S, < S, crl(S,).
(5) If I is a semisimple right ideal of R and aR is a simple right ideal of R with
INnaR = 0,thenrl(I @ aR) =ri(l) @ rl(aR).
6) rl(BL, a;R) =P, rl(a;R), where @}, a;R is a direct sum of simple
right ideals.
(7) The following statements are equivalent:
@ S, =rl(S,).
(b) K = rl(K), for every semisimple right ideals K of R.
(¢) kR = rl(kR), for every simple right ideals kR of R.
d) S, =S,
(e) soc(Re) is asimple for all local idempotent e € R.
() soc(Re) = S,e, for all local idempotent e € R.
(9) R isa left mininjective.
(h) L =Ir(L), for every semisimple left ideals L of R.
(i) R s aleft minfull ring.
0 Srnj=rl(Sn)).
(K) K = rl(K), for every semisimple small right ideals K of R.
() L =1Ir(L), for every semisimple small left ideals L of R.
(8) If R satisfies any condition of (7), then (S, N ]) €°° R;.
Proof. (1), (2), (3), (4), (5) and (6) are obtained by Corollary 2.1.32 (1) and [2,
Theorem 4.12].

(7) The equivalence of (a), (b), (c), (d), (e), (f), (g), (h) and (i) follows from
Corollary 2.1.32 (1) and [2, Theorem 4.12].

(b)=(j) Clear.
(j)=(K) By Proposition 2.2.6 (2).
(k)=(c) By Corollary 2.2.13 (2).
(h)=(1) Clear.

(D=(d) Let Ra be a simple left ideal of R. By hypothesis, lr(4) = A for any
simple small left ideal A of R. By Lemma 2.2.12, Ir(A) = A, for any simple
left ideal A of R and hence lr(Ra) = Ra. Thus R is a right min-PF ring and it
follows from [23, Theorem 3.14] that S, = S,.

(8) Let K be a right ideal of R such that r(S,nJ)NK = 0. Then K (5, n
J)=0 and we have K € lr(S,n)) =S, nJ=S,n]J. Now, r((S,n)) +



I(K)) = r(S,nJ) N K = 0. Since R is left Kasch, then (S, nJ) + I(K) =R
by [17, Corollary 8.28, p. 281]. Thus I(K) = R and hence K =0, so (S, N
]) geSS RR- D

Recall that a ring R is said to be right V-ring if every simple right R-module
is injective; equivalently, if J(N) = 0 for all N € Mod-R (see [17, p. 97 and
99].

N. Zeyada, S. Hussein and A. Amin [38] introduced the notion almost-
injective, a right R-module M is called almost-injective if M = E @ K, where
E is injective and K has zero radical. They proved that, every almost-injective
right R-module is an injective if and only if every almost-injective is a quasi-
continuous if and only if R is a semilocal ring ( see [38, Theorem 2.12]). After
reflect of [38, Theorem 2.12] we found it is not true always, so most of the
other results in [38] are not necessary to be correct, because they are based on
[38, Theorem2.12]. The following example shows that the contradiction in [38,
Theorem 2.12] is exist.

Example 2.2.16.

(1) Let R be an artinian ring. Assume that R is not semisimple ring, then R is
not right V-ring. Thus there is simple right R-module is not injective.
Therefore, there is almost-injective right R-module is not injective. So it
follows from [38, Theorem 2.12] that R is not semilocal. Hence, R is not
right artinian and this a contradiction. Thus every right artinian ring is
semisimple, but this is not true in general (see below example).

(2) The ring Zg is semilocal. Since < 4 >= {0, 4} is almost-injective as Zg-
module, then < 4 > is injective Zg-module by [38, Theorem 2.12]. Thus
< 4 >c® 7, and this a contradiction.

The following Theorem is a new version of [38, Theorem 2.12] in terms of
ss-injectivity.

Theorem 2.2.17. The following statements are equivalent for a ring R:

(1) R is a semiprimitive and every almost-injective right R-module is quasi-
continuous.

(2) R is a right ss-injective and right minannihilator ring, J is a right artinian,
and every almost-injective right R-module is quasi-continuous.

(3) R isasemisimple ring.



Proof. (1)=(2) and (3)=(1) are clear.

(2)=(3) Let M be a right R-module with zero Jacobson radical and let K be a
nonzero submodule of M. Thus K @ M is a quasi-continuous module. By [21,
Corollary 2.14, p. 23], K is an M-injective. Thus K <® M and hence M is
semisimple. In particular, R/J is a semisimple R-module and hence R/J is
artinian by [16, Theorem 9.2.2 (b), p. 219], so R is semilocal ring. Since J is a
right artinian, then R is a right artinian. So, it follows from Corollary 2.2.15 (7)
that R is right and left mininjective. Thus [23, Corollary 4.8] implies that R is
QF ring. By hypothesis R @ (R/]) is quasi-continuous ( since R is self-
injective), so again by [21, Corollary 2.14, p. 23] we have that R/] is an
injective. Since R is QF ring, then R/] is a projective (see Proposition 1.2.11).
Thus the canonical map m: R — R/] is a splits and hence ] €® R, thatis ] = 0.
Therefore, R is semisimple. O

Note. It is mentioned in [37], that the result [38, Theorem 2.12] is not true but
they didn't give a counterexample.



Section Three

2.3 SS-Flat Modules

In this section, we will introduce the dual concept to ss-injective module
namely, ss-flat module. We will give some results in terms of ss-injectivity and
ss-flatness.

Definition 2.3.1. A left R-module M is said to be ss-flat if
Tor,(R/(S,NnJ),M) = 0.

Example 2.3.2.

(1) Any flat module is ss-flat, but the converse is not true. For example the Z-
module Z,, is not flat for all n > 2 (see [6,Example , p.155]), but it is clear
that Z,, as Z-module is ss-flat for all n > 2.

(2) Every ss-flat module is min-flat, since if M is an ss-flat left R-module, then
M™ is an ss-injective right R-module (by Lemma 2.3.3) and hence from
Lemma 2.1.5 we have that M* is right mininjective. By Lemma 1.2.54, M
is min-flat.

(3) In the Bjork Example (Example 2.2.4) we have that the ring R is right
mininjective ring but not right ss-injective ring. If dim(zF) is finite, then R
right artinian by [2, Example 4.15]. Therefore, R is a right coherent ring.
Thus R* is a left min-flat R-module by [19, Theorem 4.5], but the left R-

module R* is not ss-flat by Theorem 2.3.10 below.

Lemma 2.3.3. The following statements are equivalent :

(1) M is an ss-flat left R-module.

(2) M is an ss-injective right R-module.

(3) Tor,;(R/A,M) = 0, for every semisimple small right ideal A of R.

(4) Tor,(R/B,M) =0, for every finitely generated semisimple small right
ideal B of R.

(5) Thesequence 0 — (S, NJ))®rM — RrQ®zxM is exact.

(6) The sequence 0 — AQrM — Rz QM is exact for every finitely generated
semisimple small right ideal A of R.



Proof. (1)&(2) This follows from  Ext!(R/(S,nJ) ,M*) =
Tor, (R/ (S, NJ) ,M)* (see Theorem 1.2.31).

(2)=(3) Let A be a semisimple small right ideal of R. By Theorem 1.2.31 and
Corollary 2.1.7 Tor;(R/A, M)* = Ext'(R/A,M*) = 0. Thus Tor;(R/A ,
M) = 0, since Q/Z is injective cogenerator.

(3)=(1) This is clear.
(4)=(3) Let I be a semisimple small right ideal of R, so I = lim I; , where I; is
ﬁ

a finitely generated semisimple small right ideal of R, f;;:I; — I; is the
inclusion map, and (I;, f;;) is a direct system (see [12, Example 1.5.5 (2), p.
32]). Clearly, (R/I; ,h;;) is a direct system of R-modules where
hij:R/I; — R/I; is defined by h;;(a+1;)=a+]1 with direct limit
(h; ,li_r)n R/I;). Since the following diagram is commutative:

0> - R—-5R/I, — 0
o || L
ij j
0—I—R—R/[; >0
where i; and m; are the inclusion and canonical maps, respectively. By [32,

24.6, p. 200], we have the exact sequence 0 — [ R lim R/I, -0 .1t
ﬁ

follows from [32, 24.4, p. 199] that the following diagram is commutative:

R —5 R/I, — 0

| b

R — limR/I; — 0
H

Thus the family of mappings {gi| gi:R/I; — R/liml; ,where g;(a + I;) =
—

a+ limli} forms a direct system of homomorphisms, since for i < j, we get
_>

g]hu(a+ll) = g](a+lj) = a+11mIl = gi(a+ Il) for all a +Il € R/Il
ﬁ



Thus there is an R-homomorphism a such that the following diagram is
commutative with short exact rows (see Definition 1.2.42):

u

[ i hi
0 — [ — R—5 R/I; —>limR/I; — 0

.

i T gi
0—>I—R—>R/I;—> R/liml; - 0
n _)

where 7 is the canonical map, so it follows from [3, Exercise 11 (1), p. 52] that
limR/I; = R/liml; . Therefore,
— —

Tory(R/1,M) = Tor, <R /lim I;, M)
_)

= Tor, <1imR /I, M) (by [13, Theorem XI11.5.4 (4), p. 494])
—
= lim Tor;(R/I;,M) = 0 (by [26, Proposition 7.8, p. 410]).
—

(3)=>(4) Clear.

(1)<=(5) By [13, Theorem XI1.5.4 (3), p. 494], we have the exact sequence
0 — Tory(R/(S,NJ),M) — (5, N])®rM — RrQzM. Thus the
equivalence between (1) and (5) is true.

(4)=(6) is similar to ((1)<(5)). O

In the following, we will use the symbol SSI (resp. SSF ) to denote the
classes of ss-injective right (resp. ss-flat left ) R-modules.

Corollary 2.3.4. The pair ( SSF, SSI') is an almost dual pair.
Proof. By Lemma 2.3.3 and Theorem 2.1.3 (1) and (5).

Lemma 2.3.5. For aring R, the following statements hold:

(1) If S, n]J is finitely generated, then every pure submodule of ss-injective
right R-module is ss-injective.
(2) Every pure submodule of ss-flat left R-module is ss-flat.



(3) Every direct limts (direct sums) of ss-flat left R-modules is ss-flat.

(4) If M,N are left R-modules, M = N, and M is ss-flat, then N is ss-flat.
Proof. (1) Let M be an ss-injective right R-module and N be a pure submodule
of M. Since R/(S,n]J) is a finitely presented, thus the sequence
Homz(R/(S, N]) ,M) — Homg(R/(S,NnJ]) ,M/N) — 0 is exact. By [13,
Theorem XlIl1.44 (4), p. 491], we have the exact sequence
Homg(R/(S- N]) ,M) — Homg(R/(S, N]),M/N) — Ext'(R/(S, n]),N) —
Ext'(R/(S, nJ),M) which leads to Ext'(R/(S,nJ) ,N) = 0. Hence N is an
ss-injective right R-module.

(2), (3) and (4) By Corollary 2.3.4 and [20, Proposition 4.2.8, p. 70]. O

In the following definition, we will introduce the concept of ss-coherent
ring as a generalization of coherent ring

Definition 2.3.6. A ring R is said to be right ss-coherent ring, if R is a right
min-coherent and S, N J is finitely generated; equivalently, if S, N J is finitely
presented.

Example 2.3.7.

(1) Every coherent ring is ss-coherent.

(2) Every ss-coherent ring is min-coherent.

(3) Let R be a commutative ring, then the polynomial ring R[x] is not coherent
ring with zero socle by [19, Remark 4.2 (3)]. Hence R[x] is an ss-coherent
ring but not coherent.

Corollary 2.3.8. A right ideal S, nJ of a ring R is finitely generated if and
only if every FP-injective right R-module is an ss-injective.

Proof. By Proposition 1.2.50. O

In the next theorem we give a new characterizations of min-coherent rings
in terms of ss-injective and ss-flat modules.

Theorem 2.3.9. The following statements are equivalent for a ring R:

(1) R is aright min-coherent ring.

(2) If M is an ss-injective right R-module, then M™* is ss-flat.

(3) If M is an ss-injective right R-module, then M*™ is ss-injective.
(4) A left R-module N is ss-flat if and only if N** is ss-flat.



(5) SSF is closed under direct products.

(6) RS is ss-flat for any index set S.

(7) Ext?(R/I,M) =0 for every FP-injective right R-module M and every
finitely generated semisimple small right ideal 1.

(8) If0 - N — M — H — 0is an exact sequence of right R-modules with N
is FP-injective and M is ss-injective, then Ext'(R/I,H) = 0 for every
finitely generated semisimple small right ideal 1.

(9) Every left R-module has an (SSF)-preenvelope.

(10) If a:M — N is an (SSI)-preenvelope of a right R-module M, then
at:N* — M* isan (SSF)-precover of M™.

(11) For any positive integer n and any by, ..., b,, € S, N J, then the right ideal
{freR:byr+b,r,+--+b, 1, =0 for some r,,:-,1, € R} is finitely
generated.

(12) For any finitely generated semisimple small right ideal A of R and any
x € S, nJ, then {r € R|xr € A} is finitely generated.

(13) r(x) is finitely generated for any simple right ideal xR.

(14) Every simple submodule of a projective right R-module is finitely
presented.

Proof. (1)=(2) Let I be a finitely generated semisimple small right ideal of R,

a
thus there is an exact sequence F, — F; 1, I — 0 in which F; is a finitely

generated free right R-module, i = 1,2 by hypothesis. Therefore, the sequence

F, e F; d R— R/I — 0 is exact, where i:] — R and m: R — R/I are

the inclusion and the canonical maps, respectively and f = ia;. Thus R/I is 2-
presented and hence Lemma 1.2.41 implies that Tor,(R/I,M*) =
Ext'(R/1,M)* = 0. Therefore, M* is an ss-flat left R-module.

(2)=(3) By Lemma 2.3.3.

(3)=(4) Assume that N is an ss-flat left R-module, thus N7 is an ss-injective by
Lemma 2.3.3 and this implies that N*** is an ss-injective by (3). So N** is an
ss-flat by Lemma 2.3.3 again. The converse is obtained by Theorem 1.2.47 (1)
and Lemma 2.3.5 (2).

(4)=(5) By (4), (SSF)** < SSF. Since ( SSF, SSI') is an almost dual pair (by
Corollary 2.3.4), thus [20, Proposition 4.3.1 and Proposition 4.2.8 (3), p. 85 and
70] implies that SSF is closed under direct products.

(5)=(6) Obvious.



(6)=(1) Since every ss-flat left R-module is min-flat, thus the result follows
from [19, Theorem 4.5].

(1)=(7) Let I be a finitely generated semisimple small right ideal of R and let
M be a FP-injective right R-module. By [13, Theorem Xl1.4.4 (3), p. 491], we
get the exact sequence Ext!(l,M) — Ext?(R/I,M) — Ext?(R,M). But
Ext!(I,M) = 0 (since M is FP-injective and I is a finitely presented) and
Ext2(R,M) = 0 (since R is projective). Thus Ext?(R/I,M) = 0.

(7)=>@B) If0 — N — M — H — 0 is an exact sequence of right R-modules,
where N is FP-injective and M is ss-injective and let I be a finitely generated
semisimple small right ideal of R. By [13, Theorem XI1.4.4 (4) ), p. 491], we
get an exact sequence 0 = Ext*(R/I,M) — Ext*(R/I,H) — Ext?(R/I,N)
= 0. Thus Ext'(R/I,H) = 0 for every finitely generated semisimple small
right ideal I of R.

(8)=>(1) Let N be a FP-injective right R-module, thus we have the exact
sequence 0 — N — E(N) — E(N)/N — 0. Let I be a finitely generated
semisimple small right ideal of R, thus Ext'(R/I,E(N)/N)=0 by
hypothesis. So it follows from [13, Theorem Xll.4.4 (4), p. 491] that the
sequence 0 = Ext'(R/I,E(N)/N) — Ext*(R/I,N) — Ext?(R/I,E(N)) =
0 is exact, and so Ext?(R/I,N) = 0. Hence we have the exact sequence
0 = Ext'(R,N) — Ext'(I,N) — Ext?(R/I,N) =0 (see [13, Theorem
XI1.4.4 (3) ), p. 491]). Thus Ext'(I, N) = 0 and this implies that I is a finitely
presented (see Remark 1.2.51). Therefore, R is a right min-coherent,

(5)<(9) By Corollary 2.3.4 and [20, Proposition 4.2.8 (3), p. 70].

(2)=(10) Since (SSI)* < SSF (by hypothesis) and (SSF)* < SSI (by Lemma
2.3.3), thus the result follows from [11, Corollary 3.2, p. 1137].

(10)=(2) By taking M is an ss-injective right R-module in (10).

(1)=>(11) Let by,b,,..,b, €S.Nn]J. Put K; = byR + b,R + -+ b,R and
K, = b,R+ -+ b,R. Thus K, =b,R+ K,. Define f:R— K,/K, by
f(r) = b;r + K, which is a well-define R-epimorphism, because if r;, =1, €
R, then byry — b1, =0 € K,, that is b;r; + K, = b1, + K,. Now, we have
that ker(f) ={r e R|bi;r +K, =K,} ={reR|bir €EK,}={r €R| by 7+
b, r, +-++ b, 1, = 0forsomer,, ,r, €R}. By (1) and using [17, Lemma



454, p. 141], we have that K;/K, is a finitely presented. But
R/ker(f) =K, /K,, so ker(f) is finitely generated.

(11)=(12) Let x € S, nJ and A be any finitely generated semisimple small
right ideal of R, then A =@%, a;R, so we have that {r € R|xr € A} ={r €
Rlxr+ay1+:-+a,r, =0forsomer, ,r, € R} is finitely generated
by hypothesis.

(12)=(13) By taking A = 0.

(13)=(1) Let xR be a simple right ideal. Since r(x) is finitely generated and
xR = R/r(x), thus xR is finitely presented.

(1)=(14) Let S, =@, a;R, where a;R is a simple right ideal for each i € I. If
P is a projective right R-module, then P is isomorphic to a direct summand of
R®) for some index set S. Let A be any simple submodule of P, then 4 =
B <®°@®; S, =D;D,,; a;R. Since A is finitely generated, then there are finite
index sets S, €S and I, €1 such that A = B <®@®, D, a;R, so it follows
from [17, Lemma 4.54, p. 141] that A is finitely presented.

(14)=(1) Clear. O
Theorem 2.3.10. The following statements are equivalent for a ring R:

(1) R isaright ss-coherent ring.
(2) A-right R-module M is ss-injective if and only if M* is ss-flat.
(3) A right R-module M is ss-injective if and only if M*™ is ss-injective.
(4) SSIis closed under direct limits.
(5) S, n] is finitely generated and every pure quotient of ss-injective right R-
module is ss-injective.
(6) The following two conditions hold:
(a) Every right R-module has an (SSI)-cover.
(b) Every pure quotient of ss-injective right R-module is ss-injective.
Proof. (1)=(2) Let M* be an ss-flat, then M** is an ss-injective by Lemma
2.3.3, so it follows from Theorem 1.2.47 (1) and Lemma 2.3.5 (1) that M is ss-
injective. The converse is obtained by Theorem 2.3.9.

(2)=(3) Let M** be an ss-injective, thus M7 is an ss-flat by Lemma 2.3.3 and
hence M is ss-injective by hypothesis. The converse is true by Theorem 2.3.9.



(3)=(1) Let M be an FP-injective right R-module, then the exact sequence
0 —>M—EM)— EM)/M — 0 is pure by [28, Proposition 2.6], so it
follows from Theorem 1.2.44 that the sequence 0 — M*+* — E(M)** —
(E(M)/M)**t — 0 is split. Since E(M)** is an ss-injective by hypothesis,
thus M** is ss-injective and hence M is an ss-injective by hypothesis again.
Therefore, S, NnJ is finitely generated by Corollary 2.3.8, and so S, NJ is
finitely presented by Theorem 2.3.9. Thus R is a right ss-coherent ring.

(1)=(4) Let {M,},ep be a direct system of ss-injective right R-modules. Since
S, N J is finitely presented, then R/S, N J is 2-presented, so it follows from [9,

Lemma 2.9 (2)] that Ext?! (R/(ST NJ),lim M,—l> =~ lim Ext'(R/(S, N ]), M,)

= (. Hence lim M, is ss-injective.
_)

(4)=>(2) Let {E;:i €I} be a family of injective right R-modules. Since
D, E; = lim {D,, Ei: Iy € LI, finite } (see [32, p. 206]), then D, E; is ss-
_)

injective and hence S, NnJ is a finitely generated by Corollary 2.1.26. By
Lemma 2.3.5, SSI is closed under pure submodules. Since SSI is closed under
direct products ( by Theorem 2.1.3 (1)) and since SSI is closed under direct
limlts ( by hypothesis), thus SSI is a definable class. By [20, Proposition 4.3.8,
p. 89], (§S51,SSF) is an almost dual pair and hence a right R-module M is an ss-
injective if and only if M is an ss-flat

(2)=(5) By the equivalence between (1) and (2), we have that S, nJ is a
finitely generated. Now, let 0 - N —- M — M/N — 0 be a pure exact
sequence of right R-modules with M is ss-injective, so it follows from Theorem
1.2.44 that the sequence 0 — (M/N)* — M* — N* — 0 is split. By
hypothesis, M* is ss-flat, so (M/N)* is ss-flat. Thus M /N is ss-injective by
hypothesis again.

(5)=(4) Let {M,};ca be a direct system of ss-injective right R-modules. By
[32, 33.9 (2), p. 279], there is a pure exact sequence @,., M; — lim M; — 0.
_)

Since @,., M; is ss-injective by Corollary 2.1.26, thus lim M, is ss-injective
_)

by hypothesis.

(5)<(6) By Corollary 2.1.26 and Theorem 1.2.46. O



Corollary 2.3.11. Aring R is ss-coherent if and only if it is min-coherent and
the class SSI is closed under pure submodules.

Proof. (=) Suppose that R is an ss-coherent ring, thus R is a min-coherent and
S, NJ is a finitely generated right ideal of R. By Lemma 2.3.5 (1), SSI is
closed under pure submodules.

(<) Let M be any ss-injective right R-module. Since R is a min-coherent, thus
Theorem 2.3.9 implies that M* is an ss-flat. Conversely, let M be any right R-
module such that M* is ss-flat. By Lemma 2.3.3, M*™* is an ss-injective. Since
M is a pure submodule of M** ( by Theorem 1.2.47 (1)) and since SSI is a
closed under pure submodule ( by hypothesis) it follows that M is an ss-
injective. Hence for any right R-module M, we have that M is an ss-injective if
and only if M* is an ss-flat. Thus Theorem 2.3.10 implies that R is an ss-
coherent. O

Corollary 2.3.12. For a right min-coherent ring R, the following statements are
equivalent:

(1) Every ss-flat left R-module is flat.

(2) Every ss-injective right R-module is FP-injective.

(3) Every ss-injective pure injective right R-module is injective.
Proof. (1)=(2) For any ss-injective right R-module M, then M~ is ss-flat by
Theorem 2.3.9, and so M is flat by hypothesis. Thus M** is an injective by
Proposition 1.2.36. Since M is a pure submodule of M**, then M is an FP-
injective by [32, 35.8, p. 301].

(2)=(3) By [28, Proposition 2.6] and Theorem 1.2.45.

(3)=(1) Assume that N is an ss-flat left R-module, thus N* is an ss-injective
pure injective by Lemma 2.3.3 and Theorem 1.2.47 (2). Thus N* is an

injective, and so N is a flat by Proposition 1.2.36. O

Proposition 2.3.13. For a right ss-coherent ring R, the following statements are
equivalent:

(1) R isaright ss-injective ring.

(2) Every left R-module has a monic ss-flat preenvelope.
(3) Every right R-module has epic ss-injective cover.

(4) Every injective left R-module is ss-flat.



(5) Every flat right R-module is ss-injective.

Proof. (1)=(2) Let N be a left R-module, then there is an epimorphism
a: Rg) — N7 for some index set S by [26, Theorem 2.35, p. 58], and so there
is an R-monomorphism g: N — (R3)S by applying [13, Proposition X1.2.3, p.
420], [32, 11.10 (2) (ii), p. 87] and Theorem 1.2.47 (1), respectively. In the
other hand, N has ss-flat preenvelope f: N — F by Theorem 2.3.9. Since
(RS is ss-flat by Theorem 2.3.9 again, thus there is an R-homomorphism
h:F — (R#)% such that hf = g, so this means that f is an R-monomorphism.

(2)=(4) Let N be an injective left R-module, then there is an R-monomorphism
f:N — F with F is ss-flat. But N = f(N) €® F, so we have that N is ss-flat
by Lemma 2.3.5 (4).

(4)=(5) Let M be a flat right R-module, then M* is an injective and hence ss-
flat. Thus M is ss-injective by Theorem 2.3.10.

(5)=(1) Obvious, since Ry, is flat.

(1)=(3) Let M be any right R-module, then M has ss-injective cover, say,
g:N — M by Theorem 2.3.10. By [26, Theorem 2.35, p. 58], there is an R-
epimorphism f: R,(f) — M for some index set S. Since ngs) IS ss-injective by
Corollary 2.1.26, then there is a R-homomorphism h:R}gS) — N such that
gh = f,so g is an R-epimorphism.

(3)=(1) Let f: N — Rj be an epic ss-injective cover. Since Ry is a projective,

then there is an R-homomorphism g: R, — N such that fg = I, thus f is
split, and so N = Kker(f) @ B for some ss-injective submodule B of N.

Therefore Ry = N /Ker(f) = B is ss-injective. O

Proposition 2.3.14. The class SSI is closed under cokernels of
homomorphisms if and only if coker(a) is an ss-injective for every ss-injective
right R-module M and a¢ € End(M).

Proof. (=) Clear.

(<) Let A and B be any ss-injective right R-modules and f be any R-
homomorphism from A to B. Define a:A@® B — A@ B by a((x,y)) =

(0,f(x)). Therefore, (A@®B)/im(a)= (ADB)/(0Dim(f)=AD
(B/im (f)) is an ss-injective. Thus B/im (f) is an ss-injective. O



Proposition 2.3.15. The class SSF is closed under kernels of homomorphisms
if and only if ker(a) is ss-flat, for every ss-flat left R-module M and «a €
End(M).

Proof. (=) Clear.

(<) Let g: N — M be any R-homomorphism with N and M are ss-flat left R-
modules. Define a:N @ M — N @ M by a((a, b)) = (0, g(a)). Thus ker(a)
= ker(g) @ M is ss-flat by hypothesis and hence ker(g) is an ss-flat. O

Theorem 2.3.16. If R is a commutative ring, then the following statements are
equivalent:

(1) R is a min-coherent ring.
(2) Homy(M, N) is an ss-flat for all ss-injective R-modules M and all injective
R-modules N.
(3) Homg(M, N) is an ss-flat for all injective R-modules M and N.
(4) Homg(M, N) is an ss-flat for all projective R-modules M and N.
(5) Homg(M, N) is an ss-flat for all projective R-modules M and all ss-flat R-
modules N.
Proof. (1)=(2) If I is a finitely generated semisimple small ideal of R, then I is
finitely presented. By [13, Theorem Xl1.4.4 (3) ), p. 491], we have the exact
sequence 0 — Homg(R/I,M) — Homg(R,M) — Homg(l,M) — 0. Thus
the sequence 0 — Homgz(Homg(I,M),N) — Homgz(Homg(R,M),N) —
Homg(Homg(R/1,M),N) — 0 is exact by [13, Theorem X11.4.4 (3) ), p. 491]
again. Thus we have the exact sequence 0 — Homgz(M,N)QzI —
Homg (M, N)®zR — Homyz (M, N)®z(R/I) — 0 by [12, Theorem 3.2.11, p.
78] and this implies that Homg (M, N) is an ss-flat.

(2)=(3) Clear.

(3)=(1) By [6, Proposition 2.3.4, p. 66] and [26,Theorem 2.75, p. 92], we have
that (R**)S = (Homy(R*®xR,Q/Z))’ = (Homg(R*,R*))" for any index
set S. Thus (R**)% = Homy(R*, (R*)%) is an ss-flat for any index set S by
[32, 11.10 (2), p. 87] and since R* and (R*)" are injective. Since RS is a pure
submodule of (R**)S by Theorem 1.2.47 (1) and [7, Lemma 1 (2)], so it
follows from Lemma 2.3.5 (2) that RS is an ss-flat for any index set S. Thus (1)
follows from Theorem 2.3.9.



(1)=(5) Since M is a projective R-module, thus there is a projective R-module
P such that M @ P = R®) for some index set S. Therefore, Homg (M, N) @

Hompg (P, N) = Homgz (RS, N) = (Homg(R,N))" = NS by [32, 11.10 and
11.11, p. 87 and 88]. But N5 is an ss-flat by Theorem 2.3.9, thus Homg (M, N)
Is an ss-flat.

(5)=(4) Clear.

(4)=(1) For any index set S, by [32, 11.10 and 11.11, p. 87 and 88], we have
that RS = Homz(R®),R). Thus RS is ss-flat by (4), so it follows from
Theorem 2.3.9 that (1) holds. O

Corollary 2.3.17. The following are equivalent for a commutative ss-coherent
ring R:

(1) M is an ss-injective R-module.

(2) Homg(M, N) is an ss-flat for any injective R-module N.

(3) M®gN is an ss-injective for any flat R-module N.
Proof. (1)=(2) By Theorem 2.3.16.

(2)=(3) By [26, Theorem 2.75, p. 92], we have that (M@iN)* =
Homg(M,N*) for any R-module N. If N is flat, then N* is an injective by
Proposition 1.2.36, so (M®xN)* is an ss-flat by hypothesis. Therefore M®;N
IS an ss-injective by Theorem 2.3.10.

(3)=(1) This follows from [6, Proposition 2.3.4, p. 66], since R is a flat. O

Corollary 2.3.18. Let R be a commutative ss-coherent ring and SSF is closed
under kernels of homomorphisms. Then the following statements hold for any
R-module N:

(1) Homg(M, N) is an ss-flat for any ss-injective R-module M.

(2) Homg(N, M) is an ss-flat for any ss-flat R-module M.

(3) M®gN is an ss-injective for any ss-injective R-module M.
Proof. (1) Let M be an ss-injective R-module. It is clear that the exact sequence
00— N —E, — E; induces the exact sequence 0 — Homgz(M,N) —
Homg (M, E)) — Homy (M, E;) where E, and E; are injective R-modules. By
Theorem 2.3.16, we have that Homy (M, E,;) and Homg (M, E,) are ss-flat, thus
Hompg (M, N) is an ss-flat by hypothesis.



(2) Let M be an ss-flat R-module, so we have the exact sequence 0 —
Homy (N, M) — Homg(F,, M) — Homg(F;, M) where F, and F, are free R-
modules. By Theorem 2.3.16, the modules Homg (F,, M) and Homg (F;, M) are
ss-flat. Therefore, Homg (N, M) is an ss-flat by hypothesis.

(3) Let M be any ss-injective R-module, then (M®zN)" = Homgz(M,N™*) is
an ss-flat by [26, Theorem 2.75, p. 92] and applying (1), and hence M@xN is
ss-injective by Theorem 2.3.10. O

Theorem 2.3.19. Let R be a commutative ss-coherent ring. Then the following
statements are equivalent:

(1) R isan ss-injective ring.
(2) Homg(M, N) is an ss-injective for any projective R-module M and any flat
R-module N.

(3) Homg(M, N) is an ss-injective for any projective R-modules M and N.

(4) Homg(M, N) is an ss-injective for any injective R-modules M and N.

(5) Homgz(M,N) is an ss-flat for any flat R-module M and any injective R-

module N.

(6) M®gN is an ss-flat for any flat R-module M and any injective R-module N.
Proof. (1)=(2) Since R is an ss-injective, thus every flat R-module is an ss-
injective by Proposition 2.3.13. Let M be a projective R-module, then M @
P = R® for some projective R-module P and for some index set S. Thus for
all flat R-module N, we have Homg (M, N) @ Homg (P, N) = Homg(R®, N)
=~ N* by [32, 11.10 and 11.11]. Since N¥ is an ss-injective, thus Homz (M, N)
IS an ss-injective.

(2)=(3) Clear.

(3)=(1) Since R = Homg (R, R) by [32, 11.11, p. 88], thus R is an ss-injective
ring.

(1)=(4) By Theorem 1231, Ext'(R/(S,nJ),Homg(M,N)) =
Homg (Tor (R/(S, Nn]) ,M),N) for all injective R-modules M and N. By
Proposition 2.3.13, M is an ss-flat. Thus Tor; (R/(S, nJ) ,M) = 0 and hence
Homg (M, N) is an ss-injective.

(4)=(1) To prove R is an ss-injective ring, we need prove that every injective
R-module is ss-flat (see Proposition 2.3.13). Now, let M be any injective R-



module, then Homg (M, R™) is an ss-injective, SO
0 = Ext*(R/(S, NJ) ,Homg(M,R*)) = Homg(Tor,(R/(S, NJ),M),R*) =
(Tor;(R/(S, N]),M)®rR)* = Tor,(R/(S, n]),M)" by applying Theorem
1.2.31, [26, Theorem 2.75, p. 92] and [6, Proposition 2.3.4, p. 66]. Therefore,
Tor;(R/(S,Nn]J),M) = 0, since Q/Z is an injective cogenerator. Thus M is an
ss-flat.

(5)=(1) and (6)=(1) By taking M = R and using [32, 11.11, p. 88] and [6,
Proposition 2.3.4, p. 66].

(1)=(5) Let M be a flat R-module and N be an injective R-module, then
Homg (M, N) is injective. Therefore, Homy (M, N) is an ss-flat by Proposition
2.3.13.

(1)=(6) Let M be a flat R-module and let N be an injective R-module. Then N
is ss-flat by Proposition 2.3.13, so the sequence 0 — N®x(S,NJ) — N isan
exact. Since M is flat, then the sequence 0 — MQrN®x (S, N]) — MQyN

Is exact and this implies that M@y N is an ss-flat. O

Proposition 2.3.20. Let R be a commutative ring. Then the following
statements are equivalent:

(1) M is an ss-flat.

(2) Homg(M, N) is an ss-injective for all injective R-module N.

(3) M®giN is an ss-flat for all flat R-module N.
Proof. (1)=(2) Let N be any injective R-module. Since
Ext'(R/(S, n]) ,Homg(M,N)) = Homg(Tory(R/(S,NJ),M),N) =0 by
Theorem 1.2.31, then Homy (M, N) is an ss-injective.

(2)=>(3) Let N be a flat R-module. Then N* is an injective by Proposition
1.2.36. So it follows from [26, Theorem 2.75, p. 92] that (M®zN)" =
Hompg (M, N*) is ss-injective. Thus M®pN is an ss-flat by Lemma 2.3.3.

(3)=(1) Follows from [6, Proposition 2.3.4, p. 66]. O

Proposition 2.3.21. Let R be a commutative ring and M be a semisimple R-
module. If M is an ss-flat, then End(M) is an ss-injective as R-module.



Proof. By [6, p. 157], there is a group epimorphism ¢: (S, N )®xM — (S, N
J)M given by a®x — ax for each generator a®x € (S, N J)®zM. Thus we
have the commutative diagram:

i1 QI
0> (S, N))®xM ——3 RQxM

wl lf
0— (S, n))M LM

where i, and i, are the inclusion maps, and f is an isomorphism defined by [6,
Proposition 2.3.4, p. 66]. Since f(i;® I,,) is a Z-monomorphism, then ¢ is an
isomorphism. Therefore (S, NJ)®xM = (S, NJ)M < J(M) = 0 by Remark
1.1.7 (4). So it follows from [26, Theorem 2.75, p. 92] that 0 = Homg ((S, N
J®rM, M) = Homg (S, NnJ,End(M)). But the sequence 0 = Homg(S, N
J,End(M)) — Ext'(R/(S,nJ),End(M)) — Ext!(R,End(M)) = 0 is exact
by [13, Theorem XI1.4.4 (3) ), p. 491]. Thus Ext*(R/(S, nJ),End(M)) = 0
and hence End(M) is an ss-injective as R-module. O

Proposition 2.3.22. Let R be a commutative ring and M be a simple R-module.
Then M is ss-flat if and only if M is ss-injective.

Proof. (=) Let M = mR be a simple R-module. Define f: Homgz(mR, mR) —
mR by f(a) = a(m). We assert that f is a well define R-homomorphism. Let
a, = a,, then a;(m) = a,(m), so f(a,) = f(ay). Now, let a;, a, € End(M)
and r,r, €R, then f(ra, +nay)=Mma, +nrna,)(m)=(a)(m)+
(ray)(m) = ria;(m) + pa,(m) = r f(ay) + r»f (ay) proving the assertion.
Since  f(End(M))=M and  ker(f) = {a € End(M)| f(a) = 0} =
{a € End(M)|a(m) = 0} = {a € End(M)|m € ker(a)} = 0, then End(M) =
M and hence M is an ss-injective by Proposition 2.3.21.

(<) Let {S3}1ea be a family of all simple R-modules and E = E(D 5 S1).
Then Homg (M, E) = M by the proof of [31, Lemma 2.6], so it follows from
Theorem 1.2.31 that Ext*(R/(S, nJ),M) = Homg(Tor;(R/(S, Nn]),M),E).
Since M is an ss-injective, then Homg (Tory; (R/(S, NJ),M),E) = 0. But E is
an injective cogenerator ( by using [3, Corollary 18.19, p. 212]), thus we get
Tor (R/(S, NnJ),M) = 0 (see [12, definition 3.2.7, p. 77]) and hence M is an

ss-flat. O



The following corollary extends Proposition 1.2.13.

Corollary 2.3.23. The following statements are equivalent for a commutative
ring R:

(1) R isauniversally mininjective.
(2) RisaPS-ring.
(3) Risan FS-ring.
(4) S, is an ss-flat.
Proof. By Proposition 2.3.22 and Corollary 2.1.12. O



Chapter Three
Section One

3.1 Strongly SS-Injective Modules

In this section, we will introduce and study the concept of strongly ss-
injective modules and we will characterize semiprimitive rings, artinian rings
and QF rings in terms of this concept.

Definition 3.1.1. A right R-module M is said to be strongly ss-injective if M is
ss-N-injective, for all right R-module N. A ring R is said to be strongly right ss-
injective if the right R-module Ry, is strongly ss-injective.

Example 3.1.2.

(5) Every strongly soc-injective module is strongly ss-injective, but not
conversely (see Example 3.2.9).

(6) Every strongly ss-injective module is ss-injective, but not conversely (see
Example 3.2.8).

Proposition 3.1.3. A right R-module M is a strongly ss-injective if and only if
every R-homomorphism a: A — M extends to N, for all right R-module N,
where A < N and a(A) is a semisimple submodule in M.

Proof. (<) Clear.

(=) Let A be a small submodule of N, and a: A — M be an R-homomorphism
with a(4) is a semisimple submodule of M. If B = ker(a), then a induces an
R-homomorphism @: A/B — M defined by @&(a + B) = a(a), for all a € A.
Clearly, @ is well define because if a; + B = a, + B we have a; — a, € B, SO
a(a,) = a(a,), that is @(a; + B) = @(a, + B). Since M is strongly ss-
injective and A/B is semisimple and small in N/B, thus & extends to an R-
homomorphism y: N/B — M. If m: N — N/B is the canonical map, then the
R-homomorphism g =ym: N — M is an extension of «a such that if a € 4,

then f(a) = (ym)(a) =y(a+ B) = @(a + B) = a(a) as desired. O

Corollary 3.1.4. The following statements hold:



(3) A finite direct sum of strongly ss-injective modules is again strongly ss-
injective.

(4) A direct summand of strongly ss-injective module is again strongly ss-
injective.

Corollary 3.1.5. Let R be aring. Then:

(1) If M is a semisimple strongly ss-injective right R-module, then M is a small
injective.
(2) If every simple right R-module is strongly ss-injective, then R is a
semiprimitive ring.
Proof. (1) By Proposition 3.1.3.

(2) By (1) and applying Theorem 1.2.17. O

Remark 3.1.6. The converse of Corollary 3.1.5 is not true ( see Example
3.1.11).

Theorem 3.1.7. If M is a strongly ss-injective ( or just ss-E (M)-injective) right
R-module, then for every semisimple small submodule A of M, there is an
injective R-module E, suchthat M = E, @ T, where T, > M withT, n A = 0.
Moreover, if A # 0, then E, can be taken A €° E,.

Proof. Let A be a semisimple small submodule of M. If A =0, we end the
proof by taking E, =0 and T, = M. Suppose that A # 0 and consider the
following diagram:

0
[ [
0 A—r—D,—2—> E(M)
/,/ /””
i3 ﬁ// 7
/, /”

where i,, 1, and i5 are inclusion maps and D, = E(A) is the injective hull of A
in E(M). Since M is strongly ss-injective, thus M is ss-E (M)-injective. Since A
is a semisimple small submodule of M, so it follows from Lemma 1.1.2 (1) that
A is a semisimple small submodule in E(M) and hence there exists an R-
homomorphism a: E(M) — M such that ai,i; = i;. Put § = ai,: Dy — M,
thus B is an extension of i;. Let x € ker(B) N A4, then x € ker(f) and x =



ii(x) €A and hence PB(iy(x)) =B(x)=0. Therefore, x=is(x)=
B(iy(x)) =0, and so ker(B) N A =0. Since A <**D,, thus B is an R-
monomorphism. Put E, = 8(D,). Since E, is an injective submodule of M,
thus M = E, @ T, for some T, < M. Since f(A) = A, thus A € B(D,) = E4
and this means that T, N A = 0. Moreover, define 8 = 8: D, — E,, thus £ is
an isomorphism. Since A €°° D,, thus B(4) €°° E,. But S(A) = B(A) = A4,
SOA C* E,. O

Corollary 3.1.8. If M is a right R-module has a semisimple small submodule A
such that A =¢° M, then the following statements are equivalent:

(1) M is injective.
(2) M is strongly ss-injective.
(3) M is ss-E(M)-injective.
Proof. (1)=(2) and (2)=(3) are obvious.

(3)=(1) By Theorem 3.1.7, we can write M = E, @ T, where E, injective and
T,NA=0.Since A c*° M, thus T, = 0 and hence M = E,. Therefore M is an

injective right R-module. O
Example 3.1.9. Z, as Z-module is not strongly ss-injective.

Proof. Assume that Z, is strongly ss-injective Z-module. Let A =< 2 >=
{0, 2}. It is clear that A is a semisimple small and essential submodule of Z, as
Z-module. By Corollary 3.1.8, Z, is injective Z-module and this a
contradiction. Thus Z, as Z-module is not strongly ss-injective. Moreover,
Since E(Z,z2) = Z,~ as Z-module ( see [24, p. 6]), thus Z, is not S$S-Z,«-
injective, by Corollary 3.1.8. O

Corollary 3.1.10. Let M be a right R-module such that soc(M) N J(M) <K M
(in particular, if M is finitely generated). If M is strongly ss-injective, then
M =E @T, where E is injective and T nsoc(M) nJ(M) = 0. Moreover, if
soc(M) n J(M) # 0, then we can take soc(M) N J(M) c*° E.

Proof. By taking A = soc(M) n J(M) and applying Theorem 3.1.7. O

The following example shows that the converse of Theorem 3.1.7 and
Corollary 3.1.10 is not true.



Example 3.1.11. Let M = Z, as Z-module. Since J(M) = 0 and soc(M) = M,
thus soc(M)nNnjJ(M)=0. So, we can writt M=0@ M with Mn
(soc(M)nJ(M)) =0. Let N =Zg as Z-module. Since J(N) =<2 > and
soc(N) =< 4 >. Define y:soc(N) nJ(N) — M by y(4) = 3, thus y is a Z-
homomorphism. Assume that M is strongly ss-injective, thus M is ss-N-
injective, so there exists Z-homomorphism B:N — M such that i =y,
where i is the inclusion map from soc(N) nJ(N) to N. Since B(J(N)) €
J(M), thus 3 = y(4) = B(4) € B(J(N)) < J(M) = 0 and this contradiction, so
M is not strongly ss-injective Z-module.

We can prove the following corollary by using Proposition 2.1.11.
Corollary 3.1.12. The following statements are equivalent:

(1) soc(M)nJ(M) = 0, for all right R-module M.
(2) Every right R-module is strongly ss-injective.
(3) Every simple right R-module is strongly ss-injective.

In the next results, we will give the connection between strongly ss-
injective modules and strongly soc-injective modules and we provide many
new equivalences of artinian rings and QF rings.

Theorem 3.1.13. If R is a right perfect ring, then M is a strongly soc-injective
right R-module if and only if M is a strongly ss-injective.

Proof. (=) Clear.

(<) Let R be a right perfect ring and M be a strongly ss-injective right R-
module. Since R is a semilocal ring, thus it follows from [18, Theorem 3.5] that
every right R-module N is semilocal and hence N/J(N) is semisimple right R-
module. Since R is a right perfect ring, thus it is right max (see [14, Theorem
4.3, p. 69]) and hence the Jacobson radical of every right R-module is small by
Theorem 1.1.22. Thus N/J(N) is semisimple and J(N) < N, for any N €
Mod-R. Since M is strongly ss-injective, thus every R-homomorphism from a
semisimple small submodule of N to M extends to N, for every N € Mod-R,
and this implies that every R-homomorphism from any semisimple submodule
of J(N) to M extends to N, for every N € Mod-R. Since N/J(N) is semisimple
right R-module, for every N € Mod-R. Thus Lemma 2.1.31 implies that every



R-homomorphism from any semisimple submodule of N to M extends to N, for
every N € Mod-R and hence M is strongly soc-injective. O

The result [2, Proposition 3.7] is improved by below corollary.

Corollary 3.1.14. Aring R is QF if and only if every strongly ss-injective right
R-module is projective.

Proof. (=) If R is QF ring, then R is a right perfect ring, so by Theorem 3.1.13
and [2, Proposition 3.7] we have that every strongly ss-injective right R-module
IS projective.

(<) By hypothesis we have that every injective right R-module is projective
and hence R is QF ring ( see Proposition 1.2.11). O

The results of I. Amin, M. Yousif and N. Zeyada [2, Theorem 3.3 and 3.6]
gave a equivalent statements to characterize the noetherian rings and
semiartinian rings. In the next theorem we obtain characterizations to artinian
rings in terms of strongly ss-injective and strongly soc-injective modules.

Theorem 3.1.15. The following statements are equivalent for a ring R:

(1) Every direct sum of strongly ss-injective right R-modules is injective.
(2) Every direct sum of strongly soc-injective right R-modules is injective.
(3) R isright artinian.

Proof. (1)=(2) Clear.

(2)=(3) Since every direct sum of strongly soc-injective right R-modules is
injective. Thus R is right noetherian and right semiartinian by [2, Theorem 3.3
and Theorem 3.6], so it follows from [29, Proposition VI11.5.2, p. 189] that R is
right artinian.

(3)=(1) By hypothesis, R is right perfect and right noetherian. It follows from
Theorem 3.1.13 and [2, Theorem 3.3] that every direct sum of strongly ss-
injective right R-modules is strongly soc-injective. Since R is right
semiartinian, so [2, Theorem 3.6] implies that every direct sum of strongly ss-

injective right R-modules is injective. O

Recall that a submodule K of a right R-module M is called t-essential in M
(written K <t M) if for every submodule L of M, K N L € Z,(M) implies that
L € Z,(M) (see [4]). A right R-module M is said to be t-semisimple if every



submodule A of M there exists a direct summand B of M such that B < A
(see [4]). A ring R is said to be right GV-ring (resp. SI-ring) if every simple
singular (resp. singular) right R-module is injective (see [36]). In the next
results, we will give the connection Dbetween injectivity and strongly s-
injectivity and we characterize V-rings, GV-rings, SI-rings and semisimple
rings by this connection.

Theorem 3.1.16. If R is a right t-semisimple, then a right R-module M is
injective if and only if M is strongly s-injective.

Proof. (=) Obvious.

(<) Let M be a strongly s-injective, thus Z, (M) is injective by [36, Proposition
3, p. 27]. Thus every R-homomorphism f: K — M, where K € Z7 extends to
R by [36, Lemma 1, p. 26]. Since R is a right t-semisimple, thus R/Z7} is a
right semisimple by [4, Theorem 2.3]. So by applying Lemma 2.1.31, we
conclude that M is injective. O

Corollary 3.1.17. Aring R is right SI and right ¢t-semisimple if and only if it is
semisimple.

Proof. (=) Since R is a right SI-ring, thus every right R-module is strongly s-
injective by [36, Theorem 1, p. 29]. By Theorem 3.1.16, we have that every
right R-module is injective and hence R is semisimple ring.

(<) Clear. O

Corollary 3.1.18. If R is a right t-semisimple ring. Then R is right V-ring if
and only if R is right GV-ring.

Proof. By [36, Proposition 5, p. 28] and Theorem 3.1.16. O

Corollary 3.1.19. If R is a right t-semisimple ring, then R/S, is noetherian
right R-module if and only if R is right noetherian.

Proof. If R/S, is noetherian right R-module, then every direct sum of injective
right R-modules is strongly s-injective by [36, Proposition 6]. Since R is right
t-semisimple, so it follows from Theorem 3.1.16 that every direct sum of
injective right R-modules is injective and hence R is right noetherian. The
converse is clear. O



Section Two

3.2 Strongly SS-Injective Rings

In this section, we will give some results on strongly ss-injective rings and
we will characterize semisimple and QF rings.

A ring R is strongly right soc-injective iff every finitely generated projective
right R-module is strongly soc-injective.

Proposition 3.2.1. A ring R is strongly right ss-injective if and only if every
finitely generated projective right R-module is a strongly ss-injective.

Proof. Since a finite direct sum of strongly ss-injective modules is a strongly
ss-injective, so every finitely generated free right R-module is strongly ss-
injective. But a direct summand of strongly ss-injective is a strongly ss-
injective. Therefore, every finitely generated projective is a strongly ss-

injective. The converse is clear. O

A ring R is said to be right Ikeda-Nakayama ring if [(AN B) = l(A) +
[(B) for all right ideals A and B of R (see [24, p. 148]). In the following
proposition, the strongly ss-injectivity gives a new version of "lkeda-Nakayama
rings".

Proposition 3.2.2. Let R be a strongly right ss-injective ring, then [(N N K) =
L(N) + I(K) for all semisimple small right ideals N and all right ideals K of R.

Proof. Suppose that x € [(N n K) and define a: N + K — Ry by a(a + b) =
xa for all a € N and b € K. Clearly, « is well define, because if a; + b; =
a, + b,, then a; —a, = b, — by, that is x(a; —a,) =0, so a(a; + b;) =
a(a, + b,). Define the R-homomorphism &: (N + K)/K — Ry by d(a +
K) = xa for all a € N which induced by a. Since (N + K)/K < soc(R/K) n
J(R/K) and R is a strongly right ss-injective, & can be extended to an R-
homomorphism y:R/K — Ri. If y(1+K) =1y, for some y € R, then
y(a+ b) = xa, forall a € N and b € K. In particular, ya = xa forall a € N
and yb =0 for all b € K. Hence x = (x —y) +y € I(N) + l(K). Therefore,



I[(NNK) < I(N)+ I(K). Since the converse is always holds, thus the proof is
complete. O

Corollary 3.2.3. Every strongly right ss-injective ring is a right simple J-
injective.

Proof. By Proposition 3.1.3. O
Remark 3.2.4. The converse of Corollary 3.2.3 is not true (see Example 3.2.8).
Proposition 3.2.5. Let R be a right Kasch and strongly right ss-injective. Then:

(1) rl(K) = K, for every small right ideal K of R. Moreover, R is right
minannihilator.
(2) If R is left Kasch, then r(J) €°° Rp.
Proof.(1) By Corollary 3.2.3 and [35, Lemma 2.4].

(2) Let K be a right ideal of R and r(J) N K = 0. Then Kr(J) = 0 and we
obtain K < Ir(J) = J, because R is left Kasch. By (1), we have r(J + I(K)) =
r(J) N K = 0 and this means that / + [(K) = R (' since R is left Kasch). Thus
K = 0 and hence r(J) €°° Rgz. O

Lemma 3.2.6 [17, Corollary 3.73, p. 97]. A commutative ring R is von
Neumann regular if and only if every simple R-module is injective.

The following examples show that the three classes of rings: strongly ss-
injective rings, soc-injective rings and small injective rings are different.

Example 3.2.7. Let R = Z,) = {%: p does not divide n}, the localization

ring of Z at the prime p. Then R is a commutative local ring and it has zero
socle but not principally small injective (see [33, Example 4]). Since S, = 0,
thus R is strongly soc-injective ring and hence R is strongly ss-injective ring.

Example 3.2.8. Let R = {(8 fz) neZxe ZZ}. Thus R is a commutative
ring, ] = S, = {(8 ’6) X € ZZ} and R is small injective ( see [30, Example
()] Let A=/ and B = {(Zg‘ 2°n): n € Z}, then 1(4) = {(2(;" V) ne
Z,y € ZZ} and I(B) = {(8 %)]) . yE ZZ}. Thus



1(A) + L(B) ={(ZS‘ 23;1): nelLyen,). Since ANB=0, then I(An

B) =R and this implies that [(A) + l(B) # l(AN B). Therefore R is not
strongly ss-injective and not strongly soc-injective by Proposition 3.2.2.

Example 3.2.9. Let F = Z, be the field of two elements, F; = F fori =1, 2, ...
, Q =TI2,F;, S =B, F;. If R is the subring of Q generated by 1 and S, then R
Is a von Neumann regular ring ( see [36, Example (1), p. 28]). Since R is
commutative, thus every simple R- module is injective by Lemma 3.2.6. Thus
R is V-ring and hence and hence J(N) = 0 for every right R-module N. It
follows from Corollary 3.1.12 that every R-module is a strongly ss-injective. In
particular, R is a strongly ss-injective ring. But R is not soc-injective ( see [36,
Example (2)]).

Example 3.2.10. Let R = Z,[x4, x5, ... ] Where Z, is the field of two elements,
x; =0 for all i, x;x; =0 for all i #j and x7 = x7 # 0 for all i and j. If
m = x?, then R is a commutative, local, soc-injective ring with | =
span{m, x;,x,, ...}, and R has simple essential socle j2 = Z,m ( see [2,
Example 5.7]). It follows from [2, Example 5.7] that the R-homomorphism
y:J — R which is given by y(a) = a? for all a € J with simple image can not
extend to R, then R is not simple J-injective and not small injective, so it
follows from Corollary 3.2.3 that R is not strongly ss-injective.

Recall that a ring R is called right minsymmetric if aR is simple, a € R,
implies that Ra is simple.

Theorem 3.2.11. Aring R is QF if and only if R is a strongly right ss-injective
and right noetherian ring with S,. € Ry.

Proof. (=) This is clear.

(<) By Corollary 2.2.3 (1), R is a right minsymmetric. It follows from [30,
Lemma 2.2] that R is right perfect. Thus, R is strongly right soc-injective, by
Theorem 3.1.13. Since S, €°* Ry, so it follows from [2, Corollary 3.2] that R

is a self-injective and hence R is QF. O
Corollary 3.2.12. For aring R, the following statements are true:

(1) R is a semisimple if and only if S, €*° Rg and every semisimple right R-
module is strongly soc-injective.



(2) R is QF if and only if R is a strongly right ss-injective, semiperfect with
essential right socle and R /S, is noetherian as right R-module.
Proof. (1) Suppose that S, €°° R, and every semisimple right R-module is
strongly soc-injective, then R is a right noetherian right V-ring by [2,
Proposition 3.12], so it follows from Corollary 3.1.12 that R is a strongly right
ss-injective. Thus R is QF by Theorem 3.2.11. But /] = 0, so R is a semisimple.
The converse is clear.

(2) By [23, Theorem 2.9], ] = Z,.. Since R/Z} is a homomorphic image of
R/Z, and R is a semilocal ring, thus R is a right t-semisimple. By Corollary
3.1.19, R is right noetherian, so it follows from Theorem 3.2.11 that R is QF.

The converse is clear. O

Theorem 3.2.13. A ring R is QF if and only if R is strongly right ss-injective,
[(J?) is a countable generated left ideal, S, €°° R and the chain r(x;) S
r(x;x1) € - S r(xpX,—q1 - X3X1) € -+ terminates for every infinite sequence
X1,X9, .. INR.

Proof. (=) Since R is QF , then R is right self-injective, right noetherian and
right semiartinian. Therefore, R is strongly right ss-injective, I[(J?) is a
countable generated left ideal, S, ©°° R, and the chain r(x;) € r(x,x;) S
o Cr(XpXp_1 . Xoxq) € -+ terminates for every infinite sequence x4, x5, ... Iin
R.

(<) By [30, Lemma 2.2], R is right perfect. Since S, €°° Ry, thus R is right
Kasch by [23, Theorem 3.7]. Since R is a strongly right ss-injective, thus R is a
right simple J-injective, by Corollary 3.2.3. Now, by Proposition 3.2.5 (1) we
have rl(S, NnJ) =S, NnJ, so Corollary 2.2.15 (7) leads to S, =S, . By [24,
Lemma 3.36, p. 73], S5 = [(J?). The result now follows from [35, Theorem
2.18]. O

Remark 3.2.14. The condition S, €° Rg in Theorem 3.2.11 and Theorem
3.2.13 can not be deleted, because Z is a strongly ss-injective noetherian ring
but not QF.

The following two results extend a result [2, Proposition 5.8] that a left
perfect ring, strongly left and right soc-injective ring is QF.



Corollary 3.2.15. Aring R is QF ring if and only if it is left perfect, strongly
left and right ss-injective ring.

Proof. By Corollary 3.2.3 and [35, Corollary 2.12]. O
Theorem 3.2.16. For a ring R, the following statements are equivalent:

(1) RisaQF ring.
(2) R is a strongly left and right ss-injective, right Kasch and J is left t-
nilpotent.
(3) R isastrongly left and right ss-injective, left Kasch and J is left t-nilpotent.
Proof. (1)=(2) and (1)=(3) are clear.

(3)=(1) Suppose that xR is simple right ideal. Thus either rl(x) = xR S® Ry
or x€J. If xe]J, then rl(x) = xR ( since R is right minannihilator by
Proposition 3.2.5), so Theorem 3.1.7 implies that rl(x) c*° E c® Ry.
Therefore, rl(x) is an essential in a direct summand of Ry for every simple
right ideal xR. Let K be a left maximal ideal of R. Since R is a left Kasch, thus
r(K) # 0 by [17, Corollary 8.28, p. 281]. Choose 0 # y € r(K), s0 K € l(y)
and we conclude that K = [(y). Since Ry = R/l(y), thus Ry is simple left
ideal. But R is a left mininjective ring, so yR is a simple right ideal by [23,
Theorem 1.14] and this implies that (K) <° eR for some e? = e € R ( since
r(K) = rl(y)). Thus R is semiperfect by [24, Lemma 4.1, p. 79] and hence R
is a left perfect ( since J is left t-nilpotent), so it follows from Corollary 3.2.15
that R is QF.

(2)=(2) is similar to proof of (3)=(1). O

Theorem 3.2.17. The ring R is QF if and only if R is a strongly left and right
ss-injective, left and right Kasch, and the chain [(a;) € l(a;a,) € - S
l(aya; ...a,) S -+~ terminates for every a4, a,, ... € Z,.

Proof. (=) Clear.

(<) By Proposition 3.2.5, [(]) is essential in gRR. Thus ] € Z,. Let a4, a,, ... € ],
we have l(a,) € l(a;a;) € -+ € l(aqa; ...a,) S -+ . Thus there exists k € N
such that [(a;..a) =1l(a;..arax.;) (Dy hypothesis). Suppose that
ai ...ag # 0,50 R(a; ... ax) N1l(agy1) # 0 (since [(ag,q) IS essential in zR).
Thus ra, ...a;, # 0 and ra, ...axa,,; = 0 for some r € R, a contradiction.



Therefore, a, ...a, = 0 and hence J is left t-nilpotent, so it follows from
Theorem 3.2.16 that R is QF. O

Corollary 3.2.18. The ring R is QF if and only if R is strongly left and right ss-
injective with essential right socle, and the chain r(a;) € r(a,a,) S
r(asa,a,) < --- terminates for every infinite sequence a,, a,, ... in R.

Proof. By [30,Lemma 2.2] and Corollary 3.2.15. O
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