Page 34 - 44 Akeel. R / Adel. S

SS-Flat Modules

Akeel Ramadan Mehdi
Department of Mathematics
College of Education
University of Al-Qadisiyah
Email: akeel.mehdi@qu.edu.iq

Adel Salim Tayyah
Department of Mathematics
College of Computer Science and IT
University of Al-Qadisiyah
Email: adils9888@gmail.com

Recived: 9\10\2016 Revised: 6\11\2016 Accepted: 9\11\2016

Abstract. In this paper, we introduce the dual notion of ss-injective module, namely ss-flat module. The connection between ss-injectivity and ss-flatness is given. Min-Coherent rings, FS-rings, PS-rings, and universally mininjective rings are characterized in terms of ss-flat modules and ss-injectivite modules.

Key Words: min-coherent ring; ss-coherent ring; ss-flat module; ss-injective module; PS ring; FS ring; universally mininjective ring.

Mathematics Subject Classification: 13C11,16D40,16D10

1. Introduction

In [1], the notion of ss-injectivity was introduced and studied. A right R-module M is called ss-injective if any right R-homomorphism $f: S_r \cap J \longrightarrow M$ extends to R; equivalently, if $\operatorname{Ext}^1(R/(S_r \cap J), M) = 0$. L. Mao [2] introduced the notion min-flat, for any left R-module N, N is called min-flat if $\operatorname{Tor}_1(R/I, N) = 0$ for every simple right ideal I.

In this paper, we introduce and investigate the notion of ss-flat modules as a generalization of flat modules. A left R-module M is said to be ss-flat if $Tor_1(R/(S_\tau \cap J), M) = 0$. Examples are established to show that the notion of ss-flatness is distinct from that of min-flatness and flatness, several properties of the class of flat modules are given, for example, we prove that a left R-module M is ss-flat iff $M^+ = Hom_Z(M, Q/Z)$ is ss-injective iff the sequence $0 \rightarrow (S_\tau \cap J) \otimes M \rightarrow R \otimes M$ is exact. Also, we prove that the class of all left is closed under pure submodule and direct limits. In Theorem 2.9, we prove that a ring R is right

min-coherent iff the class of ss-flat modules is closed under direct products iff RR5 is ss-flat, for any index set S iff every left R-module has (SSF)-preenvelope, where SSF is the class of all left ss-flat modules. Also, we introduce the concept of ss-coherent ring as a proper generalization of coherent ring. characterization of ss-coherent rings are given, for example, we prove that a ring R is right ss-coherent iff (a right R -module M is ss-injective iff M* is ss-flat) iff the class of all ss-injective right R-modules is closed under direct limits. We study ss-flat modules and ss-injective modules over commutative ring. For example, we prove that a commutative ring R is min-coherent iff Hom(M, N) is ss-flat for all projective R-modules M and N. Also, we prove that if R is a commutative ss-coherent ring, then an R-module M is ss-injective iff Hom(M, N) is ss-flat for any injective R-module N. In

Akeel, R / Adel, S

Proposition 222 we prove that if M is a simple module over a commutative ring R, then M is a simple so lat iff M is a simplective. As a corollary, we have that if R is a commutative ring, then R is a limited sally minimisective iff R is PS-ring iff R is an FS-ring,

Next, we recall some facts and notions needed in the sequel. An exact sequence $0 \rightarrow A \xrightarrow{f} B$ $\xrightarrow{g} C \longrightarrow 0$ of right R-modules is called pure if every finitely presented right R-module P is projective with respect to this sequence and we called that f(A) is a pure submodule of B [3]. A right R-module M is called pure injective if M is injective with respect to every pure exact sequence [3]. Let R be a ring and \mathcal{F} be a class of right R -modules. An R -homomorphism $f: M \longrightarrow N$ is said to be \mathcal{F} -preenvelope of Mwhere $N \in \mathcal{F}$ if, for every R-homomorphism $g\colon M\longrightarrow F$ with $F\in \mathcal{F}$, there is an R-homomorphism $h\colon N\longrightarrow F$ such that hf=g. An R-homomorphism $f: N \longrightarrow M$ is said to be \mathcal{F} -precover of M where $N \in \mathcal{F}$ if, for every R-homomorphism $g: L \to M$ with $L \in \mathcal{F}$, there is an R-homomorphism $h: L \longrightarrow N$ such that fh = g [4]. Let \mathcal{F} (resp. G) be a class of left (resp. right) R-modules. The pair (F.G) is said to be almost dual pair if for any left R-module $M, M \in \mathcal{F}$ if and only if $M^+ \in \mathcal{G}$; and \mathcal{G} is closed under direct summands and direct products [4, p. 66].

Throughout this paper, R is an associative ring with identity and all modules are unitary. By J (resp., S_T) we denote the Jacobson radical (resp., the right socle) of R. If X is a subset of R, the right annihilator of X in R is denoted by r(X). Let M and N be R-modules. The character module M^+ is defined by $M^+ =$ $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$. The symbol $\operatorname{Hom}(M, N)$ (resp., $\operatorname{Ext}^n(M, N)$) means $\operatorname{Hom}_R(M, N)$ (resp., $\operatorname{Ext}^n_R(M, N)$), and similarly $M \otimes N$ (resp., $\operatorname{Tor}_R(M, N)$) means $M \otimes_R N$ (resp., $\operatorname{Tor}^n_R(M, N)$) for an integer $n \geq 1$.

We can find the general background materials, for example in [1, 2, 5].

2. ss-Flat Modules

Definition 2.1. A left R-module M is said to be ss-flat if $Tor_1(R/(S_r \cap I), M) = 0$.

Examples 2.2.

- Any flat module is ss-flat, but the converse is not true. For example the Z-module Z_n is not flat for all n ≥ 2 (see [5, Examples (2), p. 155]), but it is clear that Z_p as Z-module is ss-flat for any prime number p.
- (2) Every ss-flat module is min-flat, since if M is an ss-flat left R-module, then M⁺ is an ss-injective right R-module (by Lemma 2.3) and hence from [1, Lemma 2.6] we have that M⁺ is right mininjective. By [2, Lemma 3.2], M is min-flat.
- (3) The Björk Example [6, Example 4.15]. Let F be a field and let a → ā be an isomorphism F → F ⊆ F, where the subfield F ≠ F. Let R denote the left vector space on basis {1,t}, and make R into an F-algebra by defining t² = 0 and ta = āt for all a ∈ F. By [1, Example 4.4], R is right mininjective ring but not right ss-injective ring. If dim(pF) is finite, then R right artinian by [6, Example 4.15]. Therefore, R is a right coherent ring. Thus R* is a left min-flat R-module by [2, Theorem 4.5], but the left R-module R* is not ss-flat by Theorem 2.10 below.

Lemma 2.3. The following statements are equivalent for a left R-module M:

- (1) M is ss-flat.
- (2) M+ is ss-injective.
- (3) Tor₁(R/A, M) = 0, for every semisimple small right ideal A of R.
- (4) Tor₁(R/B, M) = 0 for every finitely generated semisimple small right ideal B of R
- (5) The sequence 0 → (S_r ∩ f)⊗M → R_R⊗M is exact.
- (6) The sequence 0 → A⊗M → R_R⊗M is exact for every finitely generated semisimple small right ideal A of R.

Akeel, R / Adel, S

Proof. (1) \Leftrightarrow (2) This follows from $\operatorname{Ext}^1(R/(S_r \cap I), M^+) \cong$

 $\operatorname{Tor}_1(R/(S_r \cap f), M)^*$ (see the dual version of [7, Theorem 3.2.1]).

(2)⇒(3) By the dual version of [7, Theorem 3.2.1] and [1, Proposition 2.7], Tor₁(R/A, M)⁺ ≅ Ext¹(R/A, M⁺) = 0 for every semisimple small right ideal A of R.

(3)⇒(1) Clear.

(4)⇒(3) Let I be a semisimple small right ideal of R, so I = lim I_i, where I_i is a finitely generated semisimple small right ideal of R, I_{ij}: I_i → I_j is the inclusion map, and (I_i, f_{ij}) is a direct system (see [7, Example 1.5.5 (2)]). Clearly, (R/I_i, h_{ij}) is a direct system of R-modules, where h_{ij}: R/I_i → R/I_j is defined by h_{ij}(a + I_i) = a + I_j with direct limit (h_i, lim R/I_i). Since the following diagram is commutative:

$$0 \longrightarrow I_{i} \xrightarrow{i_{i}} R \xrightarrow{\pi_{i}} R/I_{i} \longrightarrow 0$$

 $f_{ij} \downarrow \underset{i_{j}}{\parallel} \underset{i_{j}}{\parallel} \underset{\pi_{j}}{\downarrow} R/I_{j} \longrightarrow 0$

where i_l and π_l are the inclusion and natural maps, respectively, thus the sequence $0 \rightarrow l$ $\stackrel{l}{\rightarrow} R \stackrel{u}{\longrightarrow} \lim_{l} R/I_l \rightarrow 0$ is exact by [3, 24.6]. It follows from [3, 24.4] that the following diagram is commutative:

$$R \xrightarrow{\pi_i} R/I_i \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow^{h_i}$$
 $R \xrightarrow{u} \lim_{} R/I_i \rightarrow 0$

Thus the family of mappings $\{g_i: R/I_i \rightarrow R/\lim I_i$, where $g_i(a+I_i)=a+\lim I_i\}$ forms a direct system of homomorphisms, since for $i \leq j$, we get $g_jh_{ij}(a+I_i)=g_j(a+I_j)=a+\lim I_i=g_i(a+I_i)$ for all $a+I_i\in R/I_i$. Thus, there is an

R-homomorphism \alpha such that the following

diagram is commutative with short exect rows as (see [3, 24.1]):

where π is the natural map, so it follows from [8, Exercise 11 (1), p. 52] that $\lim_{\longrightarrow} R/I_i \cong R/\lim_{I_i}$. Therefore,

$$\operatorname{Tor}_1(R/I, M) = \operatorname{Tor}_1\left(R/\lim_{\longrightarrow} I_i, M\right)$$

$$\cong \operatorname{Tor}_1\left(\varinjlim R/I_t, M\right)$$
 (by [9, Theorem XII.5.4 (4)])

$$\cong \lim_{\longrightarrow} \operatorname{Tor}_1(R/I_i, M) = 0$$
 (by [10,

Proposition 7.8]).

(3)⇒(4) Clear.

(1)⇔(5) By [9, Theorem XII.5.4 (3)], we have the exact sequence 0 → Tor₁(R/(S_r ∩ f), M) → (S_r ∩ f)⊗M → R_R⊗M. Thus the equivalence between (1) and (5) is true.

(4)⇔(6) is similar to ((1)⇔(5)). ■

In following, we will use the symbol SSI (resp. SSF) to denote the classes of ss-injective right (resp. ss-flat left) R-modules.

Corollary 2.4. The pair (SSF, SSI) is an almost dual pair.

Proof. By Lemma 2.3 and [1, Theorem 2.4].

Lemma 2.5. For a ring R, the following statements hold:

- If S_r ∩ J is finitely generated, then every pure submodule of ss-injective right R-module is ss-injective.
- Every pure submodule of ss-flat left R-module is ss-flat,
- Every direct limits (direct sums) of ss-flat left R-modules is ss-flat.
- (4) If M, N are left R-modules, M

 N, and M is ss-flat, then N is ss-flat.

Akeel, R / Adel, S

Preof. (1) Let M be an ss-injective right M-module and M be a pure submodule of M. Since $M/(S_r \cap M)$ is finitely presented, thus the sequence M and M be an ss-injective right M be an ss-injective right M. Since M is finitely presented, thus the sequence M be an ss-injective right M. Since M is finitely presented, thus the M be an ss-injective right M. Since M is finitely presented, thus the M is exact. By M is exact.

 $\operatorname{Hom}(R/(S_r \cap J), M) \rightarrow$ $\operatorname{Hom}(R/(S_r \cap J), M/N) \rightarrow$ $\operatorname{Ext}^1(R/(S_r \cap J), N) \rightarrow$

 $\operatorname{Ext}^1(R/(S_r \cap J), M) = 0$ which leads to $\operatorname{Ext}^1(R/(S_r \cap J), N) = 0$. Hence N is an ss-injective right R-module.

(2), (3) and (4) By Corollary 2.4 and [4, Proposition 4.2.8, p. 70]. ■

Recall that a right R-module M is said to be FP-injective (or absolutely pure) if $Ext^{3}(N,M)=0$ for every finitely presented right R-module N (see [11, 12]). A right R-module M is called n-presented, if there is an exact sequence $F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow M \rightarrow 0$ such that each F_{i} is a finitely generated free right R-module (see [13]). A ring R is called min-coherent, if every simple right ideal of R is finitely presented (see [2]); equivalently, if every finitely generated semisimple small right ideal is finitely presented. In the following definition, we will introduce the concept of ss-coherent ring as a generalization of coherent ring

Definition 2.6. A ring R is said to be right ss-coherent ring, if R is a right min-coherent and $S_r \cap J$ is finitely generated; equivalently, if $S_r \cap J$ is finitely presented.

Example 2.7.

- (1) Every coherent ring is ss-coherent.
- (2) Every ss-coherent ring is min-coherent.
- (3) Let R be a commutative ring, then the polynomial ring R[x] is not coherent ring with zero socle by [2, Remark 4.2 (3)]. Hence R[x] is an ss-coherent ring but not coherent.

Corollary 2.8. A right ideal $S_r \cap J$ of a ring R is finitely generated if and only if every FP-injective right R-module is ss-injective.

Proof. By [11, Proposition, p. 361].

Theorem 2.9. The following statements are equivalent for a ring R:

- R is a right min-coherent ring.
- If M is an ss-injective right R-module, then M* is ss-flat.

- (3) If M is an ss-injective right R-module, then M*+ is ss-injective.
- (4) A left R-module N is ss-flat if and only if N++ is ss-flat.
- SSF is closed under direct products.
- (6) R^S is ss-flat for any index set S.
- (7) Ext²(R/I, M) = 0 for every FP injective right R -module M and every finitely generated semisimple small right ideal 1.
- (8) If 0 → N → M → H → 0 is an exact sequence of right R-modules with N is FP-injective and M is ss-injective, then Ext¹(R/I, H) = 0 for every finitely generated semisimple small right ideal I.
- (9) Every left R -module has an (SSF)-preenvelope.
- (10) If α: M → N is an (SSI)-preenvelope of a right R-module M, then α⁺: N⁺ → M⁺ is an (SSF)-precover of M⁺.
- (11) For any positive integer n and any b₁,..., b_n ∈ S_r ∩ f , then the right ideal {r ∈ R | b₁ r + b₂ r₂ + ··· + b_n r_n = 0 for some r₁,···, r_n ∈ R} is finitely generated.
- (12) For any finitely generated semisimple small right ideal A of R and any x ∈ S_r ∩ J, then {r ∈ R: xr ∈ A} is finitely generated.
- (13) r(x) is finitely generated for any simple right ideal xR.
- (14) Every simple submodule of a projective right R-module is finitely presented.

Proof. (1) \Rightarrow (2) Let I be a finitely generated semisimple small right ideal of R, thus there is an exact sequence $F_2 \xrightarrow{\alpha_2} F_1 \xrightarrow{\alpha_3} I \to 0$ in which F_1 is a finitely generated free right R-module, i=1,2 by hypothesis. Therefore, the sequence $F_2 \xrightarrow{\alpha_2} F_1 \xrightarrow{\beta} R \xrightarrow{x} R/I \to 0$ is exact, where $i:I \to R$ and $n:R \to R/I$ are the inclusion and the natural maps, respectively and $\beta = i\alpha_1$. Thus R/I is 2-presented and hence [13, Lemma 2.7] implies that $Tor_1(R/I, M^+) \cong Ext^1(R/I, M)^+ = 0$. Therefore, M^+ is an ss-flat left R-module. (2) \Rightarrow (3) By (2) and Lemma 2.3.

(3) ⇒ (4) Assume that N is an ss-flat left R-module, thus N* is ss-injective by Lemma 2.3 and this implies that N*++ is ss-injective by (3). So N*+ is ss-flat by Lemma 2.3 again. The converse is obtained by [3, 34.6 (1)] and Lemma 2.5 (2).

Akeel, R / Adel

(4)⇒(5) By (4), (SSF)⁺⁺ ⊆ SSF. Since (SSF, SSI) is an almost dual pair (by Corollary 2.4), thus [4, Proposition 4.3.1 and Proposition 4.2.8 (3)] implies that SSF is closed under direct products.

(5)⇒(6) Clear.

(6)⇒(1) By Example 2.2 (2) and [2, Theorem 4.5].

(1) ⇒ (7) Let I be a finitely generated semisimple small right ideal of R and let M be a FP-injective right R-module. By [9, Theorem XII.4.4 (3)], we have the exact sequence Ext¹(I,M) → Ext²(R/I,M) → Ext²(R,M). But Ext¹(I,M) = 0 (since M is FP-injective and I is finitely presented) and Ext²(R,M) = 0 (since R is projective). Thus Ext²(R/I,M) = 0

(7) ⇒ (8) Let 0 → N → M → H → 0 be an exact sequence of right R-modules, where N is FP-injective and M is ss-injective and let I be a finitely generated semisimple small right ideal of R. By [9, Theorem XII.4.4 (4)], we have an exact sequence 0 = Ext¹(R/I, M) → Ext¹(R/I, H) → Ext²(R/I, N) = 0. Thus Ext¹(R/I, H) = 0 for every finitely generated semisimple small right ideal I of R.

(8) \Rightarrow (1) Let N be a FP-injective right R-module, thus we have the exact sequence $0 \rightarrow N \rightarrow E(N) \rightarrow E(N)/N \rightarrow 0$. Let I be a finitely generated semisimple small right ideal of R, thus $\operatorname{Ext}^1(R/I, E(N)/N) = 0$ by hypothesis. So it follows from [9, Theorem XII.4.4 (4)] that the sequence $0 = \operatorname{Ext}^1(R/I, E(N)/N) \rightarrow \operatorname{Ext}^2(R/I, N) \rightarrow \operatorname{Ext}^2(R/I, N) = 0$ is exact, and so $\operatorname{Ext}^2(R/I, N) = 0$. Hence we have the exact sequence $0 = \operatorname{Ext}^1(R, N) \rightarrow \operatorname{Ext}^1(I, N) \rightarrow$

(5)⇔(9) By Corollary 2.4 and [4, Proposition 4.2.8 (3), p. 70].

(2) \Rightarrow (10) Since $(SSI)^+ \subseteq SSF$ (by hypothesis) and $(SSF)^+ \subseteq SSI$ (by Lemma 2.3), thus the result follows from [14, 3.2, p. 1137].

(10)⇒(2) By taking M is an ss-injective right R-module in (10).

(1) \Rightarrow (11) Let $b_1, b_2, ..., b_n \in S_r \cap J$. Put $K_1 = b_1R + b_2R + \cdots + b_nR$ and $K_2 = b_2R + \cdots + b_nR$. Thus $K_1 = b_1R + K_2$. Define $f: R \to K_1/K_2$ by $f(r) = b_1r + K_2$ which is a well-define R -epimorphism, because if $r_1 = r_2 \in R$, then $b_1r_1 - b_1r_2 = 0 \in K_2$, that is $b_1r_1 + K_2 = b_1r_2 + K_2$. Now we have

 $\ker(f) = \{r \in R | b_1 r + K_2 = K_2\} = \{r \in R | b_1 r + K_2 = K_2\} = \{r \in R | b_1 r + K_2 + \dots + K_2\} = \{r \in R | b_1 r + \dots + K_2\} = \{r \in R | b_1$

(11) \Rightarrow (12) Let $x \in S_r \cap f$ and A be any finitely generated semisimple small right ideal of R, then $A = \bigoplus_{i=1}^n a_i R$, so we have that $\{r \in R | xr \in A\} = \{r \in R | xr + a_1 r_1 + \dots + a_n r_n = 0 \text{ for some } r_1, \dots, r_n \in R\}$ if finitely generated by hypothesis.

 $(12)\Rightarrow(13)$ By taking A=0.

(13)⇒(1) Let xR be a simple right ideal. Since r(x) is finitely generated and xR ≅ R/r(x), thus xR is finitely presented.

(1) \Rightarrow (14) Let $S_r = \bigoplus_{t \in I} a_t R$, where $a_t R$ is a simple right ideal for each $t \in I$. If P is a projective right R-module, then P is isomorphic to a direct summand of $R^{(S)}$ for some index set S. Let A be any simple submodule of P, then $A \cong B \leq \bigoplus_{S} S_r = \bigoplus_{S} \bigoplus_{i \in I} a_i R$. Since A is finitely generated, then there are finite index sets $S_0 \subseteq S$ and $I_0 \subseteq I$ such that $A \cong B \leq \bigoplus_{S} \bigoplus_{S \in S} \bigoplus_{S \in S} a_t R$, so it follows from [15, Lemma 4.54 (3)] that A is finitely presented.

(14)⇒(1) Clear. ■

Recall that a subclass F of Mod-R is said to be definable if it is closed under direct products, direct limits and pure submodules (see [4, Definition 2.4.1, p. 29]).

Theorem 2.10. The following statements are equivalent for a ring R:

R is a right ss-coherent ring.

- A right R-module M is ss-injective if and only if M⁺ is ss-flat.
- (3) A right R-module M is ss-injective if and only if M++ is ss-injective.
- (4) SSI is closed under direct limits.
- (5) S_r ∩ J is finitely generated and every pure quotient of ss-injective right R-module is ss-injective.
- (6) The following two conditions hold:
 - (a) Every right R -module has an (SSI)-cover.
 - (b) Every pure quotient of ss-injective right R-module is ss-injective.

Akeel, R / Adel, S

Proof. (1) (2) Let M⁺ be ss-flat. Then M⁺⁺ is ss-injective by Lemma 2.3, so it follows from [3, 1346 [1]] and Lemma 2.5 (1) that M is scinjective. The converse is obtained by Theorem 2.9.

(2)⇒(3) Let M⁺⁺ be ss-injective, thus M⁺ is ss-flat by Lemma 2.3 and hence M is ss-injective by hypothesis. The converse is true by Theorem 2.9.

(3) \Rightarrow (1) Let M be an FP-injective right R-module, then the exact sequence $0 \rightarrow M \rightarrow E(M) \rightarrow E(M)/M \rightarrow 0$ is pure by [16, Proposition 2.6 (c)], so it follows from [3, 34.5] that the sequence $0 \rightarrow M^{++} \rightarrow E(M)^{++} \rightarrow (E(M)/M)^{++} \rightarrow 0$ is split. Since $E(M)^{++}$ is ss-injective by hypothesis, thus M^{++} is ss-injective and hence M is ss-injective by hypothesis again. Therefore, $S_r \cap J$ is finitely generated by Corollary 2.8, and so $S_r \cap J$ is finitely presented by Theorem 2.9. Thus R is a right ss-coherent ring.

(1) \Rightarrow (4) Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a direct system of ss-injective right R-modules. Since $S_{\tau} \cap J$ is finitely presented, then $R/S_{\tau} \cap J$ is 2-presented, so it follows from [13, Lemma 2.9 (2)] that

 $\operatorname{Ext}^{1}\left(R/(S_{r}\cap f), \lim_{\longrightarrow} M_{\lambda}\right) \cong \lim_{\longrightarrow} \operatorname{Ext}^{1}\left(R/(S_{r}\cap f), M_{\lambda}\right) = 0$. Hence $\lim_{\longrightarrow} M_{\lambda}$

is ss-injective.

hypothesis again.

(4)⇒(2) Let {E_i: i ∈ I} be a family of injective R -modules. $\bigoplus_{i \in I} E_i = \lim \{\bigoplus_{i \in I_0} E_i : I_0 \subseteq I, I_0 \text{ finite } \}$ (see [3, p. 206]), then ⊕_{i∈i} E_i is ss-injective and hence $S_r \cap J$ is finitely generated by [1, Corollary 2.25]. By Lemma 2.5, SSI is closed under pure submodules. Since SSI is closed under direct products (by [1, Theorem 2.4]) and since SSI is closed under direct limits (by hypothesis), thus SSI is a definable class. By [4, Proposition 4.3.8, p. 89], (SSI, SSF) is an almost dual pair and hence a right R-module M is ss-injective if and only if M+ is ss-flat (2)⇒(5) By the equivalence between (1) and (2), we have that $S_r \cap J$ is finitely generated. Now, let $0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0$ be a pure

exact sequence of right R-modules with M is

ss-injective, so it follows from [3, 34.5] that the

sequence $0 \rightarrow (M/N)^+ \rightarrow M^+ \rightarrow N^+ \rightarrow 0$ is

split. By hypothesis, M^+ is ss-flat, so $(M/N)^+$

is ss-flat. Thus M/N is ss-injective by

(5)⇒(4) Let {M_λ}_{λ∈Λ} be a direct system of ss-injective right R-modules. By [3, 33.9 (2)], there is a pure exact sequence ⊕_{λ∈Λ} M_λ → lim M_λ → 0. Since ⊕_{λ∈Λ} M_λ is ss-injective by [1, Corollary 2.25], thus lim M_λ is ss-injective by hypothesis.

(5) ⇔ (6) By [1, Corollary 2.25] and [17, Theorem 2.5]. ■

Corollary 2.11. A ring R is ss-coherent if and only if it is min-coherent and the class SSI is closed under pure submodules.

Proof. (\Rightarrow) Suppose that R is ss-coherent ring, thus R is min-coherent and $S_{\tau} \cap J$ is a finitely generated right ideal of R. By Lemma 2.5 (1), SSI is closed under pure submodules.

(⇐) Let M be any ss-injective right R-module. Since R is min-coherent, thus Theorem 2.9 implies that M⁺ is ss-flat. Conversely, let M be any right R-module with such that M⁺ is ss-flat. By Lemma 2.3, M⁺⁺ is ss-injective. Since M is a pure submodule of M⁺⁺ (by [3, 34.6 (1)]) and since SSI is closed under pure submodule (by hypothesis) it follows that M is ss-injective. Hence for any right R-module M, we have that M is ss-injective if and only if M⁺ is ss-flat. Thus Theorem 2.10 implies that R is ss-coherent.

Corollary 2.12. The following statements are equivalent for a right min-coherent ring R:

- (1) Every ss-flat left R-module is flat.
- (2) Every ss-injective right R -module is FP-injective.
- (3) Every ss-injective pure injective right R-module is injective.

Proof. (1) \Rightarrow (2) For any ss-injective right R-module M, then M^+ is ss-flat by Theorem 2.9, and so M^+ is flat by hypothesis. Thus M^{++} is injective by [10, Proposition 3.54]. Since M is pure submodule of M^{++} , then M is FP-injective by [20, 35.8].

(2)⇒(3) By [16, Proposition 2.6 (c)] and [3, 33.7].

Akeel, R / Adel, S

(3) \Rightarrow (1) Assume that N is an ss-flat left R-module, thus N^+ is ss-injective pure injective by Lemma 2.3 and [3, 34.6 (2)]. Thus N^+ is injective, and so N is flat by [10, Proposition 3.54].

Proposition 2.13. The following statements are equivalent for a right ss-coherent ring R:

- R is a right ss-injective ring.
- (2) Every left R-module has a monic ss-flat preenvelope.
- Every right R-module has epic ss-injective cover.
- (4) Every injective left R-module is ss-flat.
- (5) Every flat right R-module is ss-injective.

Proof. (1) \Rightarrow (2) Let N be a left R-module, then there is an R-epimorphism α : $R_R^{(S)} \rightarrow N^*$ for some index set S by [10, Theorem 2.35], and so there is an R-monomorphism $g: N \rightarrow (R_R^*)^S$ by applying [9, Proposition X1.2.3], [3, 11.10 (2) (ii)] and [3, 34.6 (1)], respectively. On the other hand, N has ss-flat preenvelope $f: N \rightarrow F$ by Theorem 2.9. Since $(R_R^*)^S$ is ss-flat by Theorem 2.9 again, thus there is an R-homomorphism $h: F \rightarrow (R_R^*)^S$ such that hf = g, so this implies that f is an R-monomorphism.

(2)⇒(4) Let N be an injective left R-module, then there is an R-monomorphism f:N → F with F is ss-flat. But N ≅ f(N) ⊆[®] F, so we have that N is ss-flat by Lemma 2.5 (4).

(4)⇒(5) Let M be a flat right R-module, then M* is injective and hence ss-flat. Thus M is ss-injective by Theorem 2.10.

(5)=(1) Obvious, since R_R is flat.

(1)⇒(3) Let M be any right R-module, then M has ss-injective cover, say, g: N → M by Theorem 2.10. By [10, Theorem 2.35], there is an R -epimorphism f: R_R^(S) → M for some index set S. Since R_R^(S) is ss-injective by [1, Corollary 2.25], then there is an R -homomorphism h: R_R^(S) → N such that gh = f, so g is an R-epimorphism.

(3)⇒(1) Let f: N → R_R be an epic ss-injective cover. Since R_R is projective, then there is an R-homomorphism g: R_R → N such that fg = I_R, thus f is split, and so N = ker(f) ⊕ B for some ss-injective submodule B of N. Therefore, R_R ≅ N/ker(f) ≅ B is ss-injective. Proposition 2.14. The class SS is closed at a under cokernels of homomorphisms of an about if $coker(\alpha)$ is ss-injective for every strangentive right R-module M and $\alpha \in End(M)$.

Proof. (\Rightarrow) Clear.

(\Leftarrow) Let A and B be any ss-injective right R-modules and f be any R-homomorphism from A to B. Define $\alpha: A \oplus B \to A \oplus B$ by $\alpha((x,y)) = (0,f(x))$. Thus, we have that $(A \oplus B)/\text{im}(\alpha) \cong (A \oplus B)/(0 \oplus \text{im}(f))$ $\cong A \oplus (B/\text{Im}(f))$ is ss-injective. ■

Proposition 2.15. The class SSF is closed under kernels of homomorphisms if and only if $\ker(\alpha)$ is ss-flat, for every ss-flat left R-module M and $\alpha \in \operatorname{End}(M)$.

Proof. (⇒) Clear.

(\Leftarrow) Let $g: N \to M$ be any R-homomorphism with N and M are ss-flat left R-modules. Define $\alpha: N \oplus M \to N \oplus M$ by $\alpha((a,b)) = (0,g(b))$. Thus $\ker(\alpha) = \ker(g) \oplus M$ is ss-flat by hypothesis and hence $\ker(g)$ is ss-flat. ■

Theorem 2.16. If R is a commutative ring, then the following statements are equivalent:

- (1) R is a min-coherent ring.
- (2) Hom(M, N) is ss-flat for all ss-injective R-modules M and all injective R-modules N.
- (3) Hom(M, N) is ss-flat for all injective R-modules M and N.
- (4) Hom(M, N) is ss-flat for all projective R-modules M and N.
- (5) Hom(M, N) is ss-flat for all projective R-modules M and all ss-flat R-modules N.

Proof. (1) \Rightarrow (2) If I is a finitely generated semisimple small ideal of R, then I is finitely presented. By [9, Theorem XII.4.4 (3)], we have the exact sequence $0 \rightarrow \operatorname{Hom}(R/I, M) \rightarrow \operatorname{Hom}(R, M) \rightarrow \operatorname{Hom}(I, M) \rightarrow 0$. Thus the sequence $0 \rightarrow \operatorname{Hom}(\operatorname{Hom}(I, M), N) \rightarrow \operatorname{Hom}(\operatorname{Hom}(R, M), N) \rightarrow \operatorname{Hom}(R, M) \rightarrow \operatorname{Hom}$

Hom $(Hom(R/I,M),N) \rightarrow 0$ is exact by [9, Theorem XII.4.4 (3)] again. So we have the exact sequence $0 \rightarrow Hom(M,N) \otimes I \rightarrow$ $Hom(M,N) \otimes R \rightarrow Hom(M,N) \otimes (R/I) \rightarrow 0$ by [7, Theorem 3.2.11] and this implies that Hom(M,N) is ss-flat.

(2)⇒(3) Clear.

Akeel, R / Adel, S

(a) Fig. By (8 Proposition 2.3.4] and [10 Phase 2.25], we have that $(R^{++})^S \cong (\operatorname{Hom}(R^+\otimes R, \mathbb{Q}/\mathbb{Z})) \cong (\operatorname{Hom}(R^+, R^+))^S$ for index [8 S . Thus $(R^+)^S \cong \operatorname{Hom}(R^- (R^+)^S)$ is ss-flat for any linex set S by [3, 11.10 (2)] and since R^+ and $(R^+)^S$ are injective. Since R^S is a pure submodule of $(R^{++})^S$ by [3, 34.6 (1)] and [18, Lemma 1 (2)], so it follows from Lemma 2.5 (2) that R^S is ss-flat for any index set S. Thus (1) follows from Theorem 2.9.

(1)⇒(5) Since M is a projective R-module, thus there is a projective R-module P such that $M \oplus P \cong R^{(S)}$ for some index set S. Therefore, $Hom(M, N) \oplus Hom(P, N) \cong Hom(R^{(S)}, N)$

 \cong $(\text{Hom}(R,N))^S \cong N^S$ by [3, 11,10 and 11,11]. But N^S is ss-flat by Theorem 2.9, thus Hom(M,N) is ss-flat.

(5)⇒(4) Clear.

(4)⇒(1) For any index set S, by [3, 11.10 and 11.11], we have that R^S ≅ Hom(R^(S), R). Thus R^S is ss-flat by (4), so it follows from Theorem 2.9 that (1) holds. ■

Corollary 2.17. The following statements are equivalent for a commutative ss-coherent ring R:

- M is an ss-injective R-module.
- (2) Hom(M, N) is ss-flat for any injective R-module N.
- M⊗N is ss-injective for any flat R-module N.

Proof. (1)⇒(2) By Theorem 2.16.

(2)⇒(3) By [10, Theorem 2.75], we have that (M⊗N)⁺ ≅ Hom(M, N⁺) for any R-module N. If N is flat, then N⁺ is injective by [10, Proposition 3.54], so (M⊗N)⁺ is ss-flat by hypothesis. Therefore, M⊗N is ss-injective by Theorem 2.10.

(3)⇒(1) This follows from [5, Proposition 2.3.4], since R is flat. ■

Corollary 2.18. Let R be a commutative ss-coherent ring and SSF is closed under kernels of homomorphisms. Then the following conditions hold for any R-module N:

- Hom(M, N) is ss-flat for any ss-injective R-module M.
- Hom(N, M) is ss-flat for any ss-flat R-module M.
- (3) M⊗N is ss-injective for any ss-injective R-module M.

Proof. (1) Let M be an ss-injective R-module. It is clear that the exact sequence $0 \to N \to E_0 \to E_1$ induces the exact sequence $0 \to H$ hom $(M,N) \to H$ om $(M,E_0) \to H$ om (M,E_1) where E_0 and E_1 are injective R-modules. By Theorem 2.16, we have that Hom (M,E_0) and Hom (M,E_1) are ss-flat, thus Hom(M,N) is ss-flat by hypothesis.

(2) Let M be an ss-flat R-module, so we have the exact sequence 0 → Hom(N, M) → Hom(F₀, M) → Hom(F₁, M) where F₀ and F₁ are free R-modules. By Theorem 2.16, the modules Hom(F₀, M) and Hom(F₁, M) are ss-flat. Therefore Hom(N, M) is ss-flat by hypothesis.

(3) Let M be any ss-injective R-module, then (M⊗N)⁺ ≅ Hom(M,N⁺) is ss-flat by [10, Theorem 2.75] and applying (1), and hence M⊗N is ss-injective by Theorem 2.10.

Theorem 2.19. Let R be a commutative ss-coherent ring, then the following conditions are equivalent:

- R is an ss-injective ring.
- Hom(M, N) is ss-injective for any projective R-module M and any flat R-module N.
- Hom(M, N) is ss-injective for any projective R-modules M and N.
- (4) Hom(M, N) is ss-injective for any injective R-modules M and N.
- (5) Hom(M, N) is ss-flat for any flat R-module M and any injective R-module N.
- (6) M⊗N is ss-flat for any flat R-module M and any injective R-module N.

Proof. (1) \Rightarrow (2) Since R is ss-injective, thus every flat R-module is ss-injective by Proposition 2.13. Let M be a projective R-module, then $M \oplus P \cong R^{(S)}$ for some projective R-module P and for some index set S. Thus for all flat R-module N, we have $\operatorname{Hom}(M,N) \oplus \operatorname{Hom}(P,N) \cong \operatorname{Hom}(R^{(S)},N) \cong N^S$ by [3, 11.10 and [11.11]. Since N^S is ss-injective, thus $\operatorname{Hom}(M,N)$ is ss-injective. $(2) \Rightarrow (3)$ Clear.

(3)⇒(1) Since R ≅ Hom(R,R) by [3, 11.11], thus R is ss-injective ring.

(1)⇒(4) By the dual version of [7, Theorem $\operatorname{Ext}^1(R/(S_\tau \cap J), \operatorname{Hom}(M, N))$ $\cong \operatorname{Hom}(\operatorname{Tor}_1(R/(S_r \cap I), M), N)$ for nll injective R-modules M and N. By Proposition 2.13, M 15 ss-flat. Thus $Tor_1(R/(S_r \cap J), M) = 0$ hence Hom(M, N) is ss-injective. (4)⇒(1) To prove R is an ss-injective ring, we

need to prove that every injective R-module is ss-flat (see Proposition 2.13). Now, let M be any injective R-module, then $Hom(M, R^+)$ is ss-injective,

 $0 = \operatorname{Ext}^1(R/(S_r \cap I), \operatorname{Hom}(M, R^*)) \cong$ $\operatorname{Hom}(\operatorname{Tor}_1(R/(S_r \cap I), M), R^+) \cong$ $(Tor_1(R/(S, \cap I), M) \otimes R)^+$

 $\equiv \text{Tor}_1(R/(S_r \cap J), M)^+$ by applying the dual version of [7, Theorem 3.2.1], [10, Theorem 2.75] and [5, Proposition 2.3.4]. Therefore, $\operatorname{Tor}_1(R/(S_r \cap J), M) = 0$, since \mathbb{Q}/\mathbb{Z} is injective cogenerator. Thus M is ss-flat.

 $(5)\Rightarrow(1)$ and $(6)\Rightarrow(1)$ By taking M=R and using [3, 11.11] and [5, Proposition 2.3.4].

(1)⇒(5) Let M be a flat R-module and N be an injective R -module, then Hom(M, N) is injective. Therefore Hom(M, N) is ss-flat by Proposition 2.13.

(1)⇒(6) Let M be a flat R-module and let N be an injective R-module. Then N is ss-flat by Proposition 2.13, so the sequence $0 \rightarrow$ $N \otimes (S, \cap J) \rightarrow N$ is exact. Since M is flat, then the sequence $0 \rightarrow M \otimes N \otimes (S_r \cap I) \rightarrow$ $M \otimes N$ is exact and this implies that $M \otimes N$ is ss-flat.

Proposition 2.20. Let R be a commutative ring, then the following statements are equivalent:

- (1) M is ss-flat.
- (2) Hom(M, N) is ss-injective for all injective R-module N.
- (3) M⊗N is ss-flat for all flat R-module N.

Proof. (1) \Rightarrow (2) Let N be any injective -module.

 $\operatorname{Ext}^{1}(R/(S_{r} \cap J), \operatorname{Hom}(M, N))$

 $\cong \operatorname{Hom}(\operatorname{Tor}_1(R/(S_r \cap J), M), N) = 0$ by the dual version of [7, Theorem 3.2.1], then Hom(M, N) is ss-injective.

(2)⇒(3) Let N be a flat R-module, then N+ is injective by [10, Proposition 3.54]. So it follows from [10, Theorem 2.75] that $(M \otimes N)^* \cong$ $Hom(M, N^+)$ is ss-injective. Thus $M \otimes N$ is ss-flat by Lemma 2.3.

(3)⇒(1) Follows from [5, Proposition 2.3.4]. ■

Proposition 2.21. Let R be a community of the ring and M be a semisimple R-module H, M is so that then End(M) is so the curve as

Akeel, R/Adel, S

Proof. By [5, p. 157], there is groups $\varphi: (S_r \cap I) \otimes M \rightarrow (S_r \cap I)M$ given by $a \otimes x \mapsto ax$ for each generator, $a \otimes x \in (S_r \cap I) \otimes M$. Thus we have the commutative diagram:

 $0 \longrightarrow (S_r \cap J) \otimes M \xrightarrow{i_1 \otimes I_M} R \otimes M$ $\downarrow \varphi \qquad \qquad \downarrow f$ $0 \longrightarrow (S_r \cap J) M \xrightarrow{i_2} M$

where I_M is the identity map, i_1 and i_2 are the inclusion maps, and f is an isomorphism defined by [5, Proposition 2.3.4]. Since $f * (i_1 \otimes l_M)$ is \mathbb{Z} -monomorphism, then φ is isomorphism. Therefore $(S_r \cap J) \otimes M \cong$ $(S_r \cap J)M \subseteq J(M) = 0$ by [19, Theorem 9.2.1]. So it follows from [10, Theorem 2.75] that $0 = \text{Hom}((S_r \cap J) \otimes M, M) \cong \text{Hom}(S_r \cap J) \otimes M = \text{Hom}(S_r$ J, End(M)). But the sequence $0 = \text{Hom}(S_r \cap$ $J, \operatorname{End}(M) \longrightarrow \operatorname{Ext}^1(R/(S_r \cap J), \operatorname{End}(M))$ \rightarrow Ext¹(R, End(M)) = 0 is exact by [9, Theorem XII.4.4 Thus $\operatorname{Ext}^1(R/(S_r \cap J), \operatorname{End}(M)) = 0$ and hence End(M) is an ss-injective as R-module.

Proposition 2.22. Let R be a commutative ring and M be a simple R-module. Then M is ss-flat if and only if M is ss-injective.

Proof. (\Rightarrow) Let M = mR be a simple R-module. Define $f: Hom(mR, mR) \rightarrow mR$ by $f(\alpha) = \alpha(m)$. We assert that f is a well define R -homomorphism. Let $\alpha_1 = \alpha_2$, $\alpha_1(m) = \alpha_2(m)$, so $f(\alpha_1) = f(\alpha_2)$. Now, let $\alpha_1, \alpha_2 \in \operatorname{End}(M)$ and $r_1, r_2 \in R$, then $f(r_1\alpha_1 + r_2\alpha_2) = (r_1\alpha_1 + r_2\alpha_2)(m) =$ $(r_1\alpha_1)(m) + (r_2\alpha_2)(m) = r_1\alpha_1(m) +$ $r_2\alpha_2(m) = r_1f(\alpha_1) + r_2f(\alpha_2)$ proving the assertion. Since $f(\operatorname{End}(M)) = M$ $\ker(f) = \{\alpha \in \operatorname{End}(M) : f(\alpha) = 0\} =$ $\{\alpha \in \operatorname{End}(M) : \alpha(m) = 0\} = \{\alpha \in \operatorname{End}(M) : 0 \neq$ $m \in \ker(\alpha)$ = 0, then $\operatorname{End}(M) \cong M$ and hence M is ss-injective by Proposition 2.21. (\Leftarrow) Let $\{S_{\lambda}\}_{\lambda \in \Lambda}$ be a family of all simple R -modules and $E = E(\bigoplus_{\lambda \in \Lambda} S_{\lambda})$. Then $Hom(M, E) \cong M$ by the proof of [12, Lemma 2.6], so it follows from the dual version of [7, Theorem 3.2.1] that $\operatorname{Ext}^1(R/(S, \cap J), M) =$ $\operatorname{Hom}(\operatorname{Tor}_1(R/(S_r \cap J), M), E)$. Since M is

Akeel, R / Adel, S

How (for, $(R/LS_r)(J), M), E) = 0$. But E is injective togenerate by [8, Corollary 18.19], thus $Tor_r(R/LS_r)(J), M) = 0$ (see [7, definition 3.2.71] and hence M is ss-flat.

Recall that a ring R is called PS-ring teep., F3-ring) if S_r is projective (resp., flat) (see [20]); equivalently, if S_r \(\tilde{I}\) I is projective (resp., flat). The following corollary extends a result of [20, Proposition 8 (1)] that a commutative FS-ring is PS-ring

Corollary 2.23. The following statements are equivalent for a commutative ring R:

- (1) R is a universally mininjective.
- (2) R is a PS-ring.
- (3) R is an FS-ring.
- (4) S_r is ss-flat.

Proof. By [1, Corollary 1.19] and Proposition 2.22. ■

References

- A. S. Tayyah and A. R. Mehdi, SS-Injective Modules and Rings, arxiv: Math., RA/ 1607.07924v1, 27 Jul 2016.
- [2] L. Mao, Min-Flat Modules and Min-Coherent Rings, Comm. Algebra, 35(2007), 635-650.
- [3] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.
- [4] A. R. Mehdi, Purity relative to classes of finitely presented modules, PhD Thesis, Manchester University, 2013.
- [5] P. E. Bland, Rings and Their Modules, Walter de Gruyter & Co., Berlin, 2011.
- [6] I. Amin, M. Yousif and N. Zeyada, Soc-injective rings and modules, Comm. Algebra 33 (2005) 4229-4250.

- [7] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, 2000.
 [8] F. W. Anderson and K. R. Fuller, Rings and
- Categories of Modules, Springer-Verlag, Berlin-New York, 1974.
- [9] P.A. Grillet, Abstract Algebra, 2nd edition, GTM 242, Springer, 2007.
- [10] J. J. Rotman, An Introduction to Homological Algebra, Springer, 2009.
- [11] E. E. Enochs, A note on absolutely pure modules, Canad. Math. Bull., 19(1976), 361-362.
 [12] R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc., 155(1971), 233-256.
- [13] J. L. Chen and N. Q. Ding, On n-coherent rings, Comm. Algebra, 24(1996), 3211-3216.
- [14] E. E. Enochs and Z. Y. Huang, Injective envelopes and (Gorenstein) flat covers, Algebr. Represent. Theor., 15 (2012) 1131-1145.
- [15] T.Y. Lam, Lectures on Modules and Rings, GTM 189, Springer-Verlag, New York, 1999.
- [16] B. Stenström, Coherent rings and FP-injective modules, J. London. Math. Soc., 2(1970), 323-329.
- [17] H. Holm and P. Jørgensen, Covers, precovers, and purity, Illinois J. Math., 52 (2008), 691-703.
- [18] T. J. Cheatham and D. R. Stone, Flat and Projective Character Modules, Proc. Amer. Math. Soc., 81(1981), 175-177.
- [19] F. Kasch, Modules and Rings, Academic Press, New York, 1982.
- [20] Y. Xiao, Rings with flat socles, Proc. Amer. Math. Soc., 123(1995), 2391-2395.

Akeel, R / Adel, S

المقاسات المسطحة من التمط -55

عقيل رمضان مهدي جامعة القادسية كلية التربية قسم الرياضيات عادل سالم تايه جامعة القانسية كلية علوم الحاسوب وتكتلوجيا المعلومات قسم الرياضيات

Email: akeel.mehdi@qu.edu.iq Email: adils9888@gmail.com

المستقلص:

في هذا البحث، تم تقديم ودراسة المقاسات المصطحة من النمط -ss كمفهوم رديف للمقاسات الإغمارية من النمط -ss. الحلقات المتماسكة من النمط -min الحلقات من النمط -ss. الحلقات من النمط -ss. والحلقات الإغمارية كليا من النمط -ss. والمقاسات الإغمارية من النمط -ss.