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Abstract

The concept of strong differential subordinations was introduced in [1], [2] by
Antonio and Romaguera and developed in [6,8]. The dual concept of strong
differential superordination was introduced in [4] and developed in [5,7]. In this
paper, we introduce two new classes of symmetric analytic functions defined by
strong differential subordination and superordination. Also we study some
properties of these classes.
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1 Introduction and Preliminaries

Denote by U the open unit disk of the complex plane U ={z € C : |z| < 1},

U={z€C :|z|l <1} the closed unit disk of the complex plane and # (U x U)
the class of analytic functionsin U x U.
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For n a positive integer and a€ C, let H*[a,n ] ={f e H({U x
D):f(z,0) =a+a,(z" + an1(Dz"™ +--,z€ U,{ €U}, where a;({)
are holomorphic functions in U for j > n.

Let A7 denote the class of functions of the form:

F(20) =2+ Z 0, ()zk, (zeU,¢e), (1.1)
k=2

which are analytic in U x U and a,({) are holomorphic functions in U for
k> 2.

Definition 1.1 [4]. We denote by Q; the set of functions that are analytic and
injective on U x U\E(f, {), where

B0 = {§ €ouilim £(2,0) = =},

and f/(&,0) # 0 for& € aU x U\E(f,{). The subclass of Q; with f(0,{) =a
is denoted by Q(a).

Definition 1.2 [4]. Let f(z,{),F(z {) analytic in U x U. The function f(z,{)
is said to be strongly subordinate to F(z, ) if there exists a function w analytic
in U with w(0) = 0 and |w(z)| <1 (z € U) such that f(z,{) = F(w(z),{)
forall ¢ € U. Insuch a case we write f(z,{) << F(z,{),z€ U,{ € U.

Remark 1.1 [4].

(i) Since f(z,¢) is analytic in U x U, for all { € U and univalent in U, for all
{ € U, Definition1.2 is equivalent to £(0,{) = F(0,¢) forall { € U and f(U x
U) c F(U x D).

(i) If f(z,0) =f(2) and F(z,{) = F(z2), the strong subordination becomes the
usual notion of subordination.

If f(z {) strongly subordinate to F(z,{), then F(z {) strongly superordinate
to f(z0).

Lemma 1.1 [3]. Let h(z,¢) be a univalent with h(0,{) = a for every { € U
and let u € C\ {0} with Re(u) = 0. If p € H*[a,1,{] and

1 —
p(Z, () + ;Zp;(z, () << h(Z, ()1 (Z € U!( € U)' (12)

then

p(z,0) << q(z,{) << h(z,{), (z€U,{ €U),
where q(z,{) = uz™* fozh(t, {) t*+~1dt is convex and it is the best dominant of
(1.2).

Lemma 1.2 [4]. Let h(z,{) be aconvex with h(0,¢) = a forevery { € U and
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let u € C\ {0} with Re(u) =0. If p € H*[a,1,{]NQ¢, p(z,0) +iZPQ(Z.C)
is univalentin U x U and

1 _
h(z,{) <<p(z{) +!—12p;(z, 0, (zeUlel), (1.3)

then

q(z,0) << p(z,9), (z€U,{€l),
where q(z,{) = uz™* fozh(t, {) t*+~1dt is convex and it is the best subordinant
of (1.3).

2 Main Results

Definition 2.1. Let (z,{) be an analytic function in U x U with (0,0) =1
for every (€U and 1> 0. A function f € A% is said to be in the class

S(A;¢) if it satisfies the strong differential subordination

(1 _ A) (f(Z, () _zzf(_zl ()) +2 (fZI(Z' {) _zle(_zl ()) << l/)(Z, Z)

A function f € A% is said to be in the class T(4; ) if it satisfies the strong
differential superordination

Y(z,) << —/1)<

f(Z, {) - f(_Z, ()) +2 (fZI(Z' O - fZI(_Z' ())
2z 2

Theorem 2.1. Let 1(z,{) be a convex function in U x U with (0,{) =1 for
every €U and 2> 0. If f €S(4;4), then there exists a convex function
q(z,{) suchthat q(z,{) << ¥(z,{) and f € S(0;q).

Proof. Suppose that
f(Z, () - f(_Z! {)
2z

p(z,¢) =

Then, p € *[1,1,¢].
Since f € S(A; ), then we have
1-2 <f 29 = Zf (-2 O) . (fz @) —Zfz (=2,0)

1 o0
1+ Ekzz(l (=D ap (. (2.1)

) <<Y(z,0). (2.2)

From (2.1) and (2.2), we get
1-2 (f(z,() —f(—z,C)> 2 (fz(z,() (=20

2z 2
<< w(z) c)'

) =p(z,0) + Azp;(2,0)

By using Lemma 1.1, we obtain

p(z,¢) << q(z,{) << Y(z]).
So
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f(z,0) = f(=27)
2z

<<4q(z,9) << ¥(z,9),

where

1 1% 1,
a(z0) =5z af (6, Q) e tde
0

is convex and it is the best dominant.

Theorem 2.2. Let ¥ (z,{) be a convex function in U x U with ¥(0,¢) =1 for
every (€U and 2> 0. If f € T(L), W € #*[1,1,¢{]1n Q; and
(1 _ A) (f(zl () - f(_Zr C)) + 1 <fz,(zf () - fZI(_Z' €)>
2z 2
is univalent in U x U, then there exists a convex function q(z,¢) such that f €

T(0;q).

Proof. Let the function p(z,{) be defined by (2.1). Then p € H*[1,1,{] n Q..
After a short calculation and considering f € T(4;1), we can conclude that

¥(z,0) << p(z,0) + 1zp,(2,0).

By using Lemma 1.2, we obtain

q(z,¢) << p(z,).
f(Z’ () _f(_Zl ()

2z

So

q(z,{) <<
where
1 1 (7 1,
q(z,Q) =77 Af Y(t, )t dt
0
is convex and it is the best subordinant.

If we combine the results of Theorem 2.1 and Theorem 2.2, we obtain the
following strong differential “sandwich theorem".

Theorem 2.3. Let ,(z,{) and ,(z {) be convex functions in U x U with
¥,(0,0) =9,(0,{) =1 for every (€U and A1>0. If feSUAYP,)N

Ty, LD e 30 [1,1,¢1 0 @; and
1-2 (f(z,() —f(—z,C)> 2 (fz(z,() _fZ(_Z;()>

2z 2
is univalent in U x U, then
f €5(0;9,) nT(0; qy),

where

q1(z,9) ——Z /'lf Y,(t, ) tl Ldt

and
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1 a7 -
qZ(Z'Z)_ZZ J;)lpz(t,()t dt.

The functions g, and q, are convex.

Theorem 2.4. Let ¥ (z,{) be a convex function in U x U with ¥(0,¢) =1 for
every { € U and

e+2 (* _
G(z,0) = Ff téf(t,Q)dt, (z€eU,{ € U,Re(e) >—-2). (2.3)
0

If f € S(1;v), then there exists a convex function q(z,{) such that q(z,{) <<
P(z,¢) and G € S(1; q).

Proof. Suppose that
G,(2,{) — G,(=2,{)

p(z,¢) = 5 , (ze U, €. (2.4)
Then, p € H*[1,1,{].
From (2.3), we have
z¢t1G(2,0) = (e + Z)f téf(t, {)dt. (2.5)
0

Differentiating both sides of (2.5) with respect to z, we get

(e+1)6(z,0) +2G,(29)

£2,9) = e

(2.6)
By using (2.4) and (2.6), we obtain

1 +1 1
P + 5 704(2,0) = =12, + —5 (042 +p(2,9)

e+ 160 +2642.0), - (e + DG(=2,0) +265(-2,0),
N 2(e + 2)

— fZ,(Z’ () - fz,(_Z’ ()
> :
Since f € S(1;v), then we have

fZI (Z, {) - fZI(_Z' Z)

2
From (2.7) and (2.8), we arrive at

p(z,{) +

2.7)

<< yY(z Q). (2.8)

1
——70,(2,9) << Pz, 0.

By using Lemma 1.1, we obtain

P(z,9) << q(z,{) << ¥(z,0).

GZ,(ZI () - GZ,(_ZI ()
2

So

<<4q(z9) << ¥(z,9),
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where

06,0 = (e + 227 [ (.0 et
0

is convex and it is the best dominant.

Theorem 2.5. Let (z,¢) be a convex function in U x U with ¥(0,¢) =1 for
every ( € U and G(z, Q) is given by (2.3). If f € T(1;¢), WE
H*[1,1,{]nQ; and w is univalent in U x U, then there exists a

convex function q(z,{) suchthat G € T(1;q).

Proof. Let the function p(z,{) be defined by (2.4). Then p € H*[1,1,{] N Q;.
After a short calculation and considering f € T(1; ), we can conclude that

Y(z,¢) <<p(z{+ zpz(z,9).

€+ 2

By using Lemma 1.2, we obtain

q(z,9) << p(z 7).

GZ,(Z’ () - GZI(_ZI ()
2 )

So

q(z,¢) <<
where
Z
q(z,{) = (e + 2)2‘(E+2)f Y(t, Q) tetidt
0
is convex and it is the best subordinant.

If we combine the results of Theorem 2.4 and Theorem 2.5, we obtain the
following strong differential "sandwich theorem".

Theorem 2.6. Let ,(z,{) and ,(z {) be convex functions in U x U with
¥,(0,0) =,(0,{) =1 forevery { € U and G(z{) is given by (2.3). If f €

S(l, 1/)1) N T(l, l,bz) ’ GZ(Z()_GZ(_Z() € }[*[1'1' (] N Q( and fz(Z.f)—fz(—Z,() |S

2 2
univalent in U x U, then
GEeES(1;9)NT(1;q3)
where

3.0 = (e + 227 [y (6.0) 1"
0

and

q2(2,0) = (e + 2)z~ (€D j sz(t, ) tetidt.
0

The functions q; and g, are convex.
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