International Journal of Pure and Applied Mathematics

Volume 116 No. 3 2017, 571-579 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v116i3.2



## ON A NEW STRONG DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS OF ANALYTIC FUNCTIONS INVOLVING THE GENERALIZED OPERATOR

Abbas Kareem Wanas<sup>1 §</sup>, Alb Lupaş Alina<sup>2</sup>

<sup>1</sup>Department of Mathematics College of Computer Science and Information Technology University of Al-Qadisiya Diwaniya, IRAQ <sup>2</sup>Department of Mathematics and Computer Science University of Oradea 1 Universitatii Street, 410087 Oradea, ROMANIA

**Abstract:** We introduce two new classes of analytic functions defined by strong differential subordinations and superordinations involving the generalized operator. Also we study some properties of these classes.

**AMS Subject Classification:** 30C45, 30A20, 34A40 **Key Words:** strong differential subordinations, strong differential superordinations, convex function, best dominant, best subordinant, generalized operator

## 1. Introduction and Preliminaries

Denote by U the open unit disk of the complex plane  $U = \{z \in \mathcal{C} : |z| < 1\},\$  $\overline{U} = \{z \in \mathcal{C} : |z| \le 1\}$  the closed unit disk of the complex plane and  $\mathcal{H}(U \times \overline{U})$  the class of analytic functions in  $U \times \overline{U}$ .

For *n* a positive integer and  $a \in C$ , let  $\mathcal{H}[a, n, \zeta] = \{f \in \mathcal{H}(U \times \overline{U}) : f(z, \zeta) = a + a_n(\zeta) z^n + a_{n+1}(\zeta) z^{n+1} + ..., z \in U, \zeta \in \overline{U}\}$ , where  $a_j(\zeta)$  are holomorphic functions in  $\overline{U}$  for  $j \ge n$ .

| Received:  | November 3, $2016$ |
|------------|--------------------|
| Revised:   | June 22, 2017      |
| Published: | October 24, 2017   |

© 2017 Academic Publications, Ltd. url: www.acadpubl.eu

<sup>§</sup>Correspondence author

Let  $\mathcal{A}_{\zeta}$  the class of functions of the form:

$$f(z,\zeta) = z + \sum_{k=2}^{\infty} a_k(\zeta) z^k, \quad (z \in U, \, \zeta \in \overline{U}),$$
(1)

which are analytic in  $U \times \overline{U}$  and  $a_k(\zeta)$  are holomorphic functions in  $\overline{U}$  for  $k \ge 2$ .

**Definition 1.** [7] We denote by  $Q_{\zeta}$  the set of functions that are analytic and injective on  $\overline{U} \times \overline{U} \setminus E(f, \zeta)$ , where

$$E(f,\zeta) = \left\{ r \in \partial U : \lim_{z \to r} f(z,\zeta) = \infty \right\},\$$

and  $f'_{z}(r,\zeta) \neq 0$  for  $r \in \partial U \times \overline{U} \setminus E(f,\zeta)$ . The subclass of  $Q_{z}$  with  $f(0,\zeta) = a$  is denoted by  $Q_{\zeta}(a)$ .

**Definition 2.** [7] Let  $f(z,\zeta)$ ,  $F(z,\zeta)$  be analytic in  $U \times \overline{U}$ . The function  $f(z,\zeta)$  is said to be strongly subordinate to  $F(z,\zeta)$  if there exists a function w analytic in U with w(0) = 0 and |w(z)| < 1 ( $z \in U$ ) such that  $f(z,\zeta) = F(w(z),\zeta)$  for all  $\zeta \in \overline{U}$ . In such a case we write  $f(z,\zeta) \prec \prec F(z,\zeta)$ ,  $z \in U$ ,  $\zeta \in \overline{U}$ .

**Remark 3.** [7] (i) Since  $f(z,\zeta)$  is analytic in  $U \times \overline{U}$ , for all  $\zeta \in \overline{U}$  and univalent in U, for all  $\zeta \in \overline{U}$ , Definition 2 is equivalent to  $f(0,\zeta) = F(0,\zeta)$  for all  $\zeta \in \overline{U}$  and  $f(U \times \overline{U}) \subset F(U \times \overline{U})$ .

(ii) If  $f(z,\zeta) = f(z)$  and  $F(z,\zeta) = F(z)$ , the strong subordination becomes the usual notion of subordination.

If  $f(z,\zeta)$  is strongly subordinate to  $F(z,\zeta)$ , then  $F(z,\zeta)$  is strongly superordinate to  $f(z,\zeta)$ .

As a dual notion of strong differential subordination, Oros [7] has introduced and developed the notion of strong differential superordinations.

**Lemma 4.** [6] Let  $h(z,\zeta)$  be an univalent function with  $h(0,\zeta) = a$  for every  $\zeta \in \overline{U}$  and  $\mu \in \mathcal{C} \setminus \{0\}$  with  $\operatorname{Re}(\mu) \geq 0$ . If  $p \in \mathcal{H}[a, 1, \zeta]$  and

$$p(z,\zeta) + \frac{1}{\mu} z p'_{z}(z,\zeta) \prec \prec h(z,\zeta), \quad (z \in U, \, \zeta \in \overline{U}),$$
(2)

then

$$p(z,\zeta) \prec \prec q(z,\zeta) \prec \prec h(z,\zeta), \ (z \in U, \ \zeta \in \overline{U}),$$

where  $q(z,\zeta) = \mu z^{-\mu} \int_0^z h(t,\zeta) t^{\mu-1} dt$  is convex and it is the best dominant of (2).

**Lemma 5.** [7]Let  $h(z,\zeta)$  be a convex function with  $h(0,\zeta) = a$  for every  $\zeta \in \overline{U}$  and  $\mu \in \mathcal{C} \setminus \{0\}$  with  $\operatorname{Re}(\mu) \geq 0$ . If  $p \in \mathcal{H}[a,1,\zeta] \cap Q_{\zeta}$ ,  $p(z,\zeta) + \frac{1}{\mu}zp'_{z}(z,\zeta)$  is univalent in  $U \times \overline{U}$  and

$$h(z,\zeta) \prec \not q(z,\zeta) + \frac{1}{\mu} z p'_z(z,\zeta), \quad (z \in U, \, \zeta \in \overline{U}),$$
(3)

then

 $q(z,\zeta) \prec \not q(z,\zeta), \quad (z \in U, \, \zeta \in \overline{U}),$ 

where  $q(z,\zeta) = \mu z^{-\mu} \int_0^z h(t,\zeta) t^{\mu-1} dt$  is convex and it is the best subordinant of (3).

**Definition 6.** [9]For  $f \in \mathcal{A}_{\zeta}$ ,  $m \in N_0 = N \cup \{0\}$ ,  $\beta \geq 0$ ,  $\alpha \in R$  with  $\alpha + \beta > 0$ , the generalized operator  $I^m_{\alpha,\beta} : \mathcal{A}_{\zeta} \to \mathcal{A}_{\zeta}$  is defined by

$$I_{\alpha,\beta}^{m}f(z,\zeta) = z + \sum_{k=2}^{\infty} \left(\frac{\alpha + k\beta}{\alpha + \beta}\right)^{m} a_{k}(\zeta) z^{k}, \quad (z \in U, \, \zeta \in \overline{U}).$$
(4)

It follows from (4) that

$$\beta z \left( I_{\alpha,\beta}^{m} f(z,\zeta) \right)_{z}^{\prime} = (\alpha + \beta) I_{\alpha,\beta}^{m+1} f(z,\zeta) - \alpha I_{\alpha,\beta}^{m} f(z,\zeta) \,. \tag{5}$$

**Remark 7.** (i) For  $\alpha = 1 + l - \lambda$ ,  $\beta = \lambda$ , the operator  $I^m_{\alpha,\beta} = I(m,\lambda,l)$  was studied by Alb Lupas [1], [2].

(ii) For  $\beta = 1$ ,  $\alpha > -1$ , the operator  $I^m_{\alpha,1} = I^m_{\alpha}$  was introduced and studied by Cho and Kim [4] and Cho and Srivastava [5].

(iii) For  $\alpha = 1 - \beta$ ,  $\beta \ge 0$ , the operator  $I^m_{1-\beta,\beta} = D^m_\beta$  was introduced and studied by Al-Oboudi [3].

(iv) For  $\alpha = 0$ ,  $\beta = 1$ , the operator  $I_{0,1}^m = S^m$  was introduced and studied by Sălăgean [8].

**Definition 8.** Let  $\psi(z,\zeta)$  be an analytic function in  $U \times \overline{U}$  with  $\psi(0,\zeta) = 1$  for every  $\zeta \in \overline{U}$  and  $\lambda > 0$ ,  $\alpha \in R$ ,  $\beta \ge 0$ ,  $m \in N_0$ . A function  $f \in \mathcal{A}_{\zeta}$  is said to be in the class  $S(\lambda, \alpha, \beta, m; \psi)$  if it satisfies the strong differential subordination

$$\frac{1}{z} \left[ \left( 1 - \frac{\lambda \left( \alpha + \beta \right)}{\beta} \right) I^m_{\alpha,\beta} f\left( z, \zeta \right) + \frac{\lambda \left( \alpha + \beta \right)}{\beta} I^{m+1}_{\alpha,\beta} f\left( z, \zeta \right) \right] \prec \prec \psi\left( z, \zeta \right).$$

A function  $f \in \mathcal{A}_{\zeta}$  is said to be in the class  $T(\lambda, \alpha, \beta, m; \psi)$  if it satisfies the strong differential superordination

$$\psi(z,\zeta) \prec \prec \frac{1}{z} \left[ \left( 1 - \frac{\lambda(\alpha+\beta)}{\beta} \right) I^m_{\alpha,\beta} f(z,\zeta) + \frac{\lambda(\alpha+\beta)}{\beta} I^{m+1}_{\alpha,\beta} f(z,\zeta) \right]$$

## 2. Main Results

**Theorem 9.** Let  $\psi(z,\zeta)$  be a convex function in  $U \times \overline{U}$  with  $\psi(0,\zeta) = 1$  for every  $\zeta \in \overline{U}$  and  $\lambda > 0$ . If  $f \in S(\lambda, \alpha, \beta, m; \psi)$ , then there exists a convex function  $q(z,\zeta)$  such that  $q(z,\zeta) \prec \prec \psi(z,\zeta)$  and  $f \in S(0, \alpha, \beta, m; q)$ .

*Proof.* Suppose that

$$p(z,\zeta) = \frac{I_{\alpha,\beta}^m f(z,\zeta)}{z} = 1 + \sum_{k=2}^{\infty} \left(\frac{\alpha + k\beta}{\alpha + \beta}\right)^m a_k(\zeta) z^{k-1}.$$
 (6)

Then  $p \in \mathcal{H}[1, 1, \zeta]$ .

Since  $f \in S(\lambda, \alpha, \beta, m; \psi)$ , then we have

$$\frac{1}{z} \left[ \left( 1 - \frac{\lambda \left( \alpha + \beta \right)}{\beta} \right) I^m_{\alpha,\beta} f\left( z, \zeta \right) + \frac{\lambda \left( \alpha + \beta \right)}{\beta} I^{m+1}_{\alpha,\beta} f\left( z, \zeta \right) \right] \prec \prec \psi\left( z, \zeta \right).$$
(7)

From (6) and (7), we get

$$\frac{1}{z} \left[ \left( 1 - \frac{\lambda \left( \alpha + \beta \right)}{\beta} \right) I^m_{\alpha,\beta} f\left( z, \zeta \right) + \frac{\lambda \left( \alpha + \beta \right)}{\beta} I^{m+1}_{\alpha,\beta} f\left( z, \zeta \right) \right]$$
$$= p\left( z, \zeta \right) + \lambda z p'_z\left( z, \zeta \right) \prec \prec \psi\left( z, \zeta \right).$$

An application of Lemma 4 with  $\mu = \frac{1}{\lambda}$  yields

$$p(z,\zeta) \prec \prec q(z,\zeta) \prec \prec \psi(z,\zeta).$$

By using (6), we obtain

$$\frac{I_{\alpha,\beta}^{m}f\left(z,\zeta\right)}{z}\prec\prec q\left(z,\zeta\right)\prec\prec\psi\left(z,\zeta\right),$$

where

$$q(z,\zeta) = \frac{1}{\lambda} z^{-\frac{1}{\lambda}} \int_0^z \psi(t,\zeta) t^{\frac{1}{\lambda}-1} dt$$

is convex and it is the best dominant.

**Theorem 10.** Let  $\psi(z,\zeta)$  be a convex function in  $U \times \overline{U}$  with  $\psi(0,\zeta) = 1$ for every  $\zeta \in \overline{U}$  and  $\lambda > 0$ . If  $f \in T(\lambda, \alpha, \beta, m; \psi)$ ,  $\frac{I_{\alpha,\beta}^m f(z,\zeta)}{z} \in \mathcal{H}[1,1,\zeta] \cap Q_{\zeta}$ and  $\frac{1}{z} \left[ \left( 1 - \frac{\lambda(\alpha+\beta)}{\beta} \right) I_{\alpha,\beta}^m f(z,\zeta) + \frac{\lambda(\alpha+\beta)}{\beta} I_{\alpha,\beta}^{m+1} f(z,\zeta) \right]$  is univalent in  $U \times \overline{U}$ , then there exists a convex function  $q(z,\zeta)$  such that  $f \in T(0, \alpha, \beta, m, q)$ .

Proof. Suppose that

$$p(z,\zeta) = \frac{I_{\alpha,\beta}^m f(z,\zeta)}{z} = 1 + \sum_{k=2}^{\infty} \left(\frac{\alpha + k\beta}{\alpha + \beta}\right)^m a_k(\zeta) z^{k-1}.$$
 (8)

Then  $p \in \mathcal{H}[1, 1, \zeta] \cap Q_{\zeta}$ .

After a short calculation and considering  $f\in T\left(\lambda,\alpha,\beta,m;\psi\right),$  we can conclude that

 $\psi(z,\zeta) \prec \not\prec p(z,\zeta) + \lambda z p'_{z}(z,\zeta).$ 

An application of Lemma 5 with  $\mu = \frac{1}{\lambda}$  yields

$$q(z,\zeta) \prec \prec p(z,\zeta)$$
.

By using (8), we obtain

$$q(z,\zeta) \prec \prec \frac{I^m_{\alpha,\beta}f(z,\zeta)}{z},$$

where

$$q(z,\zeta) = \frac{1}{\lambda} z^{-\frac{1}{\lambda}} \int_0^z \psi(t,\zeta) t^{\frac{1}{\lambda}-1} dt$$

is convex and it is the best subordinant.

If we combine the results of Theorem 9 and Theorem 10, we obtain the following strong differential "sandwich theorem".

**Theorem 11.** Let  $\psi_1(z,\zeta)$  and  $\psi_2(z,\zeta)$  be convex functions in  $U \times \overline{U}$  with  $\psi_1(0,\zeta) = \psi_2(0,\zeta) = 1$  for every  $\zeta \in \overline{U}$  and  $\lambda > 0$ . If  $f \in S(\lambda, \alpha, \beta, m; \psi_1) \cap T(\lambda, \alpha, \beta, m; \psi_2), \frac{I_{\alpha,\beta}^m f(z,\zeta)}{z} \in \mathcal{H}[1,1,\zeta] \cap Q_{\zeta}$  and

$$\frac{1}{z}\left[\left(1-\frac{\lambda\left(\alpha+\beta\right)}{\beta}\right)I_{\alpha,\beta}^{m}f\left(z,\zeta\right)+\frac{\lambda\left(\alpha+\beta\right)}{\beta}I_{\alpha,\beta}^{m+1}f\left(z,\zeta\right)\right]$$

is univalent in  $U \times \overline{U}$ , then

$$f \in S\left(0, \alpha, \beta, m; q_1\right) \cap T\left(0, \alpha, \beta, m, q_2\right),$$

where  $q_1(z,\zeta) = \frac{1}{\lambda} z^{-\frac{1}{\lambda}} \int_0^z \psi_1(t,\zeta) t^{\frac{1}{\lambda}-1} dt$  and  $q_2(z,\zeta) = \frac{1}{\lambda} z^{-\frac{1}{\lambda}} \int_0^z \psi_2(t,\zeta) t^{\frac{1}{\lambda}-1} dt$ . The functions  $q_1$  and  $q_2$  are convex.

**Theorem 12.** Let  $\psi(z,\zeta)$  be a convex function in  $U \times \overline{U}$  with  $\psi(0,\zeta) = 1$  for every  $\zeta \in \overline{U}$  and

$$G(z,\zeta) = \frac{\epsilon+2}{z^{\epsilon+1}} \int_0^z t^{\epsilon} f(t,\zeta) dt, \quad (z \in U, \, \zeta \in \overline{U}, \, Re(\epsilon) > -2).$$
(9)

If  $f \in S(1, \alpha, \beta, m; \psi)$ , then there exists a convex function  $q(z, \zeta)$  such that  $q(z, \zeta) \prec \prec \psi(z, \zeta)$  and  $G \in S(1, \alpha, \beta, m; q)$ .

*Proof.* Suppose that

$$p(z,\zeta) = \left(I^m_{\alpha,\beta}G(z,\zeta)\right)'_z, \quad (z \in U, \, \zeta \in \overline{U}).$$
(10)

Then  $p \in \mathcal{H}[1, 1, \zeta]$ .

From (9) we have

$$z^{\epsilon+1}G(z,\zeta) = (\epsilon+2)\int_0^z t^\epsilon f(t,\zeta) dt.$$
 (11)

Differentiating both sides of (11) with respect to z, we get

 $(\epsilon + 2) f(z, \zeta) = (\epsilon + 1) G(z, \zeta) + zG'_{z}(z, \zeta)$ 

and

$$(\epsilon+2) I_{\alpha,\beta}^m f(z,\zeta) = (\epsilon+1) I_{\alpha,\beta}^m G(z,\zeta) + z \left( I_{\alpha,\beta}^m G(z,\zeta) \right)_z'.$$

Differentiating the last relation with respect to z, we have

$$\left(I_{\alpha,\beta}^{m}f\left(z,\zeta\right)\right)_{z}^{\prime} = \left(I_{\alpha,\beta}^{m}G\left(z,\zeta\right)\right)_{z}^{\prime} + \frac{z}{\epsilon+2}\left(I_{\alpha,\beta}^{m}G\left(z,\zeta\right)\right)_{z^{2}}^{\prime\prime}.$$
(12)

Since  $f \in S(1, \alpha, \beta, m; \psi)$ , then we get

$$\frac{1}{\beta z} \left[ (\alpha + \beta) I^{m+1}_{\alpha,\beta} f(z,\zeta) - \alpha I^{m}_{\alpha,\beta} f(z,\zeta) \right] \prec \prec \psi(z,\zeta) \,. \tag{13}$$

Now, from (5), (13) is equivalent to

$$\left(I_{\alpha,\beta}^{m}f\left(z,\zeta\right)\right)_{z}^{\prime}\prec\prec\psi\left(z,\zeta\right).$$
(14)

From (12) and (14), we get

$$\left(I_{\alpha,\beta}^{m}G\left(z,\zeta\right)\right)_{z}^{\prime}+\frac{z}{\epsilon+2}\left(I_{\alpha,\beta}^{m}G\left(z,\zeta\right)\right)_{z^{2}}^{\prime\prime}\prec\prec\psi\left(z,\zeta\right).$$
(15)

Replacing (10) in (15), we obtain

$$p(z,\zeta) + \frac{1}{\epsilon+2} z p'_z(z,\zeta) \prec \prec \psi(z,\zeta).$$

An application of Lemma 4 with  $\mu = \epsilon + 2$  yields

$$p(z,\zeta) \prec \prec q(z,\zeta) \prec \prec \psi(z,\zeta).$$

By using (10), we obtain

$$\left(I_{\alpha,\beta}^{m}G\left(z,\zeta\right)\right)_{z}^{\prime}\prec\prec q\left(z,\zeta\right)\prec\prec\psi\left(z,\zeta\right),$$

where

$$q(z,\zeta) = (\epsilon+2) z^{-(\epsilon+2)} \int_0^z \psi(t,\zeta) t^{\epsilon+1} dt$$

is convex and it is the best dominant.

**Theorem 13.** Let  $\psi(z,\zeta)$  be a convex function in  $U \times \overline{U}$  with  $\psi(0,\zeta) = 1$  for every  $\zeta \in \overline{U}$  and  $G(z,\zeta)$  is given by (9). If  $f \in T(1,\alpha,\beta,m;\psi)$ ,  $\left(I_{\alpha,\beta}^m G(z,\zeta)\right)'_z \in \mathcal{H}[1,1,\zeta] \cap Q_{\zeta}$  and

$$\frac{1}{\beta z} \left[ \left( \alpha + \beta \right) I_{\alpha,\beta}^{m+1} f\left( z, \zeta \right) - \alpha I_{\alpha,\beta}^{m} f\left( z, \zeta \right) \right]$$

is univalent in  $U \times \overline{U}$ , then there exists a convex function  $q(z,\zeta)$  such that  $G \in T(1, \alpha, \beta, m, q)$ .

*Proof.* Suppose that

$$p(z,\zeta) = \left(I^m_{\alpha,\beta}G(z,\zeta)\right)'_z, \quad (z \in U, \, \zeta \in \overline{U}).$$
(16)

Then  $p \in \mathcal{H}[1, 1, \zeta] \cap Q_{\zeta}$ .

After a short calculation and considering  $f \in T(1, \alpha, \beta, m; \psi)$ , we can conclude that

$$\psi(z,\zeta) \prec p(z,\zeta) + \frac{1}{\epsilon+2} z p'_z(z,\zeta).$$

An application of Lemma 5 with  $\mu = \epsilon + 2$  yields

$$q(z,\zeta) \prec \prec p(z,\zeta).$$

By using (16), we obtain

$$q(z,\zeta) \prec \prec \left(I^m_{\alpha,\beta}G(z,\zeta)\right)'_z,$$

where

$$q(z,\zeta) = (\epsilon+2) z^{-(\epsilon+2)} \int_0^z \psi(t,\zeta) t^{\epsilon+1} dt$$

is convex and it is the best subordinant.

If we combine the results of Theorem 12 and Theorem 13, we obtain the following strong differential "sandwich theorem".

**Theorem 14.** Let  $\psi_1(z,\zeta)$  and  $\psi_2(z,\zeta)$  be convex functions in  $U \times \overline{U}$ with  $\psi_1(0,\zeta) = \psi_2(0,\zeta) = 1$  for every  $\zeta \in \overline{U}$  and  $G(z,\zeta)$  is given by (9). If  $f \in S(1,\alpha,\beta,m;\psi_1) \cap T(1,\alpha,\beta,m;\psi_2), \left(I_{\alpha,\beta}^m G(z,\zeta)\right)'_z \in \mathcal{H}[1,1,\zeta] \cap Q_\zeta$  and  $\frac{1}{\beta z} \left[ (\alpha + \beta) I_{\alpha,\beta}^{m+1} f(z,\zeta) - \alpha I_{\alpha,\beta}^m f(z,\zeta) \right]$  is univalent in  $U \times \overline{U}$ , then

$$f \in S\left(1, \alpha, \beta, m; q_1\right) \cap T\left(1, \alpha, \beta, m, q_2\right),$$

where

$$q_1(z,\zeta) = (\epsilon+2) z^{-(\epsilon+2)} \int_0^z \psi_1(t,\zeta) t^{\epsilon+1} dt$$

and

$$q_{2}(z,\zeta) = (\epsilon+2) z^{-(\epsilon+2)} \int_{0}^{z} \psi_{2}(t,\zeta) t^{\epsilon+1} dt.$$

The functions  $q_1$  and  $q_2$  are convex.

## References

- A. Alb Lupaş, On special strong differential subordinations using multiplier transformation, Applied Mathematics Letters, 25 (2012), 624-630.
- [2] A. Alb Lupaş, A note on special strong differential superordinations using multiplier transformation, Journal of Computational Analysis and Applications, 17 (4) (2014), 746-751.
- [3] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., 27 (2004), 1429-1436.
- [4] N.E. Cho, T.H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40 (3) (2003), 399-410.
- [5] N.E. Cho, H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, *Math. Comput. Modelling*, **37** (1-2) (2003), 39-49.
- [6] S.S. Miller, P.T. Mocanu, Differential Subordinations. Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York, Basel, (2000).
- [7] G.I. Oros, Strong differential superordination, Acta Universitatis Apulensis, 19 (2009), 101-106.

578

- [8] G.St. Sălăgean, Subclasses of univalent functions, *Lecture Notes in Math.*, Springer Verlag, Berlin, 1013 (1983), 362-372.
- S.R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum Universitatis Apulensis, 7, (36) (2012), 1751-1760.