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1. Introduction and Preliminaries

Let R(p,m) denote the class of functions of the form:

f(z) = zp +
∞∑

n=m

an+pz
n+p (p,m ∈ N = {1, 2, . . .}), (1.1)

which are analytic and multivalent in the open unit disk U = {z ∈ C : |z| < 1}.
Upon differentiating both sides of (1.1) j-times with respect to z, we obtain (see [7])

f (j)(z) = δ(p, j)zp−j +
∞∑

n=m

δ(n+ p, j)an+pz
n+p−j

(p,m ∈ N ; j ∈ N0 = N ∪ {0}; p > j),
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where

δ(p, j) =
p!

(p− j)!
=

{
1 (j = 0),

p(p− 1) · · · (p− j + 1) (j �= 0).

Several researchers have investigated higher-order derivatives of multivalent func-
tions, see, for example [1, 3, 4, 7, 13–15, 20, 22, 28, 29].

Let H = H(U) be the class of analytic functions in U and let H [e, p] be the
subclass of H consisting of functions of the form:

f(z) = e+ apz
p + ap+1z

p+1 + · · · (e ∈ C; p ∈ N)

For the functions f ∈ R(p,m) given by (1.1) and g ∈ R(p,m) defined by

g(z) = zp +
∞∑

n=m

bn+pz
n+p (p,m ∈ N),

we define the Hadamard product (or convolution) f ∗ g of the functions f and g (as
usual) by

(f ∗ g)(z) = zp +
∞∑

n=m

an+pbn+pz
n+p = (g ∗ f)(z).

Let f, g ∈ H . The function f is said to be subordinate to g, or g is said to be
superordinate to f , if there exists a Schwarz function w analytic in U with w(0) = 0
and |w(z)| < 1(z ∈ U) such that f(z) = g(w(z)). This subordination is denoted by
f ≺ g or f(z) ≺ g(z)(z ∈ U). It is well-known that, if the function g is univalent in
U , then f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U).

Let k, h ∈ H and ψ(r, s, t; z) : C3 × U → C. If k and ψ(k(z), zk′(z), z2k′′(z); z)
are univalent functions in U and if k satisfies the second-order differential superor-
dination

h(z) ≺ ψ(k(z), zk′(z), z2k′′(z); z), (1.2)

then k is called a solution of the differential superordination (1.2). (If f is sub-
ordinate to g, then g is superordinate to f .) An analytic function q is called a
subordinant of (1.2), if q ≺ k for all the functions k satisfying (1.2). A univalent
subordinant q̃ that satisfies q ≺ q̃ for all the subordinants q of (1.2) is called the
best subordinant.

Recently, Miller and Mocanu [18] obtained conditions on the functions h, q and
ψ for which the following implication holds:

h(z) ≺ ψ(k(z), zk′(z), z2k′′(z); z) ⇒ q(z) ≺ k(z).

Using the results due to Miller and Mocanu [18], Bulboacă [5] considered cer-
tain classes of first-order differential superordination as well as superordination-
preserving integral operators [6]. Ali et al. [2] have used the results of Bulboacă [5]
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to obtain sufficient conditions for certain normalized analytic functions to satisfy

q1(z) ≺ zf ′(z)
f(z)

≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1.
Very recently, Shanmugam et al. [25–27] and Goyal et al. [3] have obtained

sandwich results for certain classes of analytic functions.
For real or complex numbers a, b, c other than 0,−1,−2, . . . , the hypergeometric

function 2F1(a, b, c; z) is defined by the infinite series

2F1(a, b, c; z) = 1 +
ab

c

z

1!
+
ab(a+ 1)(b+ 1)

c(c+ 1)
z2

2!
+ · · · =

∞∑
n=0

(a)n(b)n

(c)nn!
zn, (1.3)

where (x)n is the Pochhammer symbol defined by

(x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1), n ∈ N.

We note that the series (1.3) converges absolutely for all z ∈ U so that it represents
an analytic function in U .

Fu and Liu [10] introduced a function (zp
2F1(a, b, c; z))−1 given by

(zp
2F1(a, b, c; z)) ∗ (zp

2F1(a, b, c; z))−1 =
zp

(1 − z)λ+p
(λ > −p),

which leads us to the following family of linear operators:

Iλ
p,m(a, b, c)f(z) = (zp

2F1(a, b, c; z))−1 ∗ f(z),

where f ∈ R(p,m), a, b, c ∈ R\Z−
0 = {0,−1,−2, . . .}, λ > −p.

By some easy calculations, we obtain

Iλ
p,m(a, b, c)f(z) = zp +

∞∑
n=m

(c)n(λ+ p)n

(a)n(b)n
an+pz

n+p. (1.4)

It is easily verified from (1.4) that

z(Iλ
p,m(a, b, c)f(z))′ = (λ+ p)Iλ+1

p,m (a, b, c)f(z)− λIλ
p,m(a, b, c)f(z). (1.5)

Differentiating (1.5), j-times, we get

z(Iλ
p,m(a, b, c)f(z))(j+1) = (λ+ p)(Iλ+1

p,m (a, b, c)f(z))(j)

− (λ+ j)(Iλ
p,m(a, b, c)f(z))(j). (1.6)

Note that the generalized Noor integral operator Iλ
p,m unifies many other operators

considered earlier. In particular, for f ∈ R(p, 1) we have the following:

(i) I1
p,1(k + p, c, c) = Ik,p(n∈ N) the operator introduced by Liu and Noor [16]

and Patel and Cho [21].
(ii) Iλ

p,1(a, 1, c) = Iλ
p (a, c) the operator considered by Cho et al. [8].

(iii) Iλ
p,1(a, λ+ p, c) = Ip(a, c) the operator investigated by Saitoh [24].
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For our present investigation, we shall need the following definition and results.

Definition 1.1 ([17]). Denote by Q the set of all functions f that are analytic
and injective on U\E(f), where

E(f) =
{
ζ ∈ ∂U : lim

z→ζ
f(z) = ∞

}
and are such that f ′(ζ)�= for ζ ∈ ∂U\E(f).

Lemma 1.1 ([17]). Let q be univalent in the unit disk U and let θ and φ be
analytic in a domain D containing q(U) with φ(w) �= 0 when w ∈ q(U). Set Q(z) =
zq′(z)φ(q(z)) and h(z) = θ(q(z)) +Q(z). Suppose that

(i) Q(z) is starlike univalent in U,

(ii) Re{ zh′(z)
Q(z) }> 0 for z ∈ U .

If k is analytic in U, with k(0) = q(0), k(U) ⊂ D and

θ(k(z)) + zk′(z)φ(k(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)), (1.7)

then k ≺ q and q is the best dominant of (1.7).

Lemma 1.2 ([18]). Let q be a convex univalent function in U and let α ∈ C, β ∈
C\{0} with

Re
{

1 +
zq′′(z)
q′(z)

}
> max

{
0,−Re

(
α

β

)}
.

If k is analytic in U and

αk(z) + βzk′(z) ≺ αq(z) + βzq′(z), (1.8)

then k ≺ q and q is the best dominant of (1.8).

Lemma 1.3 ([18]). Let q be convex univalent in U and let β ∈ C. Further assume
that Re(β) > 0. If k ∈ H [q(0), 1] ∩Q and k(z) + βzk′(z) is univalent in U, then

q(z) + βzq′(z) ≺ k(z) + βzk′(z), (1.9)

which implies that q ≺ k and q is the best subordinant of (1.9).

Lemma 1.4 ([5]). Let q be convex univalent in the unit disk U and let θ and φ be
analytic in a domain D containing q(U). Suppose that

(i) Re{ θ′(q(z))
φ(q(z)) }> 0 for z ∈U,

(ii) Q(z) = zq′(z)φ(q(z)) is starlike univalent in U.

If k ∈ H [q(0), 1]∩Q, with k(U) ⊂ D, θ(k(z)) + zk′(z)φ(k(z)) is univalent in U and

θ(q(z)) + zq′(z)φ(q(z)) ≺ θ(k(z)) + zk′(z)φ(k(z)), (1.10)

then q ≺ k and q is the best subordinant of (1.10).
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2. Subordination for Analytic Functions

Theorem 2.1. Let q be convex univalent in U with q(0) = 1, γ > 0, η ∈ C\{0} and
suppose that q satisfies

Re
{

1 +
zq′′(z)
q′(z)

}
> max

{
0,−Re

(
γ(p− j)

η

)}
. (2.1)

If f ∈ R(p,m) satisfies the subordination(
1 − η(λ + p)

p− j

)(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

+
η(λ + p)
p− j

(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ (
(Iλ+1

p,m (a, b, c)f(z))(j)

(Iλ
p,m(a, b, c)f(z))(j)

)

≺ q(z) +
η

γ(p− j)
zq′(z), (2.2)

then (
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

≺ q(z)

and q is the best dominant of (2.2).

Proof. Define the function k by

k(z) =

(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

, z ∈ U. (2.3)

Then the function k is analytic in U and k(0) = 1. Therefore, differentiating (2.3)
logarithmically with respect to z, we get

zk′(z)
k(z)

= γ

(
z(Iλ

p,m(a, b, c)f(z))(j+1)

(Iλ
p,m(a, b, c)f(z))(j)

− (p− j)

)
.

Now, in view of (1.6), we obtain the following subordination

zk′(z)
k(z)

= γ(λ+ p)

(
(Iλ+1

p,m (a, b, c)f(z))(j)

(Iλ
p,m(a, b, c)f(z))(j)

− 1

)
.

Thus,

zk′(z)
γ(p− j)

=
λ+ p

p− j

(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ (
(Iλ+1

p,m (a, b, c)f(z))(j)

(Iλ
p,m(a, b, c)f(z))(j)

− 1

)
.

The subordination (2.2) from the hypothesis becomes

k(z) +
η

γ(p− j)
zk′(z) ≺ q(z) +

η

γ(p− j)
zq′(z).

Hence, an application of Lemma 1.2 with α = 1 and β = η
γ(p−j) , we obtain the

desired result.
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Theorem 2.2. Let u, v, ε, σ ∈ C, γ > 0, t ∈ C\{0} and q be convex univalent in U

with q(0) = 1, q(z) �= 0(z ∈ U) and assume that q satisfies

Re
{

1 +
v

t
q(z) +

2ε
t
q2(z) +

3σ
t
q3(z) +

zq′′(z)
q′(z)

− zq′(z)
q(z)

}
> 0. (2.4)

Suppose that zq′(z)
q(z) is starlike univalent in U . If f ∈ R(p,m) satisfies

ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z) ≺ u+ vq(z) + εq2(z) + σq3(z) + t
zq′(z)
q(z)

,

(2.5)

where

ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z)

= u+ v

(
z(Iλ

p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)γ

+ ε

(
z(Iλ

p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)2γ

+ σ

(
z(Iλ

p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)3γ

+ tγ

(
1 +

z(Iλ
p,m(a, b, c)f(z))(j+2)

(Iλ
p,m(a, b, c)f(z))(j+1)

− z(Iλ
p,m(a, b, c)f(z))(j+1)

(Iλ
p,m(a, b, c)f(z))(j)

)
, (2.6)

then (
z(Iλ

p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)γ

≺ q(z)

and q is the best dominant of (2.5).

Proof. Define the function k by

k(z) =

(
z(Iλ

p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)γ

, z ∈ U. (2.7)

Then the function k is analytic in U and k(0) = 1. Therefore, by making use of
(1.6) and (2.7), we obtain

u+ vk(z) + εk2(z) + σk3(z) + t
zk′(z)
k(z)

= ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z),

(2.8)

where ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z) is given by (2.6).
By using (2.8) in (2.5), we have

u+ vk(z) + εk2(z) + σk3(z) + t
zk′(z)
k(z)

≺ u+ vq(z) + εq2(z) + σq3(z) + t
zq′(z)
q(z)

.
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By Setting

θ(w) = u+ vw + εw + σw3 and φ(w) =
t

w
, w �= 0,

we see that θ(w) is analytic in C, φ(w) is analytic in C\{0} and that φ(w) �=
0, w ∈ C\{0}. Also, we get

Q(z) = zq′(z)φ(q(z)) = t
zq′(z)
q(z)

and

h(z) = θ(q(z)) +Q(z) = u+ vq(z) + εq2(z) + σq3(z) + t
zq′(z)
q(z)

,

we find that Q(z) is starlike univalent in U and that

Re
{
zh′(z)
Q(z)

}
= Re

{
1 +

v

t
q(z) +

2ε
t
q2(z) +

2σ
t
q3(z) +

zq′′(z)
q′(z)

− zq′(z)
q(z)

}
> 0.

Thus, by applying Lemma 1.1, our proof of Theorem 2.2 is completed.

If we take λ = j = 0, a = c and b = p in Theorem 2.2, then we obtain the next
result.

Corollary 2.1. Let u, v, ε, σ ∈ C, γ > 0, t ∈ C\{0} and q be convex univalent in
U with q(0) = 1, q(z) �= 0(z ∈ U) and assume that q satisfies (2.4). Suppose that
zq′(z)
q(z) is starlike univalent in U . If f ∈ R(p,m) satisfies

Ω(u, v, ε, σ, γ, t,m, p; z) ≺ u+ vq(z) + εq2(z) + σq3(z) + t
zq′(z)
q(z)

,

where

Ω(u, v, ε, σ, γ, t,m, p; z) = u+ v

(
zf ′(z)
pf(z)

)γ

+ ε

(
zf ′(z)
pf(z)

)2γ

+ σ

(
zf ′(z)
pf(z)

)3γ

+ tγ

(
1 +

zf ′′(z)
f ′(z)

− zf ′(z)
f(z)

)
, (2.9)

then (
zf ′(z)
pf(z)

)γ

≺ q(z)

and q is the best dominant.

3. Superordination for Analytic Functions

Theorem 3.1. Let q be convex univalent in U with q(0) = 1, γ > 0 and Re{η} > 0.
Letf ∈ R(p,m) satisfies(

(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

∈ H [q(0), 1] ∩Q
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and (
1 − η(λ + p)

p− j

)(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

+
η(λ + p)
p− j

(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ (
(Iλ+1

p,m (a, b, c)f(z))(j)

(Iλ
p,m(a, b, c)f(z))(j)

)

be univalent in U . If

q(z) +
η

γ(p− j)
zq′(z)

≺
(

1 − η(λ+ p)
p− j

)(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

+
η(λ + p)
p− j

(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ (
(Iλ+1

p,m (a, b, c)f(z))(j)

(Iλ
p,m(a, b, c)f(z))(j)

)
,

(3.1)

then

q(z) ≺
(

(p−j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

and q is the best subordinant of (3.1).

Proof. Define the function k by

k(z) =

(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

, z ∈ U.

After some computations and using (1.6), we have
(

1 − η(λ+ p)
p− j

)(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

+
η(λ + p)
p− j

(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ (
(Iλ+1

p,m (a, b, c)f(z))(j)

(Iλ
p,m(a, b, c)f(z))(j)

)

= k(z) +
η

γ(p− j)
zk′(z). (3.2)

By using (3.2) in (3.1), we have

q(z) +
η

γ(p− j)
zq′(z) ≺ k(z) +

η

γ(p− j)
zk′(z).

Using Lemma 1.3, the proof of Theorem 3.1 is completed.
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Theorem 3.2. Let u, v, ε, σ ∈ C, γ > 0, t ∈ C\{0} and q be convex univalent in U

with q(0) = 1 and assume that q satisfies

Re
{
v

t
q(z) +

2ε
t
q2(z) +

3σ
t
q3(z)

}
> 0. (3.3)

Suppose that zq′(z)
q(z) is starlike univalent in U . Let f ∈ R(p,m) satisfies(

z(Iλ
p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)γ

∈ H [q(0), 1] ∩Q

and ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z) be univalent in U , where ϕ(u, v, ε, σ, γ, t, λ,
a, b, c,m, p, j; z) is given by (2.6). If

u+ vq(z) + εq2(z) + σq3(z) + t
zq′(z)
q(z)

≺ ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z),

(3.4)

then

q(z) ≺
(

z(Iλ
p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)γ

and q is the best subordinant of (3.4).

Proof. Define the function k by

k(z) =

(
z(Iλ

p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)γ

, z ∈ U. (3.5)

Simple computations from (3.5), we get

ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z) = u+ vk(z) + εk2(z) + σk3(z) + t
zk′(z)
k(z)

,

(3.6)

where ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z) is given by (2.6).
From (3.4) and (3.6), we obtain

u+ vq(z) + εq2(z) + σq3(z) + t
zq′(z)
q(z)

≺ u+ vk(z) + εk2(z) + σk3(z) + t
zk′(z)
k(z)

.

By Setting θ(w) = u + vw + εw + σw3 and φ(w)= t
w , w �= 0, we see that θ(w) is

analytic in C, φ(w) is analytic in C\{0} and that φ(w)�= 0,w∈ C\{0}. Also, we get

Q(z) = zq′(z)φ(q(z)) = t
zq′(z)
q(z)

,

we find that Q(z) is starlike univalent in U and that

Re

{
θ
′
(q(z))

φ(q(z))

}
= Re

{
v

t
q(z) +

2ε
t
q2(z) +

3σ
t
q3(z)

}
> 0.

Now Theorem 3.2 follows by applying Lemma 1.4.
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If we take λ = j = 0, a = c and b = p in Theorem 3.2, then we obtain the next
result.

Corollary 3.1. Let u, v, ε, σ ∈ C, γ > 0, t ∈ C\{0} and q be convex univalent in
U with q(0) = 1 and assume that q satisfies (3.3). Suppose that zq′(z)

q(z) is starlike
univalent in U . Let f ∈ R(p,m) satisfies(

zf ′(z)
pf(z)

)γ

∈ H [q(0), 1] ∩Q

and Ω(u, v, ε, σ, γ, t,m, p; z) be univalent in U, where Ω(u, v, ε, σ, γ, t,m, p; z) is given
by (2.9). If

u+ vq(z) + εq2(z) + σq3(z) + t
zq′(z)
q(z)

≺ Ω(u, v, ε, σ, γ, t,m, p; z)

then

q(z)≺
(
zf ′(z)
pf(z)

)γ

and q is the best subordinant.

4. Sandwich Results

Concluding the results of differential subordination and superordination, we arrive
at the following “sandwich results”.

Theorem 4.1. Let q1 and q2 be convex univalent in U with q1(0) = q2(0) = 1.
Suppose q2 satisfies (2.1), γ > 0 and Re{η} > 0. Let f ∈ R(p,m) satisfies(

(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

∈ H [1, 1] ∩Q

and (
1 − η(λ + p)

p− j

)(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

+
η(λ + p)
p− j

(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ (
(Iλ+1

p,m (a, b, c)f(z))(j)

(Iλ
p,m(a, b, c)f(z))(j)

)

be univalent in U . If

q1(z) +
η

γ(p− j)
zq′1(z)

≺
(

1 − η(λ + p)
p− j

)(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

1450024-10
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+
η(λ + p)
p− j

(
(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ (
(Iλ+1

p,m (a, b, c)f(z))(j)

(Iλ
p,m(a, b, c)f(z))(j)

)

≺ q2(z) +
η

γ(p− j)
zq′2(z),

then

q1(z)≺
(

(p− j)!
p!

(Iλ
p,m(a, b, c)f(z))(j)

zp−j

)γ

≺ q2(z)

and q1 and q2, are, respectively, the best subordinant and the best dominant.

Theorem 4.2. Let q1 and q2 be convex univalent in U with q1(0) = q2(0) = 1.
Suppose q1 satisfies (3.3) and q2 satisfies (2.4). Let f ∈ R(p,m) satisfies(

z(Iλ
p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)γ

∈ H [1, 1] ∩Q

and ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z) be univalent in U, where ϕ(u, v, ε, σ, γ, t,
λ, a, b, c,m, p, j; z) is given by (2.6). If

u+ vq1(z) + εq21(z) + σq31(z) + t
zq′1(z)
q1(z)

≺ ϕ(u, v, ε, σ, γ, t, λ, a, b, c,m, p, j; z)

≺ u+ vq2(z) + εq22(z) + σq32(z) + t
zq′2(z)
q2(z)

,

then

q1(z)≺
(

z(Iλ
p,m(a, b, c)f(z))(j+1)

(p− j)(Iλ
p,m(a, b, c)f(z))(j)

)γ

≺ q2(z)

and q1 and q2, are, respectively, the best subordinant and the best dominant.

If we take λ = j = 0, a = c and b = p in Theorem 4.2, then we obtain the next
result.

Corollary 4.1. Let q1 and q2 be convex univalent in U with q1(0) = q2(0) = 1.
Suppose q1 satisfies (3.3) and q2 satisfies (2.4). Let f ∈ R(p,m) satisfies

(
zf ′(z)
pf(z)

)γ ∈ H [1, 1] ∩Q

and Ω(u, v, ε, σ, γ, t,m, p; z) be univalent in U, where Ω(u, v, ε, σ, γ, t,m, p; z) is given
by (2.9). If

u+ vq1(z) + εq21(z) + σq31(z) + t
zq′1(z)
q1(z)

≺ Ω(u, v, ε, σ, γ, t,m, p; z)

≺ u+ vq2(z) + εq22(z) + σq32(z) + t
zq′2(z)
q2(z)

,
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then

q1(z)≺
(
zf ′(z)
pf(z)

)γ

≺ q2(z)

and q1 and q2, are, respectively, the best subordinant and the best dominant.

Remark 4.1. By specifying the parameters λ, γ, η, a, b, c, u, ε, σ,m, j and p, we can
derive a number of known results. Some of them are given below.

(i) Taking λ = 0,m = 1, a = c and b = p(p∈ N) in Theorems 2.1, 3.1 and 4.1,
we get the results obtained by El-Ashwah and Aouf [9, Theorems 3.1, 4.1 and
5.1].

(ii) Putting λ = 0, γ = η = m = 1, a = c and b = p(p∈ N) in Theorem 2.1, we
obtain the results obtained by Ali et al. [1, Theorem 2.9].

(iii) Selecting u = ε = σ = j = 0, γ = λ = m = p = 1, a = k + 1(k ∈N0) and b = c

in Theorems 2.2, 3.2 and 4.2, we obtain the results obtained by Ibrahim and
Darus [12, Theorems 2.1, 2.3 and 2.5].

(iv) Setting λ = j = 0,m = b = p = 1 and a = c in Theorem 2.1, we get the results
obtained by Murugusundaramoorthy and Magesh [19, Corollary 3.3].

(v) By taking λ = j = 0,m = b = p = 1 and a = c in Theorems 3.1 and 4.1,
we get the results obtained by Răducanu and Nechita [23, Corollaries 3.7 and
3.10].
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