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Abstract: In mathematics a representation theorem is 

a theorem which states that each abstract structure 

with certain properties is isomorphic to a concrete 

structure. There are several examples of theorems of 

representation in various fields of mathematics: . In 

algebra, the theorem of Cayley states that each group 

is isomorphic to a group transformed a whole. The 

representation theory studies the properties of 

abstract groups through their representation as 

transformations of vector spaces. Additionally, also 

in algebra, Stone representation theorem for Boolean 

algebras states that every Boolean algebra is 

isomorphic to a field of sets. A variant of this theorem 

channeled reticles requires each distributive lattice is 

isomorphic to a reticle sub-lattice power set of a set. . 

In category theory, the Yoneda lemma explains how 

arbitrary functors in the category of sets can be seen 

as hom functions. . In set theory, the Mostowski 

collapsing theorem states that every well-founded 

extensional structure is isomorphic to a transitive set 

with the relation of belonging (∈). In functional 

analysis, the Riesz representation theorem is 

currently a list of many theorems. One identifies the 

dual space C0 (X) with the set of regular 

measurements in X.in geometry, the Whitney 

embedding theorems embed any abstract manifold in 

some Euclidean space. The Nash embedding theorem 

embeds an abstract Riemannian manifold 

isometrically in a Euclidean space. But the aim of 

this work is the algebraic applications, specially the 

representation theory. 
 
I. Introduction 

 
Representation theory is remarkable for its 

abundance of branches and diversity of approaches. 

Although all theories have in common the basic 

concepts presented above, they are significantly 

different in their details. These differences are at least 

three types: .The performances depend on the nature 

of algebraic objects represented and have different 

characteristics according to family groups, 

associative algebras or Lie algebra that consideration. 

.They also depend on the type of vector spaces 

considered. The most important distinction between 

the representations of finite degree and those of 

infinite degree is found. We may impose additional 

structures on the space (Hilbert, Banach, etc. in the 

infinite case, algebraic structures in the finite case). 

.Finally, they depend on the type of the base member 

K. A highly studied case is that of the fields’ 

complex. Other important cases are the field of real, 

finite fields and the fields of p-adic numbers. 

Additional difficulties arise when K is a positive 

characteristic or is not algebraically closed. We will 

discuss about two important algebra representation 

theorems. 

 

II. Theorem of Cayley 

 
Cayley's theorem is a basic result establishing that 

any group is realized as a group of permutations, that 

is to say as a subgroup of a symmetric group: 

Any group G is isomorphic to a subgroup of a 

symmetric group S (G) of permutations of G. In 

particular, if G is a finite group of order n is 

isomorphic to a subgroup of Sn. 
 

2.1 Proof 
Let G be a group and g an element of this group. We 
define the tg mapping of G into G as the left 
translation: 
∀ x ∈ G tg(x) = gx. 

 

The associativity of the group's law is equivalent to: 
∀ g, h ∈ G tgh = tg ∘ th.      (∗) 
It is deduced in particular that tg is a 
permutation (inverse bijection of t

−
g
1
), 

thereby defining a mapping t of G in S (G) by: 
∀g ∈ G  t(g) = tg. 
By (*) t is a group morphism. 

 
Its kerf is the trivial group {e} (where e denotes the 
neutral element of G) because if an element g of G is 
such that tg is the application identity then g = tan (e) 
= e. 
 

According to the first isomorphism theorem, t 

therefore realizes an isomorphism between G and the 

subgroup Im (t) S (G). 

Remarks 
If G is of order n, the group Sn in which it is 
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immersed is of order n! 

 

The theorem is reformulated by saying that every 

group acts faithfully on itself. The action that we 

built is actually even simply transitive. 

2.2 Applications 
This theorem is used in the theory of group 

representations. Let G be a group and (eg)g∈G a basis 

 

of a vector space of dimension | G |. The Cayley 

theorem states that G is isomorphic to a group of 

permutations of the basic elements. Each permutation 

can be extended to an endomorphism of E that here, 

by construction, is an automorphism of E. This 

defines a representation of the group: its regular 

representation. 

It is also involved in a demonstration of the first 

Sylow theorem. 

 

 

 

 

III. Stone's representation theorem for Boolean 

algebras 
 

Stone's representation theorem for Boolean algebras 

states that every Boolean algebra is isomorphic to a 

field of sets. The theorem is fundamental to the 

deeper comprehension of Boolean algebra that came 

into existence in the first half of the 20
th

 century. First 

of all, Marshall H. Stone proved the theorem.  

 

 

The theorem was first proved by Marshall H. Stone 

(1936), and thus named in his honor. Stone was led to 

it by his study of the spectral theory of operators on a 

Hilbert space. 

 

3.1 Stone spaces 
 

Each Boolean algebra B has an associated 

topological space, denoted here S(B). This is 

known as its Stone space. In S(B), the points 

are known as ultra filters that are associated 

with B. In other words homomorphisms 

from B and it are too related to the two-

element Boolean algebra. On the closed 

basis the topology is generated on S(B) 

which is expressed as  
{x ∈ S(B)\b ∈ x} 

where b is an element of B. 

 

  For every Boolean algebra B, S(B) is a compact 

totally disconnected Hausdorff space; such spaces are 

called Stone spaces (also profinite spaces). 

Conversely, given any topological space X, the 

collection of subsets of X that are clopen (both closed 

and open) is a Boolean algebra. 

 

3.2 Representation theorem ( Stone) 
A simple version of Stone's representation theorem 

states that every Boolean algebra which is denoted as 

B is said to be isomorphic with respect to the algebra 

of clopen subsets associated with Stone space S(B). It 

is observed that an isomorphism is able to send an 

element b ∈ B to different ultra filters that can have 

the b. This kind of set is known as clopen set as per 

the topology S(B) another fact is that B belongs to 

Boolean algebra.  

 

When the theorem is restated with the help of the 

language of category theory, it is said that the 

theorem reflects a duality between Boolean algebra’s 

category and Stone spaces category. The meaning of 

the duality refers to the fact that each homomorphism 

from A to B indicates there is natural way which 

leads to continuous function form S(B) and to S(A) 

where A and B are considered Boolean algebra. 

Stated differently between the two categories 

equivalence is achieved by using a contravariant 

functor. This can be considered as an example 

determined early for nontrivial duality of categories.  

 

The theorem considered is considered a special case 

with respect to Stone duality. It is also said to be a 

more general framework with respect to dualities 

between partially ordered sets and topological spaces. 

The proof for the theorem needs either weakened 

form of it or the axiom of choice. It is observed that 

this theorem is equal to the prime ideal theorem. 

According to that it is a weakened choice principle. It 

indicates that each and every Boolean algebra can be 

considered as a prime ideal.  

 

IV. Representation Theory 
 

4.1 Definitions and Concepts 
Let V be a vector space over a field K

3
 . For example, 

assume that V is ℝn
 or ℂn

, ordinary space of 

dimension n column vectors on the body ℝ real or 

that, ℂ, complex. In this case, the idea of 

representation theory is to make abstract algebra 

concretely, using n × n matrices of real or complex 

numbers. We can do it for three main types of 

algebraic objects: groups, associative algebra and 

algebra of Lie. 

The subset of invertible n × n matrices form a group 

for multiplication and group representations theory 
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analysis describing a group by "representative" - its 

elements in terms of singular matrices. 

Addition and multiplication are the set of all n × n 

matrices associative algebra, which gives rise to the 

theory of algebraic representations associative. 

If we replace the MN product of two matrices by 

their commutate MN − NM, then the n × n matrices 

do not form an associative algebra but a Lie algebra, 

and we study the representations of Lie algebra. 

This generalizes to any field K and any vector space 

V over K, by replacing the matrices by linear 

endomorphisms and the matrix produced by the 

composition: the automorphisms of V form the group 

GL (V) and the endomorphisms of V form the 

associative algebra End (V), which corresponds to 

the Lie algebra gl (V). 

Definitions 
There are two ways to explain what a representation 

The first uses the concept of Action, generalizing 

how the matrices act by product on the column 

vectors. A representation of a group G or an algebra 

A (associative or Lie) on a vector space V is applied 

Φ: G × V → V or Φ: A × V → V 

with two properties. First, for every x in G or A, 

application 

φ(x): V → V 

v ⟼ Φ(x, v) 

 

is K -linear. Second, by introducing the notation g ∙ v 

for Φ (g, v), we have, for all g1, g2 in G and all v in 

V: 

(1) e. v = v 

(2)g1. (g2. v) = (g1g2). v 

 

where e is the neutral element of G and g1 g2 is the 

product in G. The condition for an associative algebra 

A is similar, except that A cannot have element unit, 

in which case equation (1) is omitted. Equation (2) is 

an abstract expression of the associativity of the 

matrix product. It is not verified by the matrix 

switches and switches for these, there is no neutral 

element, so that for the Lie algebra, the only 

condition is that for all x1, x2 in A and all v in V: 

(2
′
) x. (x 

2 

. v) − x 

2 

. (x . v) = [x , x 

2 

]. v  

1  1 1   

where [x 1, x 2] is the Lie bracket, which generalizes 

the switch MN − NM of two matrices. 

 

 

 

 

6 

 

The second way, more concise and more abstract, 

focuses on the application φ that at any x of G or A 

combination φ (x): V → V, which must verify for all 

x 1, x 2 in Group Gor associative algebra A: 

(2) φ(x1, x2) = φ(x1) ∘ φ(x2). 

A representation of a group G on a vector space V is 

a group morphism φ: G → GL (V). 

A representation of an associative algebra A on V is 

an algebra morphism φ: A → End (V).A 

representation of a Lie algebra was on V is a Lie 

algebra morphism φ:   →   (V). 

4.2 Terminology 
Representation X (V, φ), or simply V if the 

morphism φ is clear from the context. The vector 

space V is called the space of representation (V, φ) 

and the size n of V is called the degree of (V, φ). 

If this degree n is finite, the selection of a basis of V 

identifies V to K 
n
 and found a representation by 

matrices with entries in K. 

The representation (V, φ) is called faithful if the 

morphism φ is injective. For an associative algebra, 

the concept equivalent to that of faithful Module. For 

representation of a group G on a K vector -space, if 

the associated representation of the algebra K [G] is 

true then the representation of G is too, but the 

converse is false, as shown by the example of the 

regular representation of the symmetric group S4. 

4.3 Morphisms 
If (V, φ)   and    (W, ψ)   are    two    

representations    of    a    group    G, 

 

called intertwining operator, or morphism of 

representations from the first to the second all linear 

α: V We equivariantly, c ′ is to say such that for each 

g in G and all v in V, 

α(g. v) = g. α(v) 

which, in terms of morphisms φ: G → GL (V) and ψ: 

G → GL (W), is written: 

∀g ∈ G, φ ∘ φ(g) = ψ(g) ∘ α 

We define the same morphisms of representations of 

an associative algebra or Lie. 

If α is invertible, they say it is an isomorphism of 

representations and that the two representations are 

isomorphic. They are then, from a practical point of 

view, "identical": they provide the same information 

about the group or algebra they represent. Therefore 

representations theory seeks to classify the 

representations "isomorphism". 

Morphisms of a representation to itself are called its 

endomorphisms. They form an associative algebra 

over the base member K. 

4.4 Set-representations 
A representation "of sets," or representation "by 

permutations" of a group G (as opposed to the 

representations referred to above, so-called "linear") 

is an action of G on a set X, that is to say the data an 

application ρ, of G in all X 
X
 all applications X in X 

such that for all g 1, g 2 in G and x in X: 
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ρ(1)(x) = x  and ρ(g1g2)(x) = ρ(g1)(ρ(g2)(x)), 

where 1 means the neutral element of the group G. 

 

These conditions, together with the definition of a 

group, cause that ρ (g) (for any g in G) are bijections, 

so that an equivalent definition of a representation of 

G by permutation is given by a group morphism G in 

the symmetric group SX of X. 

 

 

V. Conclusion 
 

Representation theory is a powerful tool, because it 

reduces the problems of abstract algebra to linear 

algebra problems, an area that is well included. 

Moreover, when allowing the vector space on which 

a group (for example) is shown to be an infinite 

dimensional space, for instance a Hilbert space can 

be applied to the theory of groups of analysis 

methods. Representation theory is as important in 

physics because it helps to describe, for example, 

how the symmetry group of a system affects the 

solutions of the equations described. 

A striking feature of the representation theory is its 

ubiquity in mathematics. This has two aspects. First, 

the applications of this theory are varieties: in 

addition to its impact in algebra, it enlightens and 

widely generalized Fourier analysis via harmonique 

analysis, it is deeply linked to the geometry via the 

invariant theory and Erlangen to program and has a 

profound impact in number theory via automorphic 

forms and Langlands program. The second aspect of 

the ubiquity of representation theory is the variety of 

ways to approach it. The same objects can be studied 

using the methods of Algebraic Geometry, Theory 

modules, analytical number theory, differential 

geometry, operator theory (in) and topologies. 

The success of the representation theory has led to 

numerous generalizations. One of the general's 

category. Algebraic objects that theory applies can be 

seen as special cases of categories, and 

representations as functors, such a category in the 

vector spaces. This description indicates two obvious 

generalizations: first, algebraic objects can be 

replaced by more general categories and secondly, 

the finish category of vector spaces can be replaced 

by other categories that we control well. 
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