DIFFERENTIAL SUBORDINATIONS OF MULTIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH RUSCHEWEYH DERIVATIVE

WAGGAS GALIB ATSHAN¹, ABBAS KAREEM WANAS²

ABSTRACT. In the present paper, we consider a class $k_p^m(\lambda,\gamma;h)$ which consists of analytic and multivalent functions in the open unit disk $U=\{z\in\mathbb{C}:|z|<1\}$ associated with Ruscheweyh derivative. Also we obtain some results for this class.

1. Introduction and Preliminaries

Let R(p, m) denote the class of all analytic functions f of the form:

$$f(z) = z^p + \sum_{n=m}^{\infty} a_{n+p} z^{n+p} \ (p, m \in \mathbb{N} = \{1, 2, 3, \dots\}), \ z \in U.$$
 (1.1)

The Hadamard product (or convolution) $(f_1 * f_2)(z)$ of two functions

$$f_j(z) = z^p + \sum_{n=m}^{\infty} a_{n+p,j} z^{n+p} \in R(p,m) \ (j=1,2)$$

is given by

$$(f_1 * f_2) = z^p + \sum_{n=m}^{\infty} a_{n+p,1} a_{n+p,2} z^{n+p}.$$

Given two functions f and g, which are analytic in U, we say that the function g is subordinate to f, written $g \prec f$ or $g(z) \prec f(z)$ ($z \in U$), if there exists a Schwarz function w(z), analytic in U, with w(0) = 0 and |w(z)| < 1, and such that $g(z) = f(w(z)), (z \in U)$. In particular, if the function f is univalent in U, then $g \prec f$ if and only if g(0) = f(0) and $g(U) \subset f(U)$.

For $\lambda > -p$ and $f \in R(p, m)$. The Ruscheweyh Derivative of order $\lambda + p - 1$ (see [1]) is denoted by $D^{\lambda + p - 1}f$ and defined as

$$D^{\lambda+p-1}f(z) = \frac{z^p}{(1-z)^{p+\lambda}} * f(z) = z^p + \sum_{n=m}^{\infty} \frac{\Gamma(\lambda+n+p)}{\Gamma(\lambda+p)n!} \ a_{n+p} z^{n+p} \ (\lambda > -p). \ (1.2)$$

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Multivalent function, Hadamard product, Convex univalent, Subordination, Ruscheweyh derivative.

We note from (1.2) that, we have

$$z(D^{\lambda+p-1}f(z))' = (\lambda+p)(D^{\lambda+p}f(z)) - \lambda D^{\lambda+p-1}f(z). \tag{1.3}$$

Let H be the class of function h with h(0) = 1, which are analytic and convex univalent in U.

Definition 1.1. A function $f \in R(p, m)$ is said to be in the class $k_p^m(\lambda, \gamma; h)$ if it satisfies the subordination condition:

$$(1 - \gamma)z^{-p}D^{\lambda + p - 1}f(z) + \gamma z^{-p}D^{\lambda + p}f(z) \prec h(z),$$

where $\gamma \in \mathbb{C}$ and $h \in H$.

A function $f \in R(1, m)$ is said to be in the class $S^*(\alpha)$ if

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \ (z \in U)$$

for some α ($\alpha < 1$).

When $0 \le \alpha < 1$, $S^*(\alpha)$ is the class of starlike functions of order α in U.

A function $f \in R(1, m)$ is said to be prestarlike of order α in U if

$$\frac{z}{(1-z)^{2(1-\alpha)}}*f(z)\in S^*(\alpha)\ (\alpha<1).$$

We note this class by $\Re(\alpha)$.

Clearly a function $f \in R(1, m)$ is in the class $\Re(0)$ if and only if f is convex univalent in U and $\Re\left(\frac{1}{2}\right) = S^*\left(\frac{1}{2}\right)$.

Lemma 1.1. [4] Let g be analytic in U and let h be analytic and convex univalent in U with h(0) = g(0). If

$$g(z) + \frac{1}{\mu} z g'(z) \prec h(z),$$
 (1.4)

where $Re \mu \geq 0$ and $\mu \neq 0$, then

$$g(z) \prec \tilde{h}(z) = \mu z^{-\mu} \int_{0}^{z} t^{\mu - 1} h(t) dt \prec h(z)$$

and $\tilde{h}(z)$ is the best dominant of (1.4).

Lemma 1.2. [6] Let $\alpha < 1, f \in S^*(\alpha)$ and $g \in \Re(\alpha)$. Then, for any analytic function F in U

$$\frac{g*(fF)}{g*f}(U) \subset \overline{co}(F(U)),$$

where $\overline{co}(F(U))$ denotes the closed convex hull of F(U).

Such type of study was carried out by various authors for another classes, like, Dinggong and Liu [2], Liu [3], Prajapat and Raina [5] and Yang et. al. [7].

2. Main Results

Theorem 2.1. Let $0 \le \gamma_1 < \gamma_2$. Then $k_p^m(\lambda, \gamma_2; h) \subset k_p^m(\lambda, \gamma_1; h)$.

Proof. Let $0 \le \gamma_1 < \gamma_2$ and $f \in k_p^m(\lambda, \gamma_2; h)$.

Suppose that

$$g(z) = z^{-p} D^{\lambda + p - 1} f(z).$$
 (2.1)

Then the function g is analytic in U with g(0) = 1.

Since $f \in k_p^m(\lambda, \gamma_2; h)$, then we have

$$(1 - \gamma_2)z^{-p}D^{\lambda + p - 1}f(z) + \gamma_2 z^{-p}D^{\lambda + p}f(z) \prec h(z).$$
 (2.2)

From (2.1) and (2.2), we get

$$(1 - \gamma_2)z^{-p}D^{\lambda + p - 1}f(z) + \gamma_2 z^{-p}D^{\lambda + p}f(z) = g(z) + \frac{\gamma_2}{(\lambda + p)}zg'(z) \prec h(z).$$
 (2.3)

By using Lemma 1.1, we have

$$g(z) \prec h(z). \tag{2.4}$$

Note that $0 \le \frac{\gamma_1}{\gamma_2} < 1$ and that h is convex univalent in U. Hence

$$(1 - \gamma_1)z^{-p}D^{\lambda + p - 1}f(z) + \gamma_1 z^{-p}D^{\lambda + p}f(z)$$

= $\frac{\gamma_1}{\gamma_2}((1 - \gamma_2)z^{-p}D^{\lambda + p - 1}f(z) + \gamma_2 z^{-p}D^{\lambda + p}f(z)) + \left(1 - \frac{\gamma_1}{\gamma_2}\right)g(z) \prec h(z).$

Therefore $f \in k_p^m(\lambda, \gamma_1; h)$ and we obtain the result.

Theorem 2.2. Let $f \in k_p^m(\lambda, \gamma; h), g \in R(p, m)$ and

$$Re\{z^{-p}g(z)\} > \frac{1}{2}.$$
 (2.5)

Then

$$(f * g)(z) \in k_p^m(\lambda, \gamma; h).$$

Proof. Let $f \in k_p^m(\lambda, \gamma; h)$ and $g \in R(p, m)$. Then we have

$$(1 - \gamma)z^{-p}D^{\lambda+p-1}(f * g)(z) + \gamma z^{-p}D^{\lambda+p}(f * g)(z)$$

$$= (1 - \gamma)(z^{-p}g(z)) * (z^{-p}D^{\lambda+p-1}f(z)) + \gamma(z^{-p}g(z)) * (z^{-p}D^{\lambda+p}f(z))$$

$$= (z^{-p}g(z)) * \phi(z)$$
(2.6)

where

$$\phi(z) = (1 - \gamma)z^{-p}D^{\lambda + p - 1}f(z) + \gamma z^{-p}D^{\lambda + p}f(z) < h(z).$$
 (2.7)

From (2.5) note that the function $z^{-p}g(z)$ has the Herglotz representation

$$z^{-p}g(z) = \int_{|x|=1} \frac{d\mu(x)}{1 - xz} \ (z \in U), \tag{2.8}$$

where $\mu(x)$ is a probability measure defined on the unit circle |x|=1 and

$$\int_{|x|=1} d\mu(x) = 1.$$

Since h is convex univalent in U, it follows from (2.6) to (2.8) that

$$(1 - \gamma)z^{-p}D^{\lambda + p - 1}(f * g)(z) + \gamma z^{-p}D^{\lambda + p}(f * g)(z) = \int_{|x| = 1} \phi(xz)d\mu(x) \prec h(z).$$

Therefore

$$(f * g)(z) \in k_p^m(\lambda, \gamma; h).$$

Corollary 2.3. Let $f \in k_p^m(\lambda, \gamma; h)$ be defined as in (1.1) and let

$$Re\left\{1 + \sum_{n=m}^{\infty} \frac{c+p}{c+p+n} z^n\right\} > \frac{1}{2}.$$
 (2.9)

Then

$$r(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt, \ (c > -p)$$

is also in the class $k_p^m(\lambda, \gamma; h)$.

Proof. Let $f \in k_p^m(\lambda, \gamma; h)$ be defined as in (1.1). Then

$$r(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt = z^p + \sum_{n=m}^{\infty} \frac{c+p}{c+p+n} a_{n+p} z^{n+p}$$

$$= \left(z^p + \sum_{n=m}^{\infty} a_{n+p} z^{n+p}\right) * \left(z^p + \sum_{n=m}^{\infty} \frac{c+p}{c+p+n} z^{n+p}\right) = (f * F)(z), \qquad (2.10)$$

where

$$f(z) = z^p + \sum_{n=m}^{\infty} a_{n+p} z^{n+p} \in k_p^m(\lambda, \gamma; h)$$

and

$$F(z) = z^p + \sum_{n=m}^{\infty} \frac{c+p}{c+p+n} z^{n+p} \in R(p,m).$$

Note that

$$Re\{z^{-p}F(z)\} = Re\left\{1 + \sum_{n=m}^{\infty} \frac{c+p}{c+p+n} z^n\right\} > \frac{1}{2}.$$
 (2.11)

From (2.10) and (2.11) and by using Theorem 2.2, we get $r(z) \in k_p^m(\lambda, \gamma; h)$.

Theorem 2.4. Let $f \in k_p^m(\lambda, \gamma; h), g \in R(p, m)$ and $z^{1-p}g(z) \in \Re(\alpha), (\alpha < 1)$. Then

$$(f * g)(z) \in k_p^m(\lambda, \gamma; h).$$

Proof. Let $f \in k_p^m(\lambda, \gamma; h)$ and $g \in R(p, m)$. Then, we have

$$(1 - \gamma)z^{-p}D^{\lambda + p - 1}f(z) + \gamma z^{-p}D^{\lambda + p}f(z) < h(z). \tag{2.12}$$

Now from (1.3), (2.12) is equivalent to

$$\frac{\lambda + p(1 - \gamma)}{\lambda + p} z^{-p} D^{\lambda + p - 1} f(z) + \frac{\gamma}{\lambda + p} z^{1 - p} (D^{\lambda + p - 1} f(z))' \prec h(z). \tag{2.13}$$

Hence

$$\frac{\lambda + p(1 - \gamma)}{\lambda + p} z^{-p} D^{\lambda + p - 1}(f * g)(z) + \frac{\gamma}{\lambda + p} z^{1 - p} (D^{\lambda + p - 1}(f * g)(z))'$$

$$= \frac{\lambda + p(1 - \gamma)}{\lambda + p} (z^{-p} g(z)) * (z^{-p} D^{\lambda + p - 1} f(z))$$

$$+ \frac{\gamma}{\lambda + p} (z^{-p} g(z)) * (z^{1 - p} (D^{\lambda + p - 1} f(z))')$$

$$(z^{1 - p} g(z)) * (zyy(z))$$

$$=\frac{(z^{1-p}g(z))*(z\psi(z))}{(z^{1-p}g(z))*z}, \quad (z \in U),$$
(2.14)

where

$$\psi(z) = \frac{\lambda + p(1 - \gamma)}{\lambda + p} z^{-p} D^{\lambda + p - 1} f(z) + \frac{\gamma}{\lambda + p} z^{1 - p} (D^{\lambda + p - 1} f(z))' \prec h(z). \tag{2.15}$$

Since h is convex univalent in $U, \psi(z) \prec h(z), z^{1-p}g(z) \in \Re(\alpha)$ and $z \in S^*(\alpha), (\alpha < 1)$, it follows from (2.14) and Lemma 1.2, we get the result.

Theorem 2.5. Let $\gamma > 0, \sigma > 0$ and $f \in k_p^m(\lambda, \gamma; \sigma h + 1 - \sigma)$. If $\sigma \leq \sigma_0$, where

$$\sigma_0 = \frac{1}{2} \left(1 - \frac{\lambda + p}{\gamma} \int_0^1 \frac{u^{\frac{\lambda + p}{\gamma} - 1}}{1 + u} du \right)^{-1}, \tag{2.16}$$

then $f \in k_p^m(\lambda, 0; h)$. The bound σ_0 is the sharp when $h(z) = \frac{1}{1-z}$.

Proof. Suppose that

$$g(z) = z^{-p} D^{\lambda + p - 1} f(z).$$
 (2.17)

Let $f \in k_p^m(\lambda, \gamma; \sigma h + 1 - \sigma)$ with $\gamma > 0$ and $\sigma > 0$. Then, we have

$$g(z) + \frac{\gamma}{(\lambda+p)}zg'(z) = (1-\gamma)z^{-p}D^{\lambda+p-1}f(z) + \gamma z^{-p}D^{\lambda+p}f(z) \prec \sigma h(z) + 1 - \sigma.$$

By using Lemma 1.1, we have

$$g(z) \prec \frac{\sigma(\lambda+p)}{\gamma} z^{-\frac{(\lambda+p)}{\gamma}} \int_0^z t^{\frac{\lambda+p}{\gamma}-1} h(t) dt + 1 - \sigma = (h * \varphi)(z), \tag{2.18}$$

where

$$\varphi(z) = \frac{\sigma(\lambda + p)}{\gamma} z^{-\frac{(\lambda + p)}{\gamma}} \int_0^z \frac{t^{\frac{\lambda + p}{\gamma} - 1}}{1 - t} dt + 1 - \sigma.$$
 (2.19)

If $0 < \sigma \le \sigma_0$, where $\sigma_0 < 1$ is given by (2.16), then it follows from (2.19) that

$$Re(\varphi(z)) = \frac{\sigma(\lambda+p)}{\gamma} \int_0^1 u^{\frac{\lambda+p}{\gamma}-1} Re\left(\frac{1}{1-uz}\right) du + 1 - \sigma$$

$$> \frac{\sigma(\lambda+p)}{\gamma} \int_0^1 \frac{u^{\frac{\lambda+p}{\gamma}-1}}{1+u} du + 1 - \sigma \ge \frac{1}{2}.$$

Now, by using the Herglotz representation for $\varphi(z)$, from (2.17) and (2.18), we arrive at

$$z^{-p}D^{\lambda+p-1}f(z) \prec (h*\varphi)(z) \prec h(z).$$

Since h is convex univalent in U, then $f \in k_p^m(\lambda, 0; h)$.

For $h(z) = \frac{1}{1-z}$ and $f \in R(p, m)$ define by

$$z^{-p}D^{\lambda+p-1}f(z) = \frac{\sigma(\lambda+p)}{\gamma}z^{-\frac{(\lambda+p)}{\gamma}} \int_0^z \frac{t^{\frac{\lambda+p}{\gamma}-1}}{1-t}dt + 1 - \sigma,$$

we have

$$(1-\gamma)z^{-p}D^{\lambda+p-1}f(z) + \gamma z^{-p}D^{\lambda+p}f(z) = \sigma h(z) + 1 - \sigma.$$

Thus $f \in k_p^m(\lambda, \gamma; \sigma h + 1 - \sigma)$.

Also for $\sigma > \sigma_0$, we have

$$Re\{z^{-p}D^{\lambda+p-1}f(z)\} \to \frac{\sigma(\lambda+p)}{\gamma} \int_0^1 \frac{u^{\frac{\lambda+p}{\gamma}-1}}{1+u} du + 1 - \sigma < \frac{1}{2}, \ (z \to 1)$$

which implies that $f \not\in k_p^m(\lambda, 0; h)$.

Therefore the bound σ_0 cannot be increased when $h(z) = \frac{1}{1-z}$.

This completes the proof of the theorem.

Theorem 2.6. Let
$$f \in k_p^m \left(\lambda + 1, \gamma; \frac{1+Az}{1+Bz} \right), \lambda > -p, -1 \le B < A \le 1$$
. Then $z^{-p} D^{\lambda+p} f(z) \prec \tilde{h}(z) = \frac{\lambda + p + 1}{\gamma} z^{-\frac{(\lambda + p + 1)}{\gamma}} \int_0^z t^{\frac{\lambda + p + 1}{g} - 1} \left(\frac{1 + Az}{1 + Bz} \right) dt$

and \tilde{h} is the best dominant.

Proof. Let $f \in k_p^m \left(\lambda + 1, \gamma; \frac{1+Az}{1+Bz}\right)$. Then, we have

$$(1-\gamma)z^{-p}D^{\lambda+p}f(z) + \gamma z^{-p}D^{\lambda+p+1}f(z) \prec \frac{1+Az}{1+Bz}.$$
 (2.20)

Suppose that

$$g(z) = z^{-p} D^{\lambda+p} f(z). \tag{2.21}$$

Then the function g is analytic in U with g(0) = 1.

From (1.3), (2.20) and (2.21), we get

$$(1-\gamma)z^{-p}D^{\lambda+p}f(z) + \gamma z^{-p}D^{\lambda+p+1}f(z) = g(z) + \frac{\gamma}{\lambda+p+1}zg'(z) < \frac{1+Az}{1+Bz}.$$
 (2.22)

By Lemma 1.1, we obtain

$$g(z) \prec \tilde{h}(z) = \frac{\lambda + p + 1}{\gamma} z^{-\frac{(\lambda + p + 1)}{\gamma}} \int_0^z t^{\frac{\lambda + p + 1}{\gamma} - 1} \left(\frac{1 + Az}{1 + Bz}\right) dt$$

and \tilde{h} is the best dominant. Thus we have the result.

References

- [1] H. S. Al-Almiri, On Ruscheweyh derivatives, Ann. Polon. Math., 38 (1980), 87-94.
- [2] Y. Dinggong and J. L. Liu, On a class of analytic functions involving Ruscheweyh derivatives, Bull. Korean Math. Soc., 39(1) (2002), 123-131.
- [3] J. L. Liu, Certain convolution properties of multivalent analytic functions associated with a linear operator, General Mathematics, 17(2) (2009), 42-52.
- [4] S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Michigan Math. J., 28 (1981), 157-171.
- [5] J. K. Prajapat and R. K. Raina, Some applications of differential subordination for a general class of multivalently analytic functions involving a convolution structure, Math. J. Okayama Univ., 52 (2010), 147-158.
- [6] S. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de l'Universitéde Montréal, Montréal, 1982.
- [7] Y. Yang, Y. Tao and J. L. Liu, Differential subordinations for certain meromorphically multivalent functions defined by Dziok-Srivastava operator, Abstract and Applied Analysis, Article ID 726518, 9 pages, 2011.

Received 25 December 2011

DEPARTMENT OF MATHEMATICS, COLLEGE OF COMPUTER SCIENCE AND MATHEMATICS, UNIVERSITY OF AL-QADISIYA, DIWANIYA, IRAQ

 $E ext{-}mail\ address{:}\ ^{1}\ ext{waggashnd@yahoo.com,}\ ^{2}\ ext{k.abbaswmk@yahoo.com}$