SANDWICH THEOREMS FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS DEFINEND BY CONVOLUTION STRUCTURE WITH GENERALIZAD OPERATOR

ABBAS KAREEM WANAS ${ }^{1}$ AND AHMED SALLAL JOUDAH ${ }^{2}$

Abstract

The purpose of the present paper is to derive sandwich results involving Hadamard product for certain normalized analytic functions with generalized operator in the open unit disk.

1. Introduction

Let H be the class of analytic functions in the open unit disk $U=\{z \in C:|z|<1\}$. For n a positive integer and $a \in C$, let $H[a, n]$ be the subclass of H consisting of functions of the form

$$
\begin{equation*}
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots \quad(a \in C) . \tag{1.1}
\end{equation*}
$$

Also, let A be the subclass of H consisting of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.2}
\end{equation*}
$$

Let $f, g \in H$. The function f is said to be subordinate to g, or g is said to be superordinate to f, if there exists a schwarz function w analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$ such that $f(z)=g(w(z))$. In such a case we write $f \prec g$ or $f(z) \prec g(z)(z \in U)$. If g is univalent in U, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$.

Let $p, h \in H$ and $\psi(r, s, t ; z): C^{3} \times U \rightarrow C$. If p and $\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)$ are univalent functions in U and if p satisfies the second -order differential superordination

$$
\begin{equation*}
h(z) \prec \psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right), \tag{1.3}
\end{equation*}
$$

then p is called a solution of the differential superordination (1.3). (If f is subordinate to g, then g is superordinate to f). An analytic function q is called a subordinate of (1.3), if $q \prec p$ for all the functions p satisfying (1.3). An univalent subordinat q that satisfies $q \prec q$ for all the subordinants q of (1.3) is called the best subordinant. Recently Miller and Mocanu [10] obtained conditions on the functions h, q and ψ for which the following implication holds:

$$
h(z) \prec \psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \Rightarrow q(z) \prec p(z) .
$$

For the functions $f \in A, f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g \in A$ defined by $g(z)=z+$ $\sum_{n=2}^{\infty} b_{n} z^{n}$, we define the Hadamard product (or convolution) of f and g by $(f * g)(z)=$ $z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z)$.

[^0]For $m \in N_{0}=N \cup\{0\}, \beta \geq 0, \alpha \in R$ with $\alpha+\beta>0$ and $f \in A$. The generalized operator $I_{\alpha, \beta}^{m}($ see $[16])$ is defined by

$$
\begin{equation*}
I_{\alpha, \beta}^{m} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{\alpha+n \beta}{\alpha+\beta}\right)^{m} a_{n} z^{n} \tag{1.4}
\end{equation*}
$$

It follows from (1.4) that

$$
\begin{equation*}
\beta z\left(I_{\alpha, \beta}^{m} f(z)\right)^{\prime}=(\alpha+\beta) I_{\alpha, \beta}^{m+1} f(z)-\alpha I_{\alpha, \beta}^{m} f(z), \beta>0 \tag{1.5}
\end{equation*}
$$

Note that the genralized operator $I_{\alpha, \beta}^{m}$ unifies many operators of A. In particular :
(1) $I_{\alpha, 1}^{m} f(z)=I_{\alpha}^{m} f(z), \alpha>-1$ (see Cho and Srivastava [6] and Cho and Kim [7]).
(2) $I_{1-\beta, \beta}^{m} f(z)=D_{\beta}^{m} f(z), \beta \geq 0$ (see Al-Oboudi [2]).
(3) $I_{l+1-\beta, \beta}^{m} f(z)=I_{l, \beta}^{m} f(z), \beta \geq 0$ (see Catas [5]).

Using the results of Miller and Mocanu [10], Bulboacã [4] considered certain classes of first order differential super ordinations as well as superordination-preserving integral operators (see [3]). Recently many authors [1,8,11-15] have used the reaults of Bulboacã [4] and obtain certain sufficient conditions applying first order differential subordinations and superordinations.

The main object of the present paper is to find sufficient condition for certain normalized analytic functions f in U such that $(f * \Psi)(z) \neq 0$ and f to satisfy $q_{1}(z) \prec \frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)} \prec$ $q_{2}(z)$, where q_{1} and q_{2} are given univalent functions in U and $\Phi(z)=z+\sum_{n=2}^{\infty} t_{n} z^{n}, \Psi(z)=$ $z+\sum_{n=2}^{\infty} s_{n} z^{n}$ are analytic functions in U with $t_{n} \geq 0, s_{n} \geq 0$ and $t_{n} \geq s_{n}$. Also, we obtain the number of results as their special cases.

2. Preliminaries

To establish our main results, we need the following:
Definition 2.1. [9] Denote by Q the set of all functions f that are analytic and injective on $\bar{U} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$.
Lemma 2.1. [9]Let Q be univalent in the unite disk U and let θ and ϕ be analytic in a domain D containing $q(U)$ with $\phi(w) \neq 0$ when $w \in q(U)$. set $Q(z)=z q^{\prime}(z) \phi(q(z))$ and $h(z)=\theta(q(z))+Q(z)$. Suppose that
(1) $Q(z)$ is starlike univalent in U.
(2) $\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}>0$ for $z \in U$.

If

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \phi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \phi(q(z)) \tag{2.1}
\end{equation*}
$$

then $p \prec q$ and q is the best dominant of (2.1).
Lemma 2.2. [4] Let q be convex univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing $q(U)$.Suppose that
(1) $\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\phi(q(z))}\right\}>0$ for $z \in U$,
(2) $Q(z)=z q^{\prime}(z) \phi(q(z))$ is starlike univalent inU.

If $p \in H[q(0), 1] \cap Q$, with $p(U) \subset D, \theta(p(z))+z p^{\prime}(z) \phi(p(z))$ is univalent in U and

$$
\begin{equation*}
\theta(q(z))+z q^{\prime}(z) \phi(q(z)) \prec \theta(p(z))+z p^{\prime}(z) \phi(p(z)), \tag{2.2}
\end{equation*}
$$

then $q \prec p$ and q is the best subordinat of (2.2).

3. Subordination Results

Theorem 3.1. Let $\Phi, \Psi \in A$ and q be univalent in U with $q(z) \neq 0, q(0)=1$ and assume that

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{\lambda_{2}(\gamma-\sigma)}{\lambda_{3} \sigma}+\frac{\lambda_{1} \gamma}{\lambda_{3} \sigma} q(z)+\left(\frac{\gamma}{\sigma}-2\right) \frac{z q^{\prime}(z)}{q(z)}+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>0 \tag{3.1}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \gamma \in C, \lambda_{3}, \sigma \in C \backslash\{0\}$.
Suppose that $z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$ is starlike univalent in U.IF $f \in A, \frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)} \neq 0, z \in U$, satisfies the differential subordination

$$
\begin{equation*}
N_{1}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right) \prec(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{gather*}
N_{1}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)=\left(\frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)}\right)^{\gamma} \times \\
\left(\lambda_{1}+\lambda_{2} \frac{I_{\alpha, \beta}^{m}(f * \Psi)(z)}{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}+\frac{\lambda_{3}(\alpha+\beta)}{\beta} \frac{I_{\alpha, \beta}^{m}(f * \Psi)(z)}{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}\left(\frac{I_{\alpha, \beta}^{m+2}(f * \Phi)(z)}{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}-\frac{I_{\alpha, \beta}^{m+1}(f * \Psi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)}\right)\right)^{\sigma}, \tag{3.3}
\end{gather*}
$$

$\beta>0$, then

$$
\frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)} \prec q(z)
$$

and q is the best dominant.
Proof. Define the function p by

$$
\begin{equation*}
p(z)=\frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)}, \quad z \in U \tag{3.4}
\end{equation*}
$$

Note that

$$
\begin{align*}
& (p(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{p(z)}+\lambda_{3} \frac{z p^{\prime}(z)}{(p(z))^{2}}\right)^{\sigma}=\left(\frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)}\right)^{\gamma} \times \\
& \left(\lambda_{1}+\lambda_{2} \frac{I_{\alpha, \beta}^{m}(f * \Psi)(z)}{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}+\frac{\lambda_{3}(\alpha+\beta)}{\beta} \frac{I_{\alpha, \beta}^{m}(f * \Psi)(z)}{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}\left(\frac{I_{\alpha, \beta}^{m+2}(f * \Phi)(z)}{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}-\frac{I_{\alpha, \beta}^{m+1}(f * \Psi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)}\right)^{m}\right. \tag{3.5}
\end{align*}
$$

From (3.2) and (3.5), we have $(p(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{p(z)}+\lambda_{3} \frac{z p^{\prime}(z)}{(p(z))^{2}}\right)^{\sigma} \prec(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma}$. This equivalently to $(p(z))^{\frac{\gamma}{\sigma}}\left(\lambda_{1}+\frac{\lambda_{2}}{p(z)}+\lambda_{3} \frac{z p^{\prime}(z)}{(p(z))^{2}}\right) \prec(q(z))^{\frac{\gamma}{\sigma}}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)$.

By setting $\theta(w)=\left(\lambda_{1} w+\lambda_{2}\right) w^{\frac{\gamma}{\sigma}-1}$ and $\phi(w)=\lambda_{3} w^{\frac{\gamma}{\sigma}-2}$, we see that $\theta(w)$ and $\phi(w)$ are analytic in $C \backslash\{0\}$ and that $\phi(w) \neq 0, w \in C \backslash\{0\}$.Also, we get $Q(z)=z q^{\prime}(z) \phi(q(z))=$ $\lambda_{3} z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$ and $h(z)=\theta(q(z))+Q(z)=(q(z))^{\frac{\gamma}{\sigma}}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)$.

It is clear that $Q(z)$ is starlike univalent in U,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\operatorname{Re}\left\{1+\frac{\lambda_{2}(\gamma-\sigma)}{\lambda_{3} \sigma}+\frac{\lambda_{1} \gamma}{\lambda_{3} \sigma} q(z)+\left(\frac{\gamma}{\sigma}-2\right) \frac{z q^{\prime}(z)}{q(z)}+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\} . \tag{3.6}
\end{equation*}
$$

From (3.1)and (3.6), we have $\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}>0$. Therefore by Lemma 2.1, we get $p(z) \prec q(z)$. By using (3.4), we obtain the result .

By taking $\beta=1$ and $\alpha>-1$ in Theorem 3.1, we obtain the following Corollary for the operator $I_{\alpha}^{m}[6]$.

Corollary 3.2. Let $\Phi, \Psi \in A$ and q be univalent in U with $q(z) \neq 0, q(0)=1$ and assume that (3.1) holds true. Suppose that $z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$ is starlike univalent in U.If $f \in A, \frac{I_{\alpha}^{m+1}(f * \Phi)(z)}{I_{\alpha}^{m}(f * \Psi)(z)} \neq 0, z \in U$,satisfies the differential subordination

$$
N_{2}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha ; z\right) \prec(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma}
$$

where

$$
\begin{gather*}
N_{2}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha ; z\right)=\left(\frac{I_{\alpha}^{m+1}(f * \Phi)(z)}{I_{\alpha}^{m}(f * \Psi)(z)}\right)^{\gamma} \times \\
\left(\lambda_{1}+\lambda_{2} \frac{I_{\alpha}^{m}(f * \Psi)(z)}{I_{\alpha}^{m+1}(f * \Phi)(z)}+\lambda_{3}(\alpha+1) \frac{I_{\alpha}^{m}(f * \Psi)(z)}{I_{\alpha}^{m+1}(f * \Phi)(z)}\left(\frac{I_{\alpha}^{m+2}(f * \Phi)(z)}{I_{\alpha}^{m+1}(f * \Phi)(z)}-\frac{I_{\alpha}^{m+1}(f * \Psi)(z)}{I_{\alpha}^{m}(f * \Psi)(z)}\right)^{\sigma}\right. \tag{3.7}
\end{gather*}
$$

then

$$
\frac{I_{\alpha}^{m+1}(f * \Phi)(z)}{I_{\alpha}^{m}(f * \Psi)(z)} \prec q(z)
$$

and q is the best dominant.
By taking $\alpha=1-\beta$ and $\beta>0$ in Theorem 3.1, we obtain the following Corollary for generalized Salagean operator $D_{\beta}^{m}[2]$.

Corollary 3.3. Let $\Phi, \Psi \in A$ and q be univalent in U with $q(z) \neq 0, q(0)=1$ and assume that (3.1) holds true. Suppose that $z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$ is starlike univalent in U.If $f \in A, \frac{D_{\beta}^{m+1}(f * \Phi)(z)}{D_{\beta}^{m}(f * \Psi)(z)} \neq 0, z \in U$, satisfies the differential subordination

$$
N_{3}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \beta ; z\right) \prec(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma}
$$

where

$$
N_{3}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \beta ; z\right)=\left(\frac{D_{\beta}^{m+1}(f * \Phi)(z)}{D_{\beta}^{m}(f * \Psi)(z)}\right)^{\gamma}
$$

$$
\begin{equation*}
\times\left(\lambda_{1}+\lambda_{2} \frac{D_{\beta}^{m}(f * \Psi)(z)}{D_{\beta}^{m+1}(f * \Phi)(z)}+\frac{\lambda_{3}}{\beta} \frac{D_{\beta}^{m}(f * \Psi)(z)}{D_{\beta}^{m+1}(f * \Phi)(z)}\left(\frac{D_{\beta}^{m+2}(f * \Phi)(z)}{D_{\beta}^{m+1}(f * \Phi)(z)}-\frac{D_{\beta}^{m+1}(f * \Psi)(z)}{D_{\beta}^{m}(f * \Psi)(z)}\right)^{\sigma}\right. \tag{3.8}
\end{equation*}
$$

then

$$
\frac{D_{\beta}^{m+1}(f * \Phi)(z)}{D_{\beta}^{m}(f * \Psi)(z)} \prec q(z)
$$

and q is the best dominant.
By fixing $\Phi(z)=\Psi(z)=\frac{z}{1-z}$ in Theorem 3.1, we obtain the following Corollary:
Corollary 3.4. Let q be univalent in U with $q(z) \neq 0, q(0)=1$ and assume that (3.1) holds true. Suppose that $z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$ is starlike univalent in U.If $f \in A, \frac{I_{\alpha, \beta}^{m+1}(f)(z)}{I_{\alpha, \beta}^{m}(f)(z)} \neq$ $0, z \in U$,satisfies the differential subordination

$$
N_{4}\left(f, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right) \prec(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma}
$$

$$
\begin{align*}
& \text { where } \\
& \qquad N_{4}\left(f, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)=\left(\frac{I_{\alpha, \beta}^{m+1}(f)(z)}{I_{\alpha, \beta}^{m}(f)(z)}\right)^{\gamma} \\
& \times\left(\lambda_{1}+\lambda_{2} \frac{I_{\alpha, \beta}^{m}(f)(z)}{I_{\alpha, \beta}^{m+1}(f)(z)}+\frac{\lambda_{3}(\alpha+\beta)}{\beta} \frac{I_{\alpha, \beta}^{m}(f)(z)}{I_{\alpha, \beta}^{m+1}(f)(z)}\left(\frac{I_{\alpha, \beta}^{m+2}(f)(z)}{I_{\alpha, \beta}^{m+1}(f)(z)}-\frac{I_{\alpha, \beta}^{m+1}(f)(z)}{I_{\alpha, \beta}^{m}(f)(z)}\right)\right)^{\sigma}, \tag{3.9}
\end{align*}
$$

then

$$
\frac{I_{\alpha, \beta}^{m+1}(f)(z)}{I_{\alpha, \beta}^{m}(f)(z)} \prec q(z)
$$

and q is the best dominant.

4. Superordination Results

Theorem 4.1. Let $\Phi, \Psi \in A$ and q be convex univalent in U with $q(z) \neq 0, q(0)=1$ and assume that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\lambda_{2}(\gamma-\sigma)}{\lambda_{3} \sigma}+\frac{\lambda_{1} \gamma}{\lambda_{3} \sigma} q(z)\right\}>0 \tag{4.1}
\end{equation*}
$$

suppose that $z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$ is starlike univalent in U.If $f \in A, \frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)} \in H[q(0), 1] \cap$ Q with $\frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)} \neq 0, z \in U$ and $N_{1}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)$ be univalent in U , where $N_{1}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)$ is given by (3.3).If

$$
\begin{equation*}
(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma} \prec N_{1}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right) \tag{4.2}
\end{equation*}
$$

then

$$
q(z) \prec \frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)}
$$

and q is the best subordinate.
Proof. Define the function p by

$$
\begin{equation*}
p(z)=\frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)} \quad z \in U \tag{4.3}
\end{equation*}
$$

Simple computation from (4.3), we obtain

$$
\begin{equation*}
(p(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{p(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(p(z))^{2}}\right)^{\sigma}=N_{1}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right) \tag{4.4}
\end{equation*}
$$

From (4.2) and (4.4), we have $(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma} \prec(p(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{p(z)}+\lambda_{3} \frac{z p^{\prime}(z)}{(p(z))^{2}}\right)^{\sigma}$. This equivalent to $(q(z))^{\frac{\gamma}{\sigma}}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right) \prec(p(z))^{\frac{\gamma}{\sigma}}\left(\lambda_{1}+\frac{\lambda_{2}}{p(z)}+\lambda_{3} \frac{z p^{\prime}(z)}{(p(z))^{2}}\right)$.

By setting $\theta(w)=\left(\lambda_{1} w+\lambda_{2}\right) w^{\frac{\gamma}{\sigma}-1}$ and $\phi(w)=\lambda_{3} w^{\frac{\gamma}{\sigma}-2}$, we see that $\theta(w)$ and $\phi(w)$ are analytic in $C \backslash\{0\}$ and that $\phi(w) \neq 0, w \in C \backslash\{0\}$. Also, we get $Q(z)=z q^{\prime}(z) \phi(q(z))=$ $\lambda_{3} z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$.

It is clear that $Q(z)$ is starlike univalent in U,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\phi(q(z))}\right\}=\operatorname{Re}\left\{\frac{\lambda_{2}(\gamma-\sigma)}{\lambda_{3} \sigma}+\frac{\lambda_{1} \gamma}{\lambda_{3} \sigma} q(z)\right\} \tag{4.5}
\end{equation*}
$$

From (4.1)and (4.5), we have $\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\phi(q(z))}\right\}>0$. Therefore by Lemma 2.2, we get $q(z) \prec p(z)$. By using (4.3), we obtain the result .

By taking $\beta=1$ and $\alpha>-1$ in Theorem 4.1, we obtain the following Corollary:
Corollary 4.2. Let $\Phi, \Psi \in A$ and q be convex univalent in U with $q(z) \neq 0, q(0)=1$ and assume that (4.1) holds true.suppose that $z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$ is starlike univalent in U. If $f \in$ $A, \frac{I_{\alpha}^{m+1}(f * \Phi)(z)}{I_{\alpha}^{m}(f * \Psi)(z)} \in H[q(0), 1] \cap Q$ with $\frac{I_{\alpha}^{m+1}(f * \Phi)(z)}{I_{\alpha}^{m}(f * \Psi)(z)} \neq 0, z \in U$ and $N_{2}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha ; z\right)$ be univalent in U, where $N_{2}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha ; z\right)$ is given by (3.7).If

$$
(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma} \prec N_{2}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha ; z\right)
$$

then

$$
q(z) \prec \frac{I_{\alpha}^{m+1}(f * \Phi)(z)}{I_{\alpha}^{m}(f * \Psi)(z)}
$$

and q is the best subordinate.
By taking $\alpha=1-\beta$ and $\beta>0$ in Theorem 4.1, we obtain the following Corollary:
Corollary 4.3. Let $\Phi, \Psi \in A$ and q be convex univalent in U with $q(z) \neq 0, q(0)=1$ and assume that (18) holds true.suppose that $z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$ is starlike univalent in U. If $f \in$ $A, \frac{D_{\beta}^{m+1}(f * \Phi)(z)}{D_{\beta}^{m}(f * \Psi)(z)} \in H[q(0), 1] \cap Q$ with $\frac{D_{\beta}^{m+1}(f * \Phi)(z)}{D_{\beta}^{m}(f * \Psi)(z)} \neq 0, z \in U$ and $N_{3}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \beta ; z\right)$ be univalent in U, where $N_{3}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \beta ; z\right)$ is given by (3.8).If

$$
(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma} \prec N_{3}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \beta ; z\right)
$$

then

$$
q(z) \prec \frac{D_{\beta}^{m+1}(f * \Phi)(z)}{D_{\beta}^{m}(f * \Psi)(z)}
$$

and q is the best subordinate.
By fixing $\Phi(z)=\Psi(z)=\frac{z}{1-z}$ in Theorem 4.1, we obtain the following Corollary:
Corollary 4.4. Let q be convex univalent in U with $q(z) \neq 0, q(0)=1$ and assume that (4.1) holds true.suppose that $z(q(z))^{\frac{\gamma}{\sigma}-2} q^{\prime}(z)$ is starlike univalent in U.If $f \in A, \frac{I_{\alpha, \beta}^{m+1} f(z)}{I_{\alpha, \beta}^{m} f(z)} \in$ $H[q(0), 1] \cap Q$ with $\frac{I_{\alpha, \beta}^{m+1} f(z)}{I_{\alpha, \beta}^{m} f(z)} \neq 0, z \in U$ and $N_{4}\left(f, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)$ be univalent in U ,where $N_{4}\left(f, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)$ is given by (3.9).If

$$
(q(z))^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q(z)}+\lambda_{3} \frac{z q^{\prime}(z)}{(q(z))^{2}}\right)^{\sigma} \prec N_{4}\left(f, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)
$$

then

$$
q(z) \prec \frac{I_{\alpha, \beta}^{m+1} f(z)}{I_{\alpha, \beta}^{m} f(z)}
$$

and q is the best subordinate.

5. Sandwich Results

Theorem 5.1. Let $\Phi, \Psi \in A$.Let q_{1} and q_{2} be convex univalent in U with $q(z) \neq 0, q_{1}(0)=$ $q_{2}(0)=1$.suppose q_{2} satisfies (3.1) and q_{1} satisfies (4.1). Let $f \in A, \frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)} \in H[1,1] \cap$ Q with $\frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha \beta}^{m}(f * \Psi)(z)} \neq 0, z \in U$ and $N_{1}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)$ be univalent in U , where $N_{1}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)$ is given by (3.3). If

$$
\left(q_{1}(z)\right)^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q_{1}(z)}+\lambda_{3} \frac{z q_{1}^{\prime}(z)}{\left(q_{1}(z)\right)^{2}}\right)^{\sigma} \prec N_{1}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)
$$

$$
\prec\left(q_{2}(z)\right)^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q_{2}(z)}+\lambda_{3} \frac{z q_{2}^{\prime}(z)}{\left(q_{2}(z)\right)^{2}}\right)^{\sigma},
$$

then

$$
q_{1}(z) \prec \frac{I_{\alpha, \beta}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)} \prec q_{2}(z),
$$

and q_{1} and q_{2} are, respectively, the best subordinate and the best dominant.
By making use of corollaries 3.2 and 4.2, we obtain the following Corollary:
Corollary 5.2. Let $\Phi, \Psi \in A$. Let q_{1} and q_{2} be convex univalent in U with $q(z) \neq 0, q_{1}(0)=$ $q_{2}(0)=1$. Suppose q_{2} satisfies (3.1) and q_{1} satisfies (4.1). Let $f \in A, \frac{I_{\alpha}^{m+1}(f * \Phi)(z)}{I_{\alpha}^{m}(f * \Psi)(z)} \in$ $H[1,1] \cap Q w i t h \frac{I_{\alpha}^{m+1}(f * \Phi)(z)}{I_{\alpha}^{m}(f * \Psi)(z)} \neq 0, z \in U$ and $N_{2}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha ; z\right)$ be univalent in U, where $N_{2}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha ; z\right)$ is given by (3.7).If

$$
\begin{aligned}
\left(q_{1}(z)\right)^{\gamma}\left(\lambda_{1}+\right. & \left.\frac{\lambda_{2}}{q_{1}(z)}+\lambda_{3} \frac{z q_{1}^{\prime}(z)}{\left(q_{1}(z)\right)^{2}}\right)^{\sigma} \prec N_{2}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha ; z\right), \\
& \prec\left(q_{2}(z)\right)^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q_{2}(z)}+\lambda_{3} \frac{z q_{2}^{\prime}(z)}{\left(q_{2}(z)\right)^{2}}\right)^{\sigma},
\end{aligned}
$$

then

$$
q_{1}(z) \prec \frac{I_{\alpha}^{m+1}(f * \Phi)(z)}{I_{\alpha, \beta}^{m}(f * \Psi)(z)} \prec q_{2}(z),
$$

and q_{1} and q_{2} are, respectively, the best subordinate and the best dominant.
By making use of corollaries 3.4 and 4.4, we obtain the following Corollary:
Corollary 5.3. $\operatorname{Let} \Phi, \Psi \in$ A.Let q_{1} and q_{2} be convex univalent in U with $q(z) \neq 0, q_{1}(0)=$ $q_{2}(0)=1$. Suppose q_{2} satisfies (3.1) and q_{1} satisfies (4.1). Let $f \in A, \frac{D_{\beta}^{m+1}(f * \Phi)(z)}{D_{\beta}^{m}(f * \Psi)(z)} \in$ $H[1,1] \cap Q$ with $\frac{D_{\beta}^{m+1}(f * \Phi)(z)}{D_{\beta}^{m}(f * \Psi)(z)} \neq 0, z \in U$ and $N_{3}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \beta ; z\right)$ be univalent in U, where $N_{3}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \beta ; z\right)$ is given by (3.8).If

$$
\begin{gathered}
\left(q_{1}(z)\right)^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q_{1}(z)}+\lambda_{3} \frac{z q_{1}^{\prime}(z)}{\left(q_{1}(z)\right)^{2}}\right)^{\sigma} \prec N_{3}\left(f, \Phi, \Psi, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \beta ; z\right) \\
\\
\prec\left(q_{2}(z)\right)^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q_{2}(z)}+\lambda_{3} \frac{z q_{2}^{\prime}(z)}{\left(q_{2}(z)\right)^{2}}\right)^{\sigma},
\end{gathered}
$$

then

$$
q_{1}(z) \prec \frac{D_{\beta}^{m+1}(f * \Phi)(z)}{D_{\beta}^{m}(f * \Psi)(z)} \prec q_{2}(z),
$$

and q_{1} and q_{2} are, respectively, the best subordinate and the best dominant.
By making use of corollaries 3.4 and 4.4, we obtain the following Corollary:
Corollary 5.4. Let $\Phi, \Psi \in$.Let q_{1} and q_{2} be convex univalent in U with $q(z) \neq$ $0, q_{1}(0)=q_{2}(0)=1$. Suppose q_{2} satisfies (3.1) and q_{1} satisfies (4.1). Let $f \in A, \frac{I_{\alpha, \beta}^{m+1}(f)(z)}{I_{\alpha, \beta}^{m}(f)(z)} \in$ $H[1,1] \cap Q$ with $\frac{I_{\alpha, \beta}^{m+1}(f)(z)}{I_{\alpha, \beta}^{m}(f)(z)} \neq 0, z \in U$ and $N_{4}\left(f, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)$ be univalent in U , where $N_{4}\left(f, \lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma, \sigma, \alpha, \beta ; z\right)$ is given by (3.9). If

$$
\left(q_{1}(z)\right)^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q_{1}(z)}+\lambda_{3} \frac{z q_{1}^{\prime}(z)}{\left(q_{1}(z)\right)^{2}}\right)^{\sigma} \prec N_{4}\left(f, \lambda_{1}, \lambda_{2}, \lambda_{3} \gamma, \sigma, \alpha, \beta ; z\right),
$$

$$
\prec\left(q_{2}(z)\right)^{\gamma}\left(\lambda_{1}+\frac{\lambda_{2}}{q_{2}(z)}+\lambda_{3} \frac{z q_{2}^{\prime}(z)}{\left(q_{2}(z)\right)^{2}}\right)^{\sigma},
$$

then

$$
q_{1}(z) \prec \frac{I_{\alpha, \beta}^{m+1} f(z)}{I_{\alpha, \beta}^{m} f(z)} \prec q_{2}(z)
$$

and q_{1} and q_{2} are, respectively, the best subordinate and the best dominant.

References

[1] R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. , 15(1)(2004), 87-94.
[2] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
[3] T Bulboaca, A class of superordination-preserving integral operators, Indag. Math., New Ser., 13(3)(2002), 301-311.
[4] T. Bulboac, Classes of first order differential superordinations, Demonstratio Math. , 35(2)(2002), 287-292.
[5] A. Catas, On certain class of p-valent functions defined by new multiplier transformations, Proceedings book of the international symposium on geometric function theory and applications, August, 20-24, 2007, TC Isambul Kultur Univ., Turkey, 241-250.
[6] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling, 37(1-2)(2003), 39-49.
[7] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(3)(2003), 399-410.
[8] N. Magesh and G. Murugusundaramoorthy, Differential subordinations and superordinations for comprehensive class of analytic functions, SUT J. Math., 44(2)(2008), 237-255.
[9] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[10] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables, 48(10)(2003), 815-826.
[11] G. Murugusundaramoorthy and N. Magesh, Differential subordinations and superordinations for analytic functions defined by Dziok-Srivastava linear operator, J. Inequal. Pure Appl. Math., 7(4)(2006), Art. 152, 1-9.
[12] G. Murugusundaramoorthy and N. Magesh, Differential sandwich theorems for analytic functions defined by Hadamard product, Annales Univ. M. Curie-Sklodowska, 59, Sec. A (2007), 117-127.
[13] G. Murugusundaramoorthy and N. Magesh, Differential subordinations and superordinations for analytic functions defined by convolution structure, Studia Univ. Babes-Bolyai Math., 54(20)(2009), 83-96.
[14] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3(1)(2006), Art. 8, 1-11.
[15] T. N. Shanmugam, S. Sivasubramanian, B. A. Frasin and S Kavitha, On sandwich theorems for certain subclasses of analytic functions involving Carlson-Shaffer operator, J. Korean Math. Soc., 45(2008), 611-620.
[16] S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum, $7(36)(2012), 1751-1760$.

Received 20 April 2013

${ }^{1}$ Department of Statistical and Informatics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwiniya- Iraq, ${ }^{2}$ Department of Medical Mathematics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwiniya- Iraq

E-mail address: ${ }^{1}$ abbas.alshareefi@yahoo.com, ${ }^{2}$ ahmedhiq@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45, 30C80.
 Key words and phrases. Analytic functions, Differential subordination, Differential Superordination, Hadamard product, Dominant, Subordinant, Integral operator.

