Certain New Subclasses Of Analytic And m-Fold Symmetric Bi-Univalent Functions*

Abbas Kareem Wanas ${ }^{\dagger}$, Abdulrahman H. Majeed ${ }^{\ddagger}$

Received 22 August 2017

Abstract

The purpose of the present paper is to introduce and investigate two new subclasses $S S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \alpha)$ and $S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ of Σ_{m} consisting of analytic and m fold symmetric bi-univalent functions defined in the open unit disk U. We obtain upper bounds for the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions belonging to these subclasses. Many of the well-known and new results are shown to follow as special cases of our results.

1 Introduction

Let \mathcal{A} denote the class of functions f that are analytic in the open unit disk $U=$ $\{z \in \mathbb{C}:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

Let S be the subclass of \mathcal{A} consisting of the form (1) which are also univalent in U. The Koebe one-quarter theorem (see [4]) states that the image of U under every function $f \in S$ contains a disk of radius $\frac{1}{4}$. Therefore, every function $f \in S$ has an inverse f^{-1} which satisfies $f^{-1}(f(z))=z,(z \in U)$ and $f\left(f^{-1}(w)\right)=w,(|w|<$ $\left.r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. We denote by Σ the class of bi-univalent functions in U given by (1). For a brief history and interesting examples in the class Σ see [18], (see also $[6,7,8,10,14,15,21,22]$).

For each function $f \in S$, the function $h(z)=\left(f\left(z^{m}\right)\right)^{\frac{1}{m}},(z \in U, m \in \mathbb{N})$ is univalent and maps the unit disk U into a region with m-fold symmetry. A function is said to be m-fold symmetric (see $[9,12]$) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1},(z \in U, m \in \mathbb{N}) \tag{3}
\end{equation*}
$$

[^0]We denote by S_{m} the class of m-fold symmetric univalent functions in U, which are normalized by the series expansion (3). In fact, the functions in the class S are one-fold symmetric.

In [19] Srivastava et al. defined m-fold symmetric bi-univalent functions analogues to the concept of m-fold symmetric univalent functions. They gave some important results, such as each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each $m \in \mathbb{N}$. Furthermore, for the normalized form of f given by (3), they obtained the series expansion for f^{-1} as follows:

$$
\begin{align*}
g(w)= & w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1} \\
& +\cdots, \tag{4}
\end{align*}
$$

where $f^{-1}=g$. We denote by Σ_{m} the class of m-fold symmetric bi-univalent functions in U. It is easily seen that for $m=1$, the formula (4) coincides with the formula (2) of the class Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}},\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}} \text { and }\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}
$$

with the corresponding inverse functions

$$
\left(\frac{w^{m}}{1+w^{m}}\right)^{\frac{1}{m}},\left(\frac{e^{2 w^{m}}-1}{e^{2 w^{m}}+1}\right)^{\frac{1}{m}} \text { and }\left(\frac{e^{w^{m}}-1}{e^{w^{m}}}\right)^{\frac{1}{m}}
$$

respectively.
Recently, many authors investigated bounds for various subclasses of m-fold biunivalent functions (see $[1,2,5,16,17,19,20]$).

The aim of the present paper is to introduce the new subclasses $S S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \alpha)$ and $S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ of Σ_{m} and find estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in each of these new subclasses.

In order to prove our main results, we require the following lemma.
LEMMA 1 ([4]). If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each $k \in \mathbb{N}$, where \mathcal{P} is the family of all functions h analytic in U for which

$$
\operatorname{Re}(h(z))>0, \quad(z \in U)
$$

where

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\cdots, \quad(z \in U) .
$$

2 Coefficient Estimates for the Functions Class $S S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \alpha)$

DEFINITION 1. A function $f \in \Sigma_{m}$ given by (3) is said to be in the class $S S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \alpha)$ if it satisfies the following conditions:

$$
\begin{equation*}
\left|\arg \left[\frac{1}{2}\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right]\right|<\frac{\alpha \pi}{2}, \quad(z \in U) \tag{5}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\arg \left[\frac{1}{2}\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right]\right|<\frac{\alpha \pi}{2}, \quad(w \in U) \tag{6}\\
(0<\alpha \leq 1,: 0<\lambda \leq 1,: \gamma \geq 0,: m \in \mathbb{N})
\end{gather*}
$$

where the function $g=f^{-1}$ is given by (4).
REMARK 1. It should be remarked that the class $S S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \alpha)$ is a generalization of well-known classes consider earlier. These classes are:

1. For $\gamma=0$, the class $S S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \alpha)$ reduce to the class $S_{\Sigma_{m}}(\alpha, \lambda)$ which was introduced recently by Altinkaya and Yalcin [2];
2. For $\lambda=1$ and $\gamma=0$, the class $S S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \alpha)$ reduce to the class $S_{\Sigma_{m}}^{\alpha}$ which was considered by Altinkaya and Yalcin [1];
3. For $\lambda=\gamma=1$, the class $S S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \alpha)$ reduce to the class $\mathcal{H}_{\Sigma, m}^{\alpha}$ which was investigated by Srivastava et al. [19].

REMARK 2. For one-fold symmetric bi-univalent functions, we denote the class $S S_{\Sigma_{1}}^{*}(\lambda, \gamma ; \alpha)=S S_{\Sigma}^{*}(\lambda, \gamma ; \alpha)$. Special cases of this class illustrated below:

1. For $\lambda=1$, the class $S S_{\Sigma}^{*}(\lambda, \gamma ; \alpha)$ reduce to the class $P_{\Sigma}(\alpha, \gamma)$ which was introduced by Prema and Keerthi [13];
2. For $\lambda=1$ and $\gamma=0$, the class $S S_{\Sigma}^{*}(\lambda, \gamma ; \alpha)$ reduce to the class $S_{\Sigma}^{*}(\alpha)$ which was given by Brannan and Taha [3];
3. For $\lambda=\gamma=1$, the class $S S_{\Sigma}^{*}(\lambda, \gamma ; \alpha)$ reduce to the class $\mathcal{H}_{\Sigma}^{\alpha}$ which was investigated by Srivastava et al. [18].

THEOREM 1. Let $f \in S S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \alpha)(0<\alpha \leq 1,0<\lambda \leq 1, \gamma \geq 0, m \in \mathbb{N})$ be given by (3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{4 \lambda \alpha}{(m+\gamma) \sqrt{(\lambda+1)\left(2 \lambda \alpha\left(\frac{m}{m+\gamma}+1\right)+(1-\alpha)(\lambda+1)\right)+2 \alpha(1-\lambda)}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{8 \lambda^{2} \alpha^{2}(m+1)}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{4 \lambda \alpha}{(2 m+\gamma)(\lambda+1)} \tag{8}
\end{equation*}
$$

PROOF. It follows from conditions (5) and (6) that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)=[p(z)]^{\alpha} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)=[q(w)]^{\alpha} \tag{10}
\end{equation*}
$$

where $g=f^{-1}$ and p, q in \mathcal{P} have the following series representations:

$$
\begin{equation*}
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots \tag{12}
\end{equation*}
$$

Comparing the corresponding coefficients of (9) and (10) yields

$$
\begin{equation*}
\frac{(m+\gamma)(\lambda+1)}{2 \lambda} a_{m+1}=\alpha p_{m} \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& \frac{(2 m+\gamma)(\lambda+1)}{4 \lambda}\left(2 a_{2 m+1}+(\gamma-1) a_{m+1}^{2}\right)+\frac{(m+\gamma)^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2} \\
& =\alpha p_{2 m}+\frac{\alpha(\alpha-1)}{2} p_{m}^{2} \tag{14}\\
& \quad-\frac{(m+\gamma)(\lambda+1)}{2 \lambda} a_{m+1}=\alpha q_{m} \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{(2 m+\gamma)(\lambda+1)}{4 \lambda}\left[(2 m+\gamma+1) a_{m+1}^{2}-2 a_{2 m+1}\right]+\frac{(m+\gamma)^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2} \\
& =\alpha q_{2 m}+\frac{\alpha(\alpha-1)}{2} q_{m}^{2} \tag{16}
\end{align*}
$$

Making use of (13) and (15), we obtain

$$
\begin{equation*}
p_{m}=-q_{m} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(m+\gamma)^{2}(\lambda+1)^{2}}{2 \lambda^{2}} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{18}
\end{equation*}
$$

Also, from (14), (16) and (18), we find that

$$
\begin{aligned}
& \left(\frac{(2 m+\gamma)(m+\gamma)(\lambda+1)}{2 \lambda}+\frac{(m+\gamma)^{2}(1-\lambda)}{2 \lambda^{2}}\right) a_{m+1}^{2} \\
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right) \\
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{(\alpha-1)(m+\gamma)^{2}(\lambda+1)^{2}}{4 \lambda^{2} \alpha} a_{m+1}^{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{m+1}^{2}=\frac{4 \lambda^{2} \alpha^{2}\left(p_{2 m}+q_{2 m}\right)}{(m+\gamma)^{2}\left[(\lambda+1)\left(2 \lambda \alpha\left(\frac{m}{m+\gamma}+1\right)+(1-\alpha)(\lambda+1)\right)+2 \alpha(1-\lambda)\right]} . \tag{19}
\end{equation*}
$$

Now, taking the absolute value of (19) and applying Lemma 1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \frac{4 \lambda \alpha}{(m+\gamma) \sqrt{(\lambda+1)\left(2 \lambda \alpha\left(\frac{m}{m+\gamma}+1\right)+(1-\alpha)(\lambda+1)\right)+2 \alpha(1-\lambda)}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (7). In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (16) from (14), we get

$$
\begin{align*}
& \frac{(2 m+\gamma)(\lambda+1)}{\lambda} a_{2 m+1}-\frac{(2 m+\gamma)(m+1)(\lambda+1)}{2 \lambda} a_{m+1}^{2} \\
& =\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right) \tag{20}
\end{align*}
$$

It follows from (17), (18) and (20) that

$$
\begin{equation*}
a_{2 m+1}=\frac{\lambda^{2} \alpha^{2}(m+1)\left(p_{m}^{2}+q_{m}^{2}\right)}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{\lambda \alpha\left(p_{2 m}-q_{2 m}\right)}{(2 m+\gamma)(\lambda+1)} \tag{21}
\end{equation*}
$$

Taking the absolute value of (21) and applying Lemma 1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{8 \lambda^{2} \alpha^{2}(m+1)}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{4 \lambda \alpha}{(2 m+\gamma)(\lambda+1)}
$$

which completes the proof of Theorem 1.

REMARK 3. In Theorem 1, if we choose

1. $\gamma=0$, then we obtain the results which was proven by Altinkaya and Yalcin [[2], Theorem 1];
2. $\lambda=\gamma=1$, then we obtain the results which was proven by Srivastava et al. [[19], Theorem 2].

For one-fold symmetric bi-univalent functions, Theorem 1 reduces to the following corollary:

COROLLARY 1. Let $f \in S S_{\Sigma}^{*}(\lambda, \gamma ; \alpha)(0<\alpha \leq 1,0<\lambda \leq 1, \gamma \geq 0)$ be given by (1). Then

$$
\left|a_{2}\right| \leq \frac{4 \lambda \alpha}{(1+\gamma) \sqrt{(\lambda+1)\left(\frac{2 \lambda \alpha(2+\gamma)}{1+\gamma}+(1-\alpha)(\lambda+1)\right)+2 \alpha(1-\lambda)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{16 \lambda^{2} \alpha^{2}}{(1+\gamma)^{2}(\lambda+1)^{2}}+\frac{4 \lambda \alpha}{(2+\gamma)(\lambda+1)}
$$

REMARK 4. In Corollary 1, if we choose

1. $\lambda=1$, then we have the results which was given by Prema and Keerthi [[13], Theorem 2.2];
2. $\lambda=1$ and $\gamma=0$, then we have the results obtained by Murugusundaramoorthy et al. [[11], Corollary 6];
3. $\lambda=\gamma=1$, then we obtain the results obtained by Srivastava et al. [[18], Theorem $1]$.

3 Coefficient Estimates for the Functions Class $S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$

DEFINITION 2. A function $f \in \Sigma_{m}$ given by (3) is said to be in the class $S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ if it satisfies the following conditions:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1}{2}\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right\}>\beta, \quad(z \in U) \tag{22}
\end{equation*}
$$

and

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{1}{2}\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)\right\}>\beta, \quad(w \in U), \tag{23}\\
(0 \leq \beta<1,: 0<\lambda \leq 1,: \gamma \geq 0,: m \in \mathbb{N}),
\end{gather*}
$$

where the function $g=f^{-1}$ is given by (4).
REMARK 5. It should be remarked that the class $S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ is a generalization of well-known classes consider earlier. These classes are:

1. For $\gamma=0$, the class $S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ reduce to the class $S_{\Sigma_{m}}(\beta, \lambda)$ which was introduced recently by Altinkaya and Yalcin [2];
2. For $\lambda=1$ and $\gamma=0$, the class $S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ reduce to the class $S_{\Sigma_{m}}^{\beta}$ which was considered by Altinkaya and Yalcin [1];
3. For $\lambda=\gamma=1$, the class $S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)$ reduce to the class $\mathcal{H}_{\Sigma, m}(\beta)$ which was investigated by Srivastava et al. [19].

REMARK 6. For one-fold symmetric bi-univalent functions, we denote the class $S_{\Sigma_{1}}^{*}(\lambda, \gamma ; \beta)=S_{\Sigma}^{*}(\lambda, \gamma ; \beta)$. Special cases of this class illustrated below:

1. For $\lambda=1$, the class $S_{\Sigma}^{*}(\lambda, \gamma ; \beta)$ reduce to the class $P_{\Sigma}(\beta, \gamma)$ which was introduced by Prema and Keerthi [13];
2. For $\lambda=1$ and $\gamma=0$, the class $S_{\Sigma}^{*}(\lambda, \gamma ; \beta)$ reduce to the class $S_{\Sigma}^{*}(\beta)$ which was given by Brannan and Taha [3];
3. For $\lambda=\gamma=1$, the class $S_{\Sigma}^{*}(\lambda, \gamma ; \beta)$ reduce to the class $\mathcal{H}_{\Sigma}(\beta)$ which was investigated by Srivastava et al. [18].

THEOREM 2. Let $f \in S_{\Sigma_{m}}^{*}(\lambda, \gamma ; \beta)(0 \leq \beta<1,0<\lambda \leq 1, \gamma \geq 0, m \in \mathbb{N})$ be given by (3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2 \lambda}{m+\gamma} \sqrt{\frac{2(1-\beta)}{\left(\frac{m}{m+\gamma}+1\right) \lambda^{2}+\frac{m}{m+\gamma} \lambda+1}} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{8 \lambda^{2}(m+1)(1-\beta)^{2}}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{4 \lambda(1-\beta)}{(2 m+\gamma)(\lambda+1)} \tag{25}
\end{equation*}
$$

PROOF. It follows from conditions (22) and (23) that there exist $p, q \in \mathcal{P}$ such that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}+\left(\frac{z^{1-\gamma} f^{\prime}(z)}{(f(z))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)=\beta+(1-\beta) p(z) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}+\left(\frac{w^{1-\gamma} g^{\prime}(w)}{(g(w))^{1-\gamma}}\right)^{\frac{1}{\lambda}}\right)=\beta+(1-\beta) q(w) \tag{27}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (11) and (12), respectively. Equating coefficients (26) and (27) yields

$$
\begin{gather*}
\frac{(m+\gamma)(\lambda+1)}{2 \lambda} a_{m+1}=(1-\beta) p_{m} \tag{28}\\
\frac{(2 m+\gamma)(\lambda+1)}{4 \lambda}\left(2 a_{2 m+1}+(\gamma-1) a_{m+1}^{2}\right)+\frac{(m+\gamma)^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2}=(1-\beta) p_{2 m} \tag{29}
\end{gather*}
$$

$$
\begin{equation*}
-\frac{(m+\gamma)(\lambda+1)}{2 \lambda} a_{m+1}=(1-\beta) q_{m} \tag{30}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{(2 m+\gamma)(\lambda+1)}{4 \lambda}\left((2 m+\gamma+1) a_{m+1}^{2}-2 a_{2 m+1}\right) & +\frac{(m+\gamma)^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2} \\
& =(1-\beta) q_{2 m} \tag{31}
\end{align*}
$$

From (28) and (30), we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(m+\gamma)^{2}(\lambda+1)^{2}}{2 \lambda^{2}} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{33}
\end{equation*}
$$

Adding (29) and (31), we obtain

$$
\begin{equation*}
\left(\frac{(2 m+\gamma)(m+\gamma)(\lambda+1)}{2 \lambda}+\frac{(m+\gamma)^{2}(1-\lambda)}{2 \lambda^{2}}\right) a_{m+1}^{2}=(1-\beta)\left(p_{2 m}+q_{2 m}\right) \tag{34}
\end{equation*}
$$

Therefore, we have

$$
a_{m+1}^{2}=\frac{2 \lambda^{2}(1-\beta)\left(p_{2 m}+q_{2 m}\right)}{(m+\gamma)^{2}\left[\left(\frac{m}{m+\gamma}+1\right) \lambda^{2}+\frac{m}{m+\gamma} \lambda+1\right]}
$$

Applying Lemma 1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \frac{2 \lambda}{m+\gamma} \sqrt{\frac{2(1-\beta)}{\left(\frac{m}{m+\gamma}+1\right) \lambda^{2}+\frac{m}{m+\gamma} \lambda+1}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (24). In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (31) from (29), we get

$$
\frac{(2 m+\gamma)(\lambda+1)}{\lambda} a_{2 m+1}-\frac{(2 m+\gamma)(m+1)(\lambda+1)}{2 \lambda} a_{m+1}^{2}=(1-\beta)\left(p_{2 m}-q_{2 m}\right),
$$

or equivalently

$$
a_{2 m+1}=\frac{(m+1)}{2} a_{m+1}^{2}+\frac{\lambda(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{(2 m+\gamma)(\lambda+1)}
$$

Upon substituting the value of a_{m+1}^{2} from (33), it follows that

$$
a_{2 m+1}=\frac{\lambda^{2}(m+1)(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{\lambda(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{(2 m+\gamma)(\lambda+1)}
$$

Applying Lemma 1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{8 \lambda^{2}(m+1)(1-\beta)^{2}}{(m+\gamma)^{2}(\lambda+1)^{2}}+\frac{4 \lambda(1-\beta)}{(2 m+\gamma)(\lambda+1)}
$$

which completes the proof of Theorem 2.
REMARK 7. In Theorem 2, if we choose

1. $\gamma=0$, then we obtain the results which was proven by Altinkaya and Yalcin [[2], Theorem 2];
2. $\lambda=\gamma=1$, then we obtain the results which was proven by Srivastava et al. [[19], Theorem 3].

For one-fold symmetric bi-univalent functions, Theorem 2 reduces to the following corollary:

COROLLARY 2. Let $f \in S_{\Sigma}^{*}(\lambda, \gamma ; \beta)(0 \leq \beta<1,0<\lambda \leq 1, \gamma \geq 0)$ be given by (1). Then

$$
\left|a_{2}\right| \leq \frac{2 \lambda}{1+\gamma} \sqrt{\frac{2(1-\beta)}{\frac{2+\gamma}{1+\gamma} \lambda^{2}+\frac{1}{1+\gamma} \lambda+1}}
$$

and

$$
\left|a_{3}\right| \leq \frac{16 \lambda^{2}(1-\beta)^{2}}{(1+\gamma)^{2}(\lambda+1)^{2}}+\frac{4 \lambda(1-\beta)}{(2+\gamma)(\lambda+1)}
$$

REMARK 8. In Corollary 2, if we choose

1. $\lambda=1$, then we have the results which was given by Prema and Keerthi [[13], Theorem 3.2];
2. $\lambda=1$ and $\gamma=0$, then we have the results obtained by Murugusundaramoorthy et al. [[11], Corollary 7];
3. $\lambda=\gamma=1$, then we obtain the results obtained by Srivastava et al. [[18], Theorem 2].

Acknowledgment. The authors would like to thank the referee(s) for a number of valuable suggestions regarding a previous version of this paper.

References

[1] S. Altinkaya and S. Yalçin, Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, Journal of Mathematics, Art. ID 241683, (2015), $1-5$.
[2] S. Altinkaya and S. Yalçcin, On some subclasses of m-fold symmetric bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Series A1, 67(1)(2018), 29-36.
[3] D. A. Brannan and T. S. Taha, On Some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2)(1986), 70-77.
[4] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[5] S. S. Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math., 40(2016), 641-646.
[6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[7] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of biunivalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20(2012), 179-182.
[8] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22(4)(2012), 15-26.
[9] W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105(1989), 324-329.
[10] N. Magesh and J. Yamini, Coefficient bounds for certain subclasses of bi-univalent functions, Int. Math. Forum, 8(27)(2013), 1337-1344.
[11] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal., Art. ID 573017, (2013), 1-3.
[12] C. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J., 9(1962), 259-269.
[13] S. Prema and B. S. Keerthi, Coefficient bounds for certain subclasses of analytic function, J. Math. Anal., 4(1)(2013), 22-27.
[14] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23(2015), 242-246.
[15] H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5)(2013), 831-842.
[16] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis, 41 (2015), 153-164.
[17] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia, $36 \mathrm{~B}(3)(2016), 863-871$.
[18] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[19] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., $7(2)(2014), 1-10$.
[20] H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The FeketeSzegő functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Ineq., 10(2016), 1063-1092.
[21] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990994.
[22] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), 11461-11465.

[^0]: *Mathematics Subject Classifications: 30C45, 30C50.
 ${ }^{\dagger}$ Department of Mathematics, College of Computer Science and Information Technology, University of Al-Qadisiyah, Iraq
 ${ }^{\ddagger}$ Department of Mathematics, College of Science, University of Baghdad, Iraq

