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Abstract: In this paper, we study a class of univariate skewed distributions, obtained by converting the symmetric inverted weibull
distribution into a skew one. We discuss basic properties of skewed double inverted weibull distributionSDIW , the probability density
function, cumulative distribution function, the moments, maximum entropy are derived. Maximum likelihood estimators and Fisher
information matrix for theSDIW are provided. We have used two real failure time datasets and compared our work with the results
reported from [15], the exponentiated exponential model was the best fitted model in the first dataset, and theSDIW is the better fit in
the second datasets.
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1. Introduction

Over the past years many researchers have been worked
on searching alternative distributions that have accurately
described and model data from wide range of application.
In real life, for a particular dataset the construction of the
symmetric families distribution may not exactly the appro-
priate distributions to model the data. Given this situation
an increased interest to construction skewed distribution
which is analytically tractable. A skewed distribution ex-
tends the symmetric distributions through adding a new
shape parameter that controls the weight of the distribu-
tion tail or controls the skewness. Much work has been
done with parametric skewed families distributions. “Nor-
mality is a myth; there never was; and never will be; a
normal distribution” . . . [12].

[6] introduced the univariate skew-normal(SN) distri-
bution,this class of distribution includes the normal distri-
bution as a special case. The skew normal is:

h(x/β) = 2φ(x)Φ(βx); x ∈ < (1)

hereφ(x) andΦ(x) denoted the density and the dis-
tribution function respectively. The parameterβ ∈ < con-
trols the skewness in the real line. [8] formalized the skew
multivariate normal distribution as an extension of the skew

univariate normal distribution. [7] examined further prop-
erties of skew multivariate normal distribution. [16] intro-
duced the stochastic representation of the univariate skew
normal distributionSN(λ) in terms of normal and trun-
cated normal laws. [11] introduced a new method to con-
vert any symmetric distribution into skewed.

h(x/κ) (2)

=
2κ

1 + κ2
[f(κx)I{x < 0}+ f(x/κ)I{x > 0}]

whereκ > 0 is the skewness parameter.
[26] constructed the skewed generalized T(GT ) dis-

tribution, with skewness parameter−1 < ε < 1, depends
on the following way:

h(x/ε) = f1(
x

1− ε
)I{x < 0}+ f2(

x

1 + ε
)I{x ≥ 0} (3)

[3] introduced the skew-generalized normal distribu-
tion which is a closed related to the skew-normal distribu-
tion (SN) introduced by [6]. [4] considered a general class
of skewed univariate distributions depending on the skew-
ness parameter. [24] extended a family of skewed distribu-
tion generated using a symmetric density which depends
on two parametersλ andβ. [5] presented the skewed ex-
ponential power distribution depending on [11]. [19] con-
sidered new class of skew-normal distribution which is the
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logarithmic skew-normal distribution(LSN) depending
on the formula of [6] with(lnz). [9] introduced a gener-
alization of the univariate skew Balakrishnan normal dis-
tribution with two parametrer. [13] discussed the epsilon
skew studentt distribution. Special case of this distribution
is the Epsilon-skew Cauchy, Epsilon skew-normal distri-
bution. [1] defined some skewed-symmetric distributions
with properties, skew double gamma distribution, skew dou-
ble weibull distribution, skew double beta-prime distribu-
tion depending on [6]. [2] defined some skew double in-
verted distributions depending on [6], skew double inverted
gamma, skew double inverted weibull, skew double in-
verted pareto. [21] investigated the goodness of fit of the
univariate skew-normal distribution depending on [6]. [14]
presented the table of univariate skew-normal distribution
with different values of skewness parameterβ. [25] intro-
duced a generalize toSN(λ) in another way. [20] pro-
posed a flexible class of skew-symmetric distribution which
is combined of symmetric density and a skewed density
function. [22] proposed two methods to estimate the pa-
rameters of the skew-normal distribution and skew expo-
nential power distribution in small samples. The basic idea
is to construct a distribution by joining atx = µ two half
double inverted weibull with different shapes parameters
(1 − ε) for the negative orthant and(1 + ε) for the posi-
tive orthant. The same principle applies to construction the
distribution given in [26] and [11]. The contents of this pa-
per are organized as follows: Section 2 discusses the basic
steps to construct the skewed parent distribution from non-
symmetric parent, especially the case of inverted weibull
distribution. Section 3 focuses on the skewness, kurtosis,
entropy, and median. Maximum likelihood estimation for
theSDIW model and Fisher information matrix are pre-
sented in Section 4.

2. Double inverted weibull distribution

In this section, we describe the basic steps to extend the
inverted weibull distribution on the negative part ofx-axis
to construct the double inverted weibull distribution.
Step 1.Let X have the densityh(x)I{X ≥ 0}, sinceh(x)
integrate to one on(0,∞), we can redefineX on the do-
main(−∞,∞) with density,

f(x) =
1
2
h(|x|) (4)

which integrates to one on(−∞,∞) , thereforef(x)
is a symmetric density function.
Step 2.The inverted weibull distribution function is de-
fined as follows:

f(x) =
β

α
(
1
x

)(β+1)e−
1
α ( 1

x )β

(5)

whereβ, α, x > 0 and the distribution function is:

F (x) = e−
1
α ( 1

x )−β

; x > 0

Step 3.The symmetrization procedure in step 1 leads to a
double inverted weibull distribution with density function:

f(x) =
β

2α
(|x|)−(β+1)

e−
1
α (|x|)−β

(6)

whereβ, α > 0,−∞ < x < ∞. The distribution func-
tion is:

F (x) =

{
1− 1

2 [1− e−
1
α ( 1

x )β

]; x ≥ 0
1
2 [1− e−

1
α ( 1

x )β

]; x < 0
(7)

3. Skewed double inverted weibull
distribution

In this section, we disccus Skewed double inverted weibull
(SDIW ) distribution and study their properties, from trac-
ing the approach of [26] and [11] for describing the(SDIW )
distribution, we can obtain the(SDIW ) probability den-
sity function:

f(x; µ, α, β, ε) (8)

=

{
β
2α (x−µ

1+ε )−(β+1)e−
1
α ( x−µ

1+ε )
−β

; x ≥ µ
β
2α (µ−x

1−ε )−(β+1)e−
1
α ( µ−x

1−ε )
−β

; x < µ

whereα, β > 0 and−1 < ε < 1.
We denote the distribution ofX bySDIWβ(α, β, ε, µ);

X ∼ SDIWβ(α, β, ε, µ)
The parametersα andβ correspond to scale, shape re-

spectively,ε the skewness parameter andµ is the location
parameter. Figure 1 gives a selection of the shapes of the
probability distribution functions. The corresponding CDF

-10 -7.5 -5 -2.5 0 2.5 5 7.5 1000.10.20.30.40.50.60.7

x
f(x)
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Figure 1 The pdf of the epsilon-skewed double inverted weibull
distribution forε = −0.5, 0, 0.5 andα = 1, β = 1.
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is:

F (x) =

{
1− 1+ε

2 [1− e−
1
α ( x−µ

1+ε )
−β

]; x ≥ µ
1−ε
2 [1− e−

1
α ( µ−x

1−ε )
−β

]; x < µ
(9)

3.1. Special Cases

3.1.1. Caseβ = 1

Here the density function (8) simplifies to:

f(x; µ, α, β, ε) =

{
1
2α (x−µ

1+ε )−2e−
1
α (x−µ

1+ε )
−1

; x ≥ µ
1
2α (µ−x

1−ε )−2e−
1
α (µ−x

1−ε )
−1

; x < µ
(10)

Which is the skewed symmetric double inverted expo-
nential distribution.

3.1.2. Caseβ = 2

f(x; µ, α, β, ε) =

{
1
α (x−µ

1+ε )−3e−
1
α (x−µ

1+ε )
−2

; x ≥ µ
1
α (µ−x

1−ε )−3e−
1
α (µ−x

1−ε )
−2

; x < µ
(11)

This is the skewed symmetric double inverted Rayleigh
distribution.

3.2. Moments and related parameters

In this subsection, we derive formulas for moments and
related parameters of skewed double inverted weibull dis-
tribution. For the continuous random variable
X ∼ SDIW (β, α, ε, µ) thenth moment is defined as:

E(X − µ)n =
Γ (1− n

β )

2α
n
β

[(−1)n(1− ε)n+1 + (1 + ε)n+1]

wheren is an integern ≥ 1.
The mean ofX ∼ SDIW (β, α, ε, µ) is defined as:

E(X) = µ + 2εα−
1
β Γ (1− 1

β
)

whereβ > 1. Its variance is:

var(x) = α−
2
β [Γ (1− 2

β
)(1 + 3ε2)− 4ε2Γ 2(1− 1

β
)]

whereβ > 2. It is easy to find the median:

median =

{
(1 + ε)[−αlog(1− 1

1+ε ]
1
β ; ε < 0

−(1− ε)[−αlog(1− 1
1−ε ]

1
β ; ε ≥ 0

The skewness , Kourtosis, and Entropy respectively as
follows:

skewness(X) =
8ε(1 + ε2)Γ (1− 3

β )

[Γ (1− 2
β )(1 + 3ε2)− 4ε2Γ 2(1− 1

β )]
3
2

−
6εΓ (1− 1

β )Γ (1− 2
β )(1 + 3ε2)

[Γ (1− 2
β )(1 + 3ε2)− 4ε2Γ 2(1− 1

β )]
3
2

+
16ε3Γ 3(1− 1

β )

[Γ (1− 2
β )(1 + 3ε2)− 4ε2Γ 2(1− 1

β )]
3
2

whereβ > 3.

kurtosis(x) =
Γ (1− 4

β )(5ε4 + 10ε2 + 1)

[Γ (1− 2
β )(1 + 3ε2)− 4ε2Γ 2(1− 1

β )]
3
2

−
64ε2Γ 2(1− 1

β )Γ (1− 3
β )(1 + ε2)

[Γ (1− 2
β )(1 + 3ε2)− 4ε2Γ 2(1− 1

β )]
3
2

+
24ε2Γ 2(1− 1

β )Γ (1− 2
β )

[Γ (1− 2
β )(1 + 3ε2)− 4ε2Γ 2(1− 1

β )]
3
2

−
24ε4Γ 4(1− 1

β )

[Γ (1− 2
β )(1 + 3ε2)− 4ε2Γ 2(1− 1

β )]
3
2

whereβ > 4

The Entropy is:

H(X) = −log(
β

2
) + γ +

γ

2
− logα

β
+ 1

whereγ = 0.5772 is theEuler′s constant and∫∞
0

logze−zdz = −γ

4. Maximum Likelihood Estimation

In this section, we considerML estimation for theSDIW
model, [23] methodology forML estimation consider. Let
x(1) ≤ x(2) ≤ ... ≤ x(n) be the order statistics of a sample
from theSDIW (β, α, ε, µ) population, usex(0) = 0 and
x(n+1) = ∞ . Let k = (x(1), ..., x(n), µ) be an auxiliary
integer such thatx(k) ≤ µ ≤ x(k+1) , and0 ≤ k ≤ n .In
terms of the integerk the loglikelihoodlk(β, α, ε, µ) can
be expressed as:

lk(β, α, ε, µ) =





nlogβ − nlog2− nlogα− (β + 1)∑n
i=1 log(xi−µ

2 )− 1
α

∑n
i=1(

xi−µ
2 )−β ;

k = 0

nlogβ − nlog2− nlogα
−(β + 1)

∑n
i=1 log(µ−xi

2 )−
1
α

∑n
i=1(

µ−xi

2 )−β ; k = n

nlog( β
2α )− (β + 1)

∑n
i=k+1 log(xi−µ

1+ε )−
1
α

∑n
i=k+1(

xi−µ
1+ε )−β−

(β + 1)
∑k

i=1 log(µ−xi

1−ε )−
1
α

∑k
i=1(

µ−xi

1−ε )−β ; 1 ≤ k ≤ n

(12)
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Lemma 1.If k = 1 or k = 0 the maximum likelihood
estimates(ε̂, µ̂, α̂, β̂) is given by:

(ε̂, µ̂, α̂, β̂) =
{

(1, x(1), α1, β̂1); k = 0
(1, x(n), α2, β̂2); k = n

(13)

where

α1 =
1
n

n∑

i=1

(
xi − x1

2
)−β

and

α1 =
1
n

n∑

i=1

(
xn − xi

2
)−β

β̂1 andβ̂2 can be accomplished by the use of standard
iterative procedure (i.e., Newton-Raphson method).

When 1 ≤ k ≤ n,the ML estimates are found by
solving the following loglikelihood function

∂lk(λ)
∂λi

= 0, i = 1, 2, 3, 4

whereλ = (λ1, ..., λ4) = (ε̂, µ̂, α̂, β̂)

In terms ofα we can easily solve the likelihood equa-
tion ∂

∂α lk(β, α, ε, µ) = 0 to find:

α̂ =
1
n

[
n∑

i=k+1

(
xi − µ

1 + ε
)−β +

k∑

i=1

(
µ− xi

1− ε
)−β ] (14)

Additionally, numerically methods must be applied to
solve the likelihood equations:
∂

∂µ lk(β, α, ε, µ) = 0,
∂
∂ε lk(β, α, ε, µ) = 0,
∂

∂β lk(β, α, ε, µ) = 0.

µ̂k will be eitherX(k) or X(k+1) if ∂
∂µ lk(β, α, ε, µ) = 0

has a solution in the interval(X(k), X(k+1)).

Applying Proposition 5 proposed in [4], theML es-
timates ofλ becomes(µ̂k, ε̂k, β̂k), wherek is such that
lk(µ̂k, ε̂k, β̂k) ≥ li(µ̂k, ε̂k, β̂k), ∀ i ∈ 0, ..., n. The Fisher
information matrix is given by the elements:

−E[
∂2logf

∂µ2
] =

2ε2α
3
β Γ (2 + 3

β )

(1 + ε2)(1− ε2)
+

(1 + β)α
2
β Γ (1 + 2

β )

1− ε2

−E[
∂2logf

∂ε2
] =

1 + β

1− ε2
+

2β2ε

(1 + ε2)(1− ε2)

−E[
∂2logf

∂β2
] =

ln2α

β2

−E[
∂2logf

∂α2
] =

1
α2

−E[
∂2logf

∂µ∂α
] = 0

−E[
∂2logf

∂β∂µ
] =

βα
2
β

1− ε
Γ (2 +

2
β

)

−E[
∂2logf

∂µ∂ε
] =

−βα
1
β ε

1− ε2
Γ (2 +

1
β

)

−E[
∂2logf

∂β∂α
] =

1− ε2 + lnα(1− ε)
αβ

−E[
∂2logf

∂α∂ε
] = 0

−E[
∂2logf

∂β∂ε
] =

1
2
− β

2(1 + ε)

5. An Application

In this section, we illustrate the application of the Skewed
Inverted Weibull distribution described in the previous sec-
tions using two uncensored datasets:

First dataset:The first dataset, available from [17],
consists of the number of million revolutions before fail-
ure for each of 23 endurance of deep-groove ball bearings.

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96,
54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.40.

We have compared the MLEs of the unknown parame-
ters and the corresponding Log-Likelihood(LL), theSDIW
model with the results that reported from [15], as given in
Table 1.

Table 1 TheMLEs and the correspondingLL

The model MLEs LL

Gamma(λ, α) λ̂=0.0556,α̂=4.0196 -113.0274
Weibull(λ, α) λ̂=0.0122,α̂=2.10502 -113.6887

EE(λ, α) λ̂=0.0314,α̂=5.2589 -112.9763
SDIW(β, α, β̂=1.864,α̂=0.5576, -124403.610

µ, ε) µ̂=68, ε̂=-0.4494

Second dataset:The second data is set available from
[18]. They are the time intervals (hours) between failures
of the air conditioning system of an airplane:

23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95.

The MLEs of the unknown parameters and the corre-
sponding Log-likelihood(LL) for theSDIW model have
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Table 2 TheMLEs and the correspondingLL

The model MLEs LL

Gamma(λ, α) λ̂=0.0135,α̂=0.8134 -152.2312
Weibull(λ, α) λ̂=0.0183,α̂=0.8554 -152.007

EE(λ, α) λ̂=0.0145,α̂=0.08130 -152.264
SDIW(β, α, β̂=1.248,α̂=72.067, -80.9411

µ, ε) µ̂=22, ε̂=0.5902

been obtained and compared with the results that reported
from [15] as given in Table 2.

Our comparison is based on the negative log-likelihood
(LL), for the first dataset we observed from the(LL) that
SDIW model does not fitted the data well, nevertheless
the SDIW model fits the best in the second dataset in
terms of the negative Log-likelihood values. So, it is not
guaranteed theSDIW will fitted always better than Gamma,
Weibull, and Exponentiated exponential(EE), but at least
we can say in certain datasetSDIW might work better
than Gamma, weibull, or(EE). These four models;SDIW ,
Gamma, Weibull, and(EE) are not nested. However, the
Log-likelihood values also can be compared by using Akaike’s
information criteria (AIC). We observed that the differ-
ence, 2 (124403-112.976) is so large, it follows that the
exppenentiated exponential model(EE) providing a sig-
nificantly better fit than Gamma, Weibull, andSDIW model
in the first dataset. In the second dataset and according to
theAIC value, it is observed that the difference 2 (152.007-
80.9411) is the largest, it follows that theSDIW model
provides a significantly better fit.

6. Conclusions

In this paper, we considered theSDIW distribution. We
derived the basic properties of this new family, PDF, CDF,
Mean, variance, Median, Skewness, Kurtosis, and entropy.
Also, we provided the maximum likelihood estimators along
with the fisher information matrix. We presented two real
life datasets: in the first dataset the(EE) model has a bet-
ter fit model as compared to Gamma, Weibull, andSDIW .
In the second dataset, we have observed thatSDIW has
a better fit model as compared to the Gamma, Weibull,
and(EE) model. So, it can be concluded that theSDIW
model is very sensitive to the type of data dealing with.
Obviously, more work needed withSDIW family.
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