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Abstract: The exponentiated -parent distribution is a generalization of the standard parent distribution. [7] introduced a simple gener-
alization to weibull distribution namely the exponentiated weibull distribution. The new distribution was applied to analyzing bathtub
failure rates lifetime data. In this paper, we consider the standard exponentiated inverted weibull distribution (EIW) that generalizes the
standard inverted weibull distribution (IW), the new distribution has two shape parameters. The moments, median, survival function,
hazard function, maximum likelihood estimators, least-squares estimators, fisher information matrix and asymptotic confidence inter-
vals have been discussed. A real data set is analyzed and it is observed that the (EIW) distribution can provide a better fitting than (IW)
distribution.

Keywords: Inverted Weibull Distribution; Hazard Function; Median, Maximum Likelihood Estimators; Least Squares Estimators;
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1. Introduction

The inverted weibull distribution is one of the most pop-
ular probability distribution to analyze the life time data
with some monotone failure rates. [5] explained the flexi-
bility of the three parameters inverted weibull distribution
and its interested properties. Exponentiated (generalized)
inverted weibull distribution is a generalization to the in-
verted weibull distribution through adding a new shape pa-
rameterλ ∈ <+ by exponentiation to distribution function
F , the new distribution functionFλ. [1] explained that
the cumulative distribution function is flexible to mono-
tone and non-monotone failure rates. [8] introduced the
exponentiated weibull distribution as generalization of the
statndard weibull distribution, the applied the new distri-
bution as a suitable model to the bus-motor failure time
data. [10] reviewed the exponentiated weibull distribution
with new measures. [2] studied the exponentiated expo-
nential distribution in details as an alternative distribution
to weibull distribution and gamma distribution. [9] dis-
cussed in details the moments of the exponentiated weibull
distribution. [12] compared exponentiated weibull distri-
bution with two parameters weibull distribution and gamma
distribution with respect to failure rate as well as some ba-

sic properties with data analysis. [3] introduced general-
ized exponential distribution with different method of pa-
rameters estimation. [6] applied the exponentiated weibull
distribution to the flood data with some properties. [4] in-
troduced a graphical analysis as approach to study the pa-
rameters characterization of the exponentiated weibull dis-
tribution.

The key idea of this paper is to extend the standard in-
verted weibull distribution to the standard exponentiated
inverted weibull distribution by adding another shape pa-
rameter; the shape parameter might be address the lack
of fit of the inverted weibull distribution for modeling life
time data which indicated non-monotone failure rates. The
paper is organized as follows: in Section 2 we introduce
the exponentiated inverted weibull distribution with some
interested properties. The maximum likelihood estimators
and the asymptotic confidence intervals as well as the least
squares method has been discussed in Section 3. We ana-
lyze data set to explain how the a real data can be modeled
by exponentiated inverted weibull distribution in Section
4. Finally we draw conclusions in Section 5.
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2. Exponentiated Inverted Weibull
distribution

We say that the random variableX has a standard expo-
nentiated inverted weibull distribution (EIW) if its distri-
bution function takes the following form:

Fθ(x) = (e−x−β

)θ; x, β, θ > 0 (1)

Which is simply theθ-th power of the distribution func-
tion of the standard inverted weibull distribution. Here,β
andθ are the shape parameters. Therefore, the probability
density function is:

f(x) = θβx−(β+1)(e−x−β

)θ; x > 0 (2)

The corresponding reliability function is:

R(x) = 1− (e−x−β

)θ (3)

and the hazard function is:

h(x) =
θβx−(β+1)(e−x−β

)θ

1− (e−x−β )θ
(4)

For θ = 1, it represents the standard inverted weibull
distribution, and forβ = 1 it represents the exponentiated
standard inverted exponential distribution. Thus, the expo-
nentiated inverted weibull distribution is a generalization
of the exponentiated inverted exponential distribution as
well as the inverted weibull distribution. The exponenti-
ated inverted weibull distribution also has a physical in-
terpretation. If there are m- components in a parallel sys-
tem and the life times of the components are independent
and identically distributed (i.i.d) as exponentiated inverted
weibull distribution, then the system lifetime variable has
also exponentiated inverted weibull distribution.

Figure 1 Pdf of the exponentiated inverted weibull distribution
for selected values ofθ andβ = 2.

We observed that Figure 1 shows that probability den-
sity function of the exponentiated inverted weibull distri-
bution is a unimodal.

Figure 2 Hazard rate function of the exponentiated inverted
weibull distribution selected values ofθ andβ = 2.

Thekth moments of the exponentiated inverted weibull
distribution is given as follows:

E(xk) =
∫ ∞

0

θβxkx−(β+1)(e−x−β

)θdx

This can be written as:

E(xk) = θ
k
β Γ (1− k

β
); β > k (5)

puttingk = 1 in (5), we obtain the Mean as:

E(x) = θ
1
k Γ (1− 1

k
); β > 1 (6)

From (5), we can find all the other moments. The quan-
tile function of the exponentiated inverted weibull distribu-
tion is given as:

xp = (
−1
θ

lnp)
−1
β (7)

The median can be derive from (7) by lettingp = 1
2 :

x 1
2

= (
θ

ln2
)

1
2 (8)

3. Parameters estimation

In this section, we discuss the maximum likelihood estima-
tors of the three-parameter exponentiated inverted weibull
distribution and their fisher information matrix as well as
asymptotic confidence intervals. Furthermore, we discuss
the method of the least square estimators (Regression esti-
mation) of the parametersβ and when the third parameter
θ is considered to be known.
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3.1. Maximum likelihood estimators and fisher
information matrix

If x1, x2, ..., xn is a random sample from exponentiated
inverted weibull distribution given by (2), then the Log-
Likelihood function (LL) becomes:

L(β, θ) = logθ + nlogβ (9)

−(β + 1)
n∑

i=1

logxi − θ

n∑

i=1

x−β
i

Therefore, the MLEs ofθ andβ which maximize (9)
must satisfy the nonlinear normal equations given by:

∂logL

θ
=

n

θ
−

n∑

i=1

x−β
i = 0 (10)

∂logL

β
=

n

β
−

n∑

i=1

logxi + θ

n∑

i=1

x−β
i logxi = 0 (11)

From (10), we obtain the MLE ofθ as a function ofβ
as follows:

θ̂(β) =
n∑n

i=1 x−β
i

(12)

Using (12) in (11), we have:

n

β
−

n∑

i=1

logxi − n
∑n

i=1 x−β
i logxi∑n

i=1 x−β
i

= 0 (13)

The MLE ofβ can be obtained as the fixed point solu-
tion of the nonlinear equation of the formh(β) = β, then
we have:

h(β) = β − n

β
+

n∑

i=1

logxi +
n

∑n
i=1 x−β

i logxi∑n
i=1 x−β

i

= 0(14)

Numerical technique method required to findβ̂ andθ̂.
The asymptotic confidence intervals can be obtained as the
results of the asymptotic normality. The asymptotic distri-
bution of the MLEs is given by:

√
n[(β̂ − β), (θ̂ − θ)] d→ N2(0, I−1(β, θ))

HereI−1(β, θ) is the variance-covariance matrix and
I(β, θ) is the Fisher information matrix. The elements of
I−1(β, θ) can be expressed as follows:

1

−nE(∂2logf
∂β2 )

=
β2

n[1 + 1
6π2 − 2γ + γ2 − 2lnθ(1− γ) + ln2θ

= var(β̂)

1

−nE(∂2logf
∂θ2 )

=
θ2

n
= var(θ̂)

1

−nE(∂2logf
∂β∂θ )

= − βθ

n(1− γ − lnθ)
= cov(β̂, θ̂)

whereγ = 0.5772 is the Euler’s constant, and∫∞
0

logze−zdz = −γ.

We can useI−1(β̂, θ̂) to obtain the asymptotic confi-
dence intervals forθ and β. Therefore, the approximate
100(1 − κ)% two sided confidence intervals forθ andβ
are as follows:

β̂ ± Zκ
2

√
I−1
11 (β̂), θ̂ ± Zκ

2

√
I−1
22 (θ̂)

The quantityZκ
2

can be obtained from the standard
normal distribution as the upperκ

2 percentile.

3.2. Least Squares Method

In this subsection Least Square estimator (LSE) method
consider to estimates the parametersθ andβ. The LSEs
of the parametersθ andβ can be estimates by minimiz-
ing the following function that assumed the linear relation
between two variables, with respect toθ andβ. Recall that:

F (x) = (e−x−β

)θ

lnlnF (x) = −lnθ − βlnxi

let yi = lnlnF (x), to estimateF (xi), we can use the
following Mean Rank Method:

F (xi) =
i

n + 1

wherex1, x2, ..., xn are the rank failure times in as-
cending order, which can be obtained from the original
simple random sample. Therefore, we have:

yi = lnln(
i

n + 1
) (15)

So, the straight line equation is given by:

yi = −lnθ − βlnxi

The least squares estimators ofθandβ are their value
which minimizes the following equation:

Q(θ, β) =
n∑

i=1

[yi − (−lnθ − βlnxi)]2 (16)

The first partial derivatives for (16) with respect toθ
andβ are given by:

∂Q

∂θ
=

2
θ

n∑

i=1

[yi − (−lnθ − βlnxi)]

∂Q

∂β
= 2lnxi

n∑

i=1

[yi − (−lnθ − βlnxi)]

c© 2012 NSP
Natural Sciences Publishing Cor.



170 Flaih et al.: The Exponentiated Inverted Weibull Distribution

Let ∂Q
∂θ = 0 and ∂Q

∂β = 0, then the least squares esti-
mators are as follows:

θ̂ = e
(

∑n

i=1
ln2xi

∑n

i=1
lnyi+

∑n

i=1
yilnxi

∑n

i=1
lnxi

(
∑n

i=1
lnxi)

2−n
∑n

i=1
ln2xi

)

(17)

β̂ =
n

∑n
i=1 yilnxi −

∑n
i=1 yi

∑n
i=1 lnxi

(
∑n

i=1 lnxi)2 − n
∑n

i=1 ln2xi
(18)

whereyi can be obtained from (15).

4. Data Analysis

In this section we provide a data analysis for a simple un-
censored data set to see how the new distribution works in
practice. The data have been obtained from [11], the data
concerning tensile strength of 100 observations of carbon
fibers and they are:

3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 2.81,
1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 1.84, 1.61, 1.57, 1.89,
2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 3.31, 2.35, 2.77,
2.68, 4.91, 1.57, 2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 2.88,
2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85, 2.55, 2.17,
2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82,
2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 2.56, 2.59, 2.83,
1.36, 1.84, 5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05,
3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92,
0.98, 1.59, 1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65.

For the standard exponentiated inverted weibull distri-
bution with shape parametersθ andβ, we have:

θ̂ = 1.6492, β̂ = 0.6175, with L = −61.5805

For the standard inverted weibull distribution:

β̂ = 0.80001, with L = −78.6322

We have fitted the exponentiated inverted weibull dis-
tribution (EIW) and the inverted weibull distribution (IW)
depending on the above data. These two models, with the
former having one less parameter, are nested. Our first
comparison is based on the likelihood ratio test ofH0 :
θ = 0(IW model) againstH1 : θ 6= 0(EIW model). The
likelihood ratio test can be used, based on the fact that
a log-likelihood (L) ratio statistic is asymptotically chi-
square distributed with 1 degree of freedom. The log like-
lihood functions (L= -61.5807, L= -78.6322) are the log-
likelihoods values for (9) and the inverted weibull distribu-
tion(IW). However since the value of the test statistics is
-2(-78.6322+61.5807) = 34.103, is so large it follows that
the exponentiated inverted weibull distrinbution (EIW) pro-
vides a significantly better fit.

Our second comparison is based on the probability plot.
A probability plot is a graph of the empirical distribution
function values (x-axis) against the theoretical distribution

function values (y-axis). For the exponentiated inverted
weibull distribution we have computed based on (1) for
the (y-axis) against the empirical CDF,(i−0.5)/n , where
i = 1, 2, ..., n andx(i) are the values in the sample of data,
in order from smallest to largest. The probability plot cor-
responding to the two fits, shown in the Figure 3.

Figure 3 Probability plots for the models based on the exponen-
tiated inverted weibull distribution(+) and the inverted weibull
distribution(x).

We have used the sum of the absolute difference be-
tween the observed probabilities (Empirical) and the ex-
pected probabilities (Theoretical) as a numerical measure
of closeness, the values of the measure are 18.7416 for the
(EIW) model and 19.0088 for the (IW) model. This sup-
ports the conclusions of our results in the first comparison,
therefore the EIW will behave better than IW distribution.
By using the MLEs of the unknown parametersθ andβ,
we get the estimation of the Variance-Covariance matrix
as follows:

I−1(β̂, θ̂) = 0 .01530.13190.13190.0271

The approximate 95% two sided confidence intervals
of the parametersβ andθ are given respectively as follows:

(0.3751, 0.8599)

and

(1.3266, 1.9718)

5. Conclusion

In this paper we have introduced the exponentiated in-
verted weibull distribution (EIW) as an extension to the
inverted weibull distribution (IW). Depending on our data
analysis it is observed that the (EIW) model can be serving
as alternative to an inverted weibull distribution (IW) and
it is expected that in some situations it might work better
than the inverted weibull distribution. The (EIW) distribu-
tion deserves more works on both aspects, the theoretical
(estimation methods) and the applications (analysis further
data).
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