RESEARCH PAPER

Available online at http://www.jgrma.info

Differential Subordinations for Certain Class of Symmetric Functions
Abbas Kareem Wanas
Department of Mathematics
College of Computer Science and Mathematics
University of AlQadisiya
Diwaniya - Iraq
E-Mail: abbas.alshareefi@yahoo.com, abbaskareem.w@gmail.com

Abstract

The object of this paper is to introduce and study a new class $L_{m}(\eta ; h)$ of symmetric analytic functions in the open unit disk. Also we obtain some results for this class.

2000 Mathematics Subject Classification: 30C45, 30C50.
Keywords: Analytic function, Symmetric function, Hadamard product, Convex univalent, Subordination.

1. Introduction and Preliminaries

Let A_{m} denote the class of functions f of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=m+1}^{\infty} a_{n} z^{n} \quad(m \in \mathbb{N}=\{1,2,3, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$.
For two functions f and g analytic in U, we say that the function f is subordinate to g, written $f<g$ or $f(z) \prec g(z)(z \in U)$, if there exists a Schwarz function $w(z)$ analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$ such that $f(z)=g(w(z))$. In particular, if the function g is univalent in U, then $f<g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$.

The Hadamard product (or convolution) $\left(f_{1} * f_{2}\right)(z)$ of two functions

$$
f_{j}(z)=z+\sum_{n=m+1}^{\infty} a_{n, j} z^{n} \in A_{m} \quad(j=1,2)
$$

is given by

$$
\left(f_{1} * f_{2}\right)(z)=z+\sum_{n=m+1}^{\infty} a_{n, 1} a_{n, 2} z^{n}
$$

A function $f \in A_{m}$ is said to be starlike of order α in U if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(0 \leq \alpha<1 ; z \in U)
$$

Denote the class of all starlike functions of order α in U by $S^{*}(\alpha)$.
A function $f \in A_{m}$ is said to be prestarlike of order α in U if

$$
\frac{z}{(1-z)^{2(1-\alpha)}} * f(z) \in S^{*}(\alpha) \quad(\alpha<1)
$$

Denote the class of all prestarlike functions of order α in U by $\mathfrak{R}(\alpha)$.
Clearly a function $f \in A_{m}$ is in the class $\mathfrak{R}(0)$ if and only if f is convex univalent in U and $\Re\left(\frac{1}{2}\right)=S^{*}\left(\frac{1}{2}\right)$.

Let H be the class of functions h with $h(0)=1$, which are analytic and convex univalent in U.

Definition 1.1. A function $f \in A_{m}$ is said to be in the class $L_{m}(\eta ; h)$ if it satisfies the subordination condition:

$$
\begin{equation*}
(1-\eta)\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right)<h(z) \tag{1.2}
\end{equation*}
$$

where $\eta \in \mathbb{C}$ and $h \in H$.
We need the following Lemmas in order to derive our main results for the class $L_{m}(\eta ; h)$.

Lemma 1.2 [3]. Let g be analytic in U and let h be analytic and convex univalent in U with $h(0)=g(0)$. If

$$
\begin{equation*}
g(z)+\frac{1}{\mu} z g^{\prime}(z)<h(z) \tag{1.3}
\end{equation*}
$$

where $\operatorname{Re} \mu \geq 0$ and $\mu \neq 0$, then

$$
g(z)<\tilde{h}(z)=\mu z^{-\mu} \int_{0}^{z} t^{\mu-1} h(t) d t<h(z)
$$

and $\tilde{h}(z)$ is the best dominant of (1.3).
Lemma 1.3 [5]. Let $\alpha<1, f \in S^{*}(\alpha)$ and $g \in \mathfrak{R}(\alpha)$. Then, for any analytic function F in U,

$$
\frac{g *(f F)}{g * f}(U) \subset \overline{c o}(F(U))
$$

where $\overline{c o}(F(U))$ denotes the closed convex hull of $F(U)$.
Such type of study was carried out by various authors for another classes, like, Liu [1,2], Prajapat and Raina [4] and Yang et. al. [6].

2. Main Results

Theorem 2.1. Let $0 \leq \eta<\xi$. Then $L_{m}(\xi ; h) \subset L_{m}(\eta ; h)$.
Proof. Let $0 \leq \eta<\xi$ and $f \in L_{m}(\xi ; h)$.
Suppose that

$$
\begin{equation*}
g(z)=\frac{f(z)-f(-z)}{2 z} \tag{2.1}
\end{equation*}
$$

Then, the function g is analytic in U with $g(0)=1$.
Since $f \in L_{m}(\xi ; h)$, then we have

$$
\begin{equation*}
(1-\xi)\left(\frac{f(z)-f(-z)}{2 z}\right)+\xi\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right)<h(z) \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we get

$$
\begin{equation*}
(1-\xi)\left(\frac{f(z)-f(-z)}{2 z}\right)+\xi\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right)=g(z)+\xi z g^{\prime}(z)<h(z) \tag{2.3}
\end{equation*}
$$

An application of Lemma 1.2, we obtain

$$
\begin{equation*}
g(z)<h(z) \tag{2.4}
\end{equation*}
$$

Noting that $0 \leq \frac{\eta}{\xi}<1$ and that h is convex univalent in U, it follows from (2.1), (2.3) and (2.4) that

$$
\begin{gathered}
(1-\eta)\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right) \\
=\frac{\eta}{\xi}\left((1-\xi)\left(\frac{f(z)-f(-z)}{2 z}\right)+\xi\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right)\right)+\left(1-\frac{\eta}{\xi}\right) g(z) \prec h(z) .
\end{gathered}
$$

Therefore $L_{m}(\eta ; h)$ and we obtain the result.
Theorem 2.2. Let $\eta>0, \delta>0$ and $f \in L_{m}(\eta ; \delta h+1-\delta)$. If $\delta \leq \delta_{0}$, where

$$
\begin{equation*}
\delta_{0}=\frac{1}{2}\left(1-\frac{1}{\eta} \int_{0}^{1} \frac{u^{\frac{1}{\eta}-1}}{1+u} d u\right)^{-1} \tag{2.5}
\end{equation*}
$$

then $f \in L_{m}(0 ; h)$. The bound δ_{0} is the sharp when $h(z)=\frac{1}{1-z}$.
Proof. Suppose that

$$
\begin{equation*}
g(z)=\frac{f(z)-f(-z)}{2 z} \tag{2.6}
\end{equation*}
$$

Let $f \in L_{m}(\eta ; \delta h+1-\delta)$ with $\eta>0$ and $\delta>0$. Then we have

$$
\begin{gathered}
g(z)+\eta z g^{\prime}(z)=(1-\eta)\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right) \\
<\delta h(z)+1-\delta
\end{gathered}
$$

An application of Lemma 1.2, we obtain

$$
\begin{equation*}
g(z)<\frac{\delta}{\eta} z-\frac{1}{\eta} \int_{0}^{z} t^{\frac{1}{\eta}-1} h(t) d t+1-\delta=(h * \phi)(z) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(z)=\frac{\delta}{\eta} z^{-\frac{1}{\eta}} \int_{0}^{z} \frac{t^{\frac{1}{\eta}-1}}{1-t} d t+1-\delta \tag{2.8}
\end{equation*}
$$

If $0<\delta \leq \delta_{0}$, where $\delta_{0}>1$ is given by (2.5), then it follows from (2.8) that

$$
\begin{gathered}
\operatorname{Re}(\phi(z))=\frac{\delta}{\eta} \int_{0}^{1} u^{\frac{1}{\eta}-1} \operatorname{Re}\left(\frac{1}{1-u z}\right) d u+1-\delta>\frac{\delta}{\eta} \int_{0}^{1} \frac{u^{\frac{1}{\eta}-1}}{1+u} d u+1-\delta \\
\geq \frac{1}{2}
\end{gathered}
$$

Now, by using the Herglotz representation for $\phi(\mathrm{z})$, from (2.6) and (2.7), we get

$$
\frac{f(z)-f(-z)}{2 z}<(h * \phi)(z)<h(z) .
$$

Since h is convex univalent in U, then $f \in L_{m}(0 ; h)$.
For $h(z)=\frac{1}{1-z}$ and $f \in A_{m}$ defined by

$$
\frac{f(z)-f(-z)}{2 z}=\frac{\delta}{\eta} z^{-\frac{1}{\eta}} \int_{0}^{z} \frac{t^{\frac{1}{\eta}-1}}{1-t} d t+1-\delta
$$

we have

$$
(1-\eta)\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right)=\delta h(z)+1-\delta .
$$

Thus, $f \in L_{m}(\eta ; \delta h+1-\delta)$.

Also, for $\delta>\delta_{0}$, we have

$$
\operatorname{Re}\left(\frac{f(z)-f(-z)}{2 z}\right) \rightarrow \frac{\delta}{\eta} \int_{0}^{1} \frac{u^{\frac{1}{\eta}-1}}{1+u} d u+1-\delta<\frac{1}{2} \quad(z \rightarrow 1)
$$

which implies that $f \notin L_{m}(0 ; h)$. Therefore, the bound δ_{0} cannot be increased when $h(z)=\frac{1}{1-z}$ and this completes the proof of the theorem.

Theorem 2.3. Let $f \in L_{m}(\eta ; h), g \in A_{m}$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{g(z)}{z}\right\}>\frac{1}{2} \tag{2.9}
\end{equation*}
$$

Then

$$
f * g \in L_{m}(\eta ; h)
$$

Proof. Let $f \in L_{m}(\eta ; h)$ and $g \in A_{m}$. Then, we have

$$
\begin{gather*}
(1-\eta)\left(\frac{(f * g)(z)-(f * g)(-z)}{2 z}\right)+\eta\left(\frac{(f * g)^{\prime}(z)-(f * g)^{\prime}(-z)}{2}\right) \\
=(1-\eta)\left(\frac{g(z)}{z}\right) *\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{g(z)}{z}\right) *\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right) \\
=\left(\frac{g(z)}{z}\right) * \psi(z), \tag{2.10}
\end{gather*}
$$

where

$$
\begin{equation*}
\psi(z)=(1-\eta)\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right)<h(z) \tag{2.11}
\end{equation*}
$$

From (2.9), note that the function $\frac{g(z)}{z}$ has the Herglotz representation

$$
\begin{equation*}
\frac{g(z)}{z}=\int_{|x|=1} \frac{d \mu(x)}{1-x z} \quad(z \in U) \tag{2.12}
\end{equation*}
$$

where $\mu(x)$ is a probability measure defined on the unit circle $|\mathrm{x}|=1$ and

$$
\int_{|x|=1} d \mu(x)=1
$$

Since h is convex univalent in U, it follows from (2.10) to (2.12) that

$$
\begin{gathered}
(1-\eta)\left(\frac{(f * g)(z)-(f * g)(-z)}{2 z}\right)+\eta\left(\frac{(f * g)^{\prime}(z)-(f * g)^{\prime}(-z)}{2}\right) \\
=\int_{|x|=1} \psi(x z) d \mu(x) \prec h(z)
\end{gathered}
$$

Therefore, $f * g \in L_{m}(\eta ; h)$.
Theorem 2.4. Let $f \in L_{m}(\eta ; h)$ and let $g \in A_{m}$ be prestarlike of order α ($\alpha<1$). Then

$$
f * g \in L_{m}(\eta ; h)
$$

Proof. Let $f \in L_{m}(\eta ; h)$ and $g \in A_{m}$. Then, we have

$$
\begin{equation*}
(1-\eta)\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right)<h(z) \tag{2.13}
\end{equation*}
$$

Hence

$$
\begin{gather*}
(1-\eta)\left(\frac{(f * g)(z)-(f * g)(-z)}{2 z}\right)+\eta\left(\frac{(f * g)^{\prime}(z)-(f * g)^{\prime}(-z)}{2}\right) \\
=(1-\eta)\left(\frac{g(z)}{z}\right) *\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{g(z)}{z}\right) *\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right) \\
=\frac{g(z) *(z \psi(z))}{g(z) * z} \quad(z \in U), \tag{1.14}
\end{gather*}
$$

where $\psi(z)$ is defined as in (2.11).
Since h is convex univalent in $U, \psi(z)<h(z), g(z) \in \Re(\alpha)$ and $z \in S^{*}(\alpha)$, ($\alpha<1$), it follows from (2.14) and Lemma 1.3, we obtain the result.

Theorem 2.5. Let $f \in L_{m}(\eta ; h)$ be defined as in (1.1). Then

$$
k(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t, \quad(\operatorname{Re}(c)>-1)
$$

is also in the class $L_{m}(\eta ; h)$.
Proof. Let $f \in L_{m}(\eta ; h)$ be defined as in (1.1). Then, we have

$$
\begin{equation*}
(1-\eta)\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right)<h(z) . \tag{2.15}
\end{equation*}
$$

Note that

$$
\begin{equation*}
k(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t=z+\sum_{n=m+1}^{\infty} \frac{c+1}{c+n} a_{n} z^{n} . \tag{2.16}
\end{equation*}
$$

We find from (2.16) that $k \in A_{m}$ and

$$
\begin{equation*}
f(z)=\frac{c k(z)+z k^{\prime}(z)}{c+1} . \tag{2.17}
\end{equation*}
$$

Define the function p by

$$
\begin{equation*}
p(z)=(1-\eta)\left(\frac{k(z)-k(-z)}{2 z}\right)+\eta\left(\frac{k^{\prime}(z)-k^{\prime}(-z)}{2}\right) \tag{2.18}
\end{equation*}
$$

By using (2.17) and (2.18), we get

$$
\begin{align*}
p(z) & +\frac{1}{c+1} z p^{\prime}(z)=\frac{c}{c+1} p(z)+\frac{1}{c+1}\left(z p^{\prime}(z)+p(z)\right) \\
= & (1-\eta)\left(\frac{\left(c k(z)+z k^{\prime}(z)\right)-\left(c k(-z)+z k^{\prime}(-z)\right)}{2 z(c+1)}\right) \\
& +\eta\left(\frac{\left(c k(z)+z k^{\prime}(z)\right)^{\prime}-\left(c k(-z)+z k^{\prime}(-z)\right)^{\prime}}{2(c+1)}\right) \\
& =(1-\eta)\left(\frac{f(z)-f(-z)}{2 z}\right)+\eta\left(\frac{f^{\prime}(z)-f^{\prime}(-z)}{2}\right) \tag{2.19}
\end{align*}
$$

From (2.15) and (2.19), we arrive at

$$
p(z)+\frac{1}{c+1} z p^{\prime}(z)<h(z), \quad(\operatorname{Re}(c)>-1) .
$$

An application of Lemma 1.2, we obtain $p(z)<h(z)$. By (2.18), we get

$$
(1-\eta)\left(\frac{k(z)-k(-z)}{2 z}\right)+\eta\left(\frac{k^{\prime}(z)-k^{\prime}(-z)}{2}\right) \prec h(z) .
$$

Therefore, $k \in L_{m}(\eta ; h)$.

References

[1] J. L. Liu, Certain convolution properties of multivalent analytic functions associated with a linear operator, General Mathematics, 17(2)(2009), 41-52.
[2] J. L. Liu, On a class of multivalent analytic functions associated with an integral operator, Bulletin of the Institute of Mathematics, 5(1)(2010), 95-110.
[3] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.
[4] J. K. Prajapat and R. K. Raina, Some applications of differential subordination for a general class of multivalently analytic functions involving a convolution structure, Math. J. Okayama Univ., 52(2010), 147-158.
[5] S. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de 1'Université de Montréal, Montréal, 1982.
[6] Y. Yang, Y. Tao and J. L. Liu, Differential subordinations for certain meromorphically multivalent functions defined by Dziok-Srivastava operator, Abstract and Applied Analysis, Art. ID 726518, 9 pages, 2011.

