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Abstract: 

This article is concerned with the problem of model selection in high dimensional data. We propose a method 
that can reduce the time for selecting only the variables which provide important information to the response 
variable. We call this method the Dimensional Reduction of Correlation Matrix (DRCM). Our proposed 
procedure based on two steps, whereby in the first step, DRCM attempts to reduce the dimension of correlation 
matrix by including only those variables that have absolute correlations greater than a threshold value, in the 
potential model. In the second step , the  p-values for the parameter estimates of potential model were 
computed..  The final regression model only include those variables that are significant.  The DRCM is 
compared with the existing Adaptive Lasso and VIF regression techniques. The result shows that the DRCM is 
more efficient than the existing methods in terms of reducing the time taken for selecting the best  model. 

Keyword: Variable selection, Adaptive lasso , VIF Regression, DRCM   

1. Introduction 

The aims of variable selection is to select the most 
predictive variables among an enormous number 
of potential variables. High Dimensional (HD) 
data formed a major  challenge for the statistical 
practitioners that employ classical statistical  
methods. A rich literatures  have been developed in 
recent years to overcome the problem of HD data 
such as Least Absolute Shrinkage Selection 
Operator (LASSO) (Tibshirani,1996), adaptive 
LASSO ( Zou,2006), elastic net ( Zou and 
Hasti,2005), Least Angle Regression (Tibshirani et 
al,2004), Dantzig (Candes and Tao, 2007). Lin et 
al. (2012) proposed Variance Inflation Factor 
(VIF) regression as a fast algorithm for variable 
selection. LASSO’s method is based on marginal 
correlation between X's and Y denoted as ( ) , 
whereby the first potential variable that enter to be 
in the candidate  set is the one that poses the 
highest absolute correlation than others.  

Fig. 1 exhibits the absolute  correlation between 
each of the candidate variable with Y. Here, we 
wish to show the problem that will be encountered 
regarding the correlation values for high 
dimensional data. The horizontal line in the 
diagram corresponds to the minimum value of the 
absolute correlation (MVAC)  between each 
artificial (actual) potential variables( denoted as p)  
and Y. If there is no problem, then regardless of the 
number of p,  none of the correlation between the 
noise variable and Y will exceed MVAC. Hereafter, 
we will see that this is not true for high dimensional 
data. It can be seen from Fig. 1-A that the 
correlations between Y and the artificial potential 
variables lie far from the rest of the correlations, 
especially, when the dimension of covariate is low. 
However, by increasing the dimension of p, not 
only the correlations of the artificial potential 
variables get closer to the rest of the correlations, 
but some of the correlation of the noise variables 
become larger than MVAC. For example, 
increasing the value of p to 10 make the correlation  

 to be higher than the , and 
 and  to be  very close to 
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 On the other hand, 13 and 9 noise variables 
appearing for p=15 and 20, respectively which 
should  not be the case when there is no high 
dimensional  problem.  
 
 
Fig 1: The correlations between X's and Y. 

 
 
It can  be observed from Fig. 1 that by increasing 
the dimension of the artificial potential covariates, 
some noise covariates appeared to be highly 
correlated with Y.  In this situation, they are 
included in the potential candidate set and we call 
them noise variables.  It is important mentioning 
that some of the noise variables that enter the final 
model may be larger than the number of actual 
potential variables. This case is called over-fitting 
model which usually  occurs  in HD data and may 
give a misleading results.   
It is important to note that the  VIF regression 
selection technique which is assumed faster than 
the penalized methods, is not that efficient after all, 
because it is affected by the choice of two 
parameters ( initial wealth and investment). Lin et 
al. (2012) pointed out that one may use larger 
parameters for initial wealth parameter (0.5)  and 
larger investment parameter such as 0.05. By 
avoiding to select the optimal parameters in the VIF 
regression technique will consume more time in 
selecting the best model. On the contrary, the 
penalize method which choose   in each iteration 
might not help in reducing the computation time, 
because the method will select more noise variables 
in the final model. 
The weakness of these two methods is that they did 
not clearly mention the optimal procedure of 

choosing the relevant parameters needed in their 
algorithms. Moreover, they employed a very 
complex iterative algorithms. Hence we propose a 
simple DRCM procedure which is based on the 
reduction of the dimension of the correlation 
matrix.  We expect that this method is more 
efficient and less time consuming than the  adaptive 
lasso and VIF regression techniques. 
 
  
2.   The Idea of DRCM 
By standardizing all variables considered in the 
Euclidean space will help to reduce the time for 
calculating the correlations between variables.  The 
correlation between X and Y can be written in 
terms of  cosine   
 

 

 

 
 

 
where  normalization  and  to 1 (unit 
length) and  , . 
Let      be the linear regression model 
where  is the response variable,   is the matrix of 
covariates.   is the regression coefficients and  is 
the errors. Assuming  and  are scaled, then 

 =  , since , and  
 is the correlation between X's 

and Y.  Subsequently, the regression estimates can 
be obtained  from the  correlation matrix: i.e   

 where the value of  is between 0 
and 1. When the value of correlation between X 
and Y equals to 1 and 0,  this is  an  indication of  a 
perfect and no correlation between the variables, 
respectively. Hence, if all p potential variables are 
perfectly correlated with Y then 

, while imperfect correlation indicated by 
. However, in real practice, 

these two cases are impossible to occur.   
 
It is important to note that the contribution of each 
estimated coefficient rely on its numerical value in 
the   interval. The choice of the candidate  
variable to be included in the potential model is 
very important. The correlation between the 
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candidate variable and the response variable should 
be reasonably high. This decision can be very 
subjective.  
 
Therefore, a threshold value is needed to identify 
candidate variables that can be considered in the 
potential model.  This value denoted as M is 
computed based on the average of absolute 
correlation between X and Y.  
 
Suppose  be the number of all candidate 
covariates, the threshold value M is given by  

 .  A variable that has absolute 
correlation with the response variable which is 
greater than the threshold value, i.e  , 
will be included in the potential model. 
Consequently the dimension of the correlation 
matrix is reduced.  Subsequently, the parameters of 
the potential model with  variables are estimated. 
The final model (in the active model) consists of  
variables (covariates)  ; those covariates that have 
P-values less than 0.05.  
 
    

3. A Simulation Studys 
To compare DRCM procedure with adaptive 
LASSO and VIF regression, we carried out a 
simulation study similar to Khan(2007) where 
correlation between the  covariates is  weak and no 
outlier in the dataset. We consider d=50 candidate 
variables and   
artificial (real) potential variables.  
The candidate variables were generated from 

 The response variable  is generated 
using P non-zero covariates, with coefficients 
(7,6,5,7,6) , repeated one time for  , two times 
for , three times for  and four times 
for . The error is chosen  . For 
each case, we generate 1000 simulation data sets. 
The average number of potential variables, noise 
variables and time taken to select the final model 
are presented in Tables 1. A good method is the one 
that has average  potential covariates in the final 
model which is closer to the number of the 
generated artificial (actual) potential covariates, has 
the least value of average noise variables and 
consume the least time to select the final model. 
It is interesting to note that irrespective of the 
number of candidate variables, all the three 
methods select the same number of potential  
covariates in the final model.  Nonetheless, the 
DRCM has the least value of the  average number 

of noise variables and the least time taken to select 
the final model, followed by the Adaptive Lasso 
and VIF Regression methods. 
 
 
4.Conclusion     
In this article, we proposed  a new method for 
linear regression model selection. The simulation 
results suggest that, for the generated Y 
observations which are  based on linear relationship 
with artificial potential covariates greater than 14 
(high dimensional data), will make  some noise 
variables to be included in the final model. The 
more dimension of the artificial potential covariates 
being considered, the more noise variables will 
appear.  Although Adaptive lasso performs better 
than the  VIF Regression technique, the time taken 
to select the final model still can be considered 
high. The DRCM not only has the smallest average 
number of noise variables, but also can 
significantly reduce the time taken to select the 
final model. Hence, we can conclude that our 
proposed DRCM is more efficient than the existing 
VIF Regression and Adaptive Lasso methods. 
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