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Stability selection (multisplit) approach is a variable selection procedure which relies on multisplit data to overcome the
shortcomings that may occur to single-split data. Unfortunately, this procedure yields very poor results in the presence of outliers
and other contamination in the original data. The problem becomes more complicated when the regression residuals are serially
correlated. This paper presents a new robust stability selection procedure to remedy the combined problem of autocorrelation and
outliers. We demonstrate the good performance of our proposed robust selection method using real air quality data and simulation

study.

1. Introduction

The approach of splitting data into two parts is not new in the
statistical inference and data analysis. Wasserman and Roeder
[1] suggested combining the single-split approach with vari-
able selection procedure. The variable selection algorithm is
carried out in the first part (random half of data), followed
by testing the significance of each selected variable based on
p value of regression coefficient in the second part of data
(the remaining half of data). However, this procedure does
not guarantee reproducible results due to choosing arbitrary
split [2].

A stability selection or multisplit approach is put forward
to enhance and improve the performance of single-split vari-
able selection method. The modern approaches of stability
selection which rely on subsampling technique are proposed
by [2, 3] for high dimensional data. The data is repeatedly
split randomly into two parts with equal size of /2. Unlike
bootstrap, the stability selection approach repeatedly selects
(without replacement) two subsamples with equal size [1/2]
from the original data. There is a possibility that any part of
the split data may contain more outliers than the other parts
of the split data. As a consequence, the existing classical linear

regression stability selection procedure is easily affected
by outliers, hence resulting in unreliable variables that are
selected to the final model. This problem can be rectified by
incorporating robust estimator in the selection procedure.
However, this approach may not be adequate since robust
estimation is expected to perform well only up to a certain
percentage of outliers (Imon and Ali [4], Norazan et al. [5]).
Since the selection procedure of the stability selection method
is fairly closed to bootstrap [6], the idea of robust bootstrap
may be used in stability selection procedure.

Following the idea of [4], in this paper, we propose diag-
nostic method before subsampling. The proposed diagnostic
method is based on the Reweighted Fast Consistent and
High (RFCH) breakdown estimator which is developed by
[7] (cited by Alkenani and Yu [8], Ozdemir and Wilcox [9],
and Zhang et al. [10]). The suspected outliers are identified
and deleted and random subsampling is performed from the
remaining (clean) set of observations.

The proposed variable selection procedure also takes into
consideration the autocorrelation problem. This problem, if
not remedied, may provide misleading conclusions about
the statistical significance of the regression coefficients [11].
Hence, the existing variable selection procedure may select



the wrong model. Appropriate remedial measures must be
taken after detecting the presence of autocorrelation prob-
lems. One often used the Cochrane-Orcutt or Prais-Winsten
methods (Greene [12], Gujarati and Porter [11]) to rectify
autocorrelation problem. Nonetheless, these procedures are
based on the OLS estimates, which are not robust and are
therefore easily affected by outliers. Ann and Midi [13] pro-
posed the Robust Cochrane-Orcutt Prais-Winsten (RCOPW)
iterative method, based on high breakdown point and high
efficiency MM-estimator [14], to overcome the combined
problem of outliers and autocorrelated errors.

Hence, the main objective of this paper is to develop
reliable, robust stability all-subset selection procedure in the
presence of outliers and autocorrelation problem. The pro-
posed method is formulated by rectifying the autocorrelation
problem at the outset and subsequently the Reweighted Fast
Consistent High (RFCH) breakdown estimator is incorpo-
rated in the algorithm. Upon convergence, the concentrated
(clean) dataset is identified and all possible subsets proce-
dures, namely, the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC) methods, were
applied to the concentrated dataset in the last steps of the
RFCH method. This approach is called concentrating all-
subset selection and can be considered as a trade-off between
the quality of data and the interpretability of a model.

2. The Consistency of Robust
Stability Selection

Olive and Hawkins [7] showed that the RFCH estimator is
Fast Consistent and High breakdown. The RFCH estimator
is constructed using concentration algorithm in which the
convergence is achieved after ten steps. At convergence,
outliers are identified and deleted from the dataset. The
remaining data will be used in the robust stability selection
method whereby the former can be considered a source of
consistency having the following properties:

(1) The all-subset selection of single-split data is consis-
tent based on [7, Theorem 1].

(2) The multisplit procedure in which single-split data
is repeated B times is also consistent based on [2,
Corollary 3.1].

3. Robust Stability All-Subset
Selection Method

Let a multivariate location and scatter model be a joint
distribution of the ith case of a (p x 1) random vector that
is completely specified by a p x 1 population location vector
pand a (p x p) symmetric positive definite population scatter
matrix Y. Assume that # cases are collected in an nx p matrix
X, such that XIT,XZ,...,XIT, are independent. Consider a
linear regression model Y = X3 + ¢, where Y is an (n x 1)
vector of response variables, is an (nx 1) vector of regression
parameters, X is an (1 x p) matrix of independent variables,
and ¢ is an (n x 1) vector of random errors, where ¢ ~
N(0,0°L,). The algorithm of our proposed robust and fast
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consistent variable selection consists of three main stages that
are summarized as follows.

Stage 1 (rectifying the autocorrelation problem). We follow
a simple procedure of Robust Cochrane-Orcutt method
which is proposed by Ann and Midi [13] to rectify the
problem of autocorrelation in the presence of both types of
outlying observations, vertical outliers, and leverage points.
The procedure can be summarized as follows:

(1) Estimate the robust regression coeflicients using the
MM -estimator to get the residuals U,.

(2) Regress U, with U,_, using the MM-estimator, to find
the robust parameter p.

(3) Use p in the equations below to remedy the autocor-
relation problem, and obtain a new design matrix X*
and response variable Y™

Y' = Y2:n - .5Y1:(n71)
i R @
X" = X ) = PX -1,

where j=1,...,p.

Stage 2 (concentrating the data). The concentrating algo-
rithm assumes that the normality assumption for a linear
regression is violated due to outliers or other contamination.
The RFCH algorithm is employed to clean the data. This
procedure uses the Devlin, Gnanadesikan and Kettenring
(DGK) [15], and Median Ball (MB) [16]. These algorithms are
summarized as follows.

Suppose the matrix X is a combination of the response
vector Y* and the covariates matrix X*.

(i) The DGK Algorithm

Step 1. Begin by computing the classical estimator (X, cov)
of the original dataset to give the initial or starting point
(Ty start> Co start)» and find the initial Mahalanobis distance:

-1
DO,DGK = \/(X - TO,Start)t (CO,Start) (X - TO,Start)' (2)

Step 2. Arrange the initial Mahalanobis distances in increas-
ing order to compute their median. Those observations in the
original dataset whose Mahalanobis distances are less than
the median of all the Mahalanobis distances will be in the
remaining set (half dataset) and will be denoted by X 1.DGK"

Med, gk = Median (DO,DGK)

X\1pek = {Xij : Dypgk < MedO,DGK}’ €)

i=1l...,p j=1,2,...,m.
Step 3. Let Cypgk be equal to Cy g, Where Cy g,y is the
variance-covariance matrix of the original data. Calculate the
average and the variance-covariance estimators of X, pgx to
get the first attractor (T, pgx> C) pgr)-
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Step 4. If the diagonal elements of C, pgy are equal to Cy gir¢»
then stop the algorithm. Otherwise, repeat Steps 1-3 until
convergence, to get the final attractor (T pgx> Cx pgr) and

Xk k> Where K is the convergence step.
(ii) The Median Ball (MB) Algorithm

Step 1. Suppose the initial variance-covariance matrix
Cosware = diag(p) of the identity matrix and suppose that
Med is the median vector of the matrix X. Then, the
Mahalanobis distance based on the median is defined as
follows:

Do = \/ (X - Med)' (Cosart) " (X~ Med). (4

Step 2. The location criterion cut-off point is the median of
Dy \p and is denoted by luct:

luct = Med,, ;5 = Median (Dg z) » (5)

where luct # 0.5. The cut-off point should be the quantile of
D, \iz Whose probability equals 0.5. For the concentration of
X, find the half dataset with only nonoutlying observations

whose Mahalanobis distances are less than or equal to the
median:

XimB = {Xij : Do < MedO,MB} > ©)

i=1l...,p j=12,...,m.
Step 3. Compute the average and the variance-covariance
matrix of X .

Step 4. For more concentrations, compute the Mahalanobis
distances again, and repeat Steps 1-3 until convergence at
the final attractor (T yp, Csyp) and Xy g, where K is the
convergence step.

(iii) The Reweighted Fast and Consistent High (RFCH) Break-
down Algorithm. Olive and Hawkins [7] developed the MB
estimator by adding the location criterion or cut-off point to
select the attractor and proposed the so-called Fast Consistent
and High (FCH) breakdown estimator. Olive and Hawkins
[7] noted that the FCH estimator uses the attractors with the
smallest determinant.

Step 1. Following the same approach as Olive and Hawkins
[7], define the final attractors as follows:

Tycn = 1

[ Txmp  Otherwise,

( MED (Df ((Tx.pexe CK,DGK)))

2
X(p,0.5)

MED (Dl2 ((Tie s CK,MB)))

= <

CFCH

2
X(p.0.5)

where X(Zp,o.s) is the 50th percentile of a Chi-square distribu-
tion with p degrees of freedom.

According to [7, Theorem 1], as long as the start (Tk,
Cy) is a consistent estimator of either (T pgk» $¢Cx .pgr) OF
(T mB> S1Cxmp)> the FCH attractor is a consistent estima-
tor of (Txrcy> @Ck pcu)> Where s = MED(D?(TK,DGK,
CK,DGK))/X(ZP,O.S) and 5, = MED(D;‘Z(TK,MB’CK,MB))/X(ZP,O.S)
are positive constants and a = s, or a = s; based on the
criterion cut-off point.

Step 2. Obtain the Reweighted FCH attractors by isolating
the observation with D} (Tycy, Crep) < X(zp,0.975)’ and using
the classical estimator to obtain (T’ gcy, C) peyy) from

X\ kch = {Xij : D} (Tycws Cyipcn) < X(zp,0.975)}’ @
8

i=1,...,p j=12,...,m

CK,MB >

Tgpex  if \/ICK,DGKl < \/|CK,MB|

7)

Cikporo  1f \/|CK,DGK| < \/lCK,DGKl

Otherwise,

Compute the new cut-off point as MED(D; (T} grcps
Cyrcn))/ X(Zp,o,s)' The new variance-covariance matrix is

MED (D:Z (TI,FCH’ CI,FCH))

Cyrcn = Circn- 9)

2
X(p0.5)

Step 3. Repeat Steps 1-2 with the new cut-off point until
convergence, to get the final attractors (Trpcy, Crpcy) and

X RFCH"*

Stage 3 (robust stability selection based on all-subset selec-
tion). The concentrated data Xypcy involves the concen-
trated response vector Yppo; and the concentrated design
matrix Xppcyy. Assume that Xpk .y, is a single random sub-
sample that is drawn from Xppcpy, and Xy is the remaining
subsample, where n; = n, = [n/2] such that n is the number
of rows in the concentrated design matrix Xyprcy-



All-subset regression method guarantees that all possible
potential covariates will be included in the submodels. The
classical BIC criteria have the ability to determine the best
model. We propose that all-subset procedure be applied to
the first part of data Xpp:c;- The best model is the one that has
coefficients with p valuesless than «™ = 0.05/d, where d is the
number of all candidate covariates. Repeat this procedure B

times until convergence to get B best subsets such that §kj =
{kj; /§j # 0}, where j = 1,2,...,m;mis number of parameters
estimation in subset k, where k = 1,2,...,B.

Following Meinshausen and Biithlmann [2], the threshold
is defined as

nth=\/EV><p><(2></\—1), (10)

where EV is the expected number of variables falsely selected,
p is the number of covariates in the specific subset, and
A is the highest chosen selection probability with the most
selected covariates in the hole path of solution. In this study,
we used A = 0.95. Let § be the number of ;s repeated in §kj;
then, the selected variables are those that belong to §;‘ such
that $*(B;) = {j;8(B;)/B > ). We multiply my, by p to
create the threshold measured by percentage; that is, 7, =
7Ty, X p, where p is the number of covariates in certain subset.

4. Simulation Study

Here, we report a simulation study that was designed to assess
the performance of our proposed robust variable selection
technique under two different outlier scenarios. In this
experiment, we consider multiple linear regression model
with the following relation:

Y =7X, +6X;+5X,+7Xs +7Xe +0[Xp] +& (11

where D = 2,5,7,8, 10.
A design matrix was generated from a multivariate
normal distribution with covariance structure cov(X #X K =

p'j_kl, where p = 0.5, j,k =1,2,...,10, and n = 500.
The random errors € were drawn from a standard normal

distribution. To create the autocorrelation problem, we con-
sidered the following setting:

Y" =Yg + pY(1tne1))s
. (12)
X" = Xipm) + PX (1))

where p = 0.9.

As in [17], two outlier scenarios were added to the
data. The first scenario contaminated the residuals by e
symmetric outliers with the slash distribution, where ¢ =
0.10, and the random errors were generated as ¢ ~ (1 —
&)N(0,1) + eN(0,1)/u(0, 1). The second outlier scenario was
generated by replacing 10% of the original values with high
leverage points and vertical outliers. The vertical outliers were
generated as asymmetric outliers, where ¢ = 0.10, and the
errors were generated as € ~ (1 — &)N(0, 1) + eN(20,1). To
create the leverage points, each covariate was contaminated
with 10% outlying observations generated from N(50, 1).
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For each case, we generated 500 independent simulated
datasets. The problem of autocorrelated errors first is rectified
and then randomly split each of the dataset into training n"*
(70%) and test n"® (30%) sets. The proposed robust stability
selections (R. multisplit-AIC and R. multisplit-BIC), the
existing stability selections (multisplit-AIC and multisplit-
BIC), and the single-split all-subsets-AIC and the single-split
all-subsets-BIC methods were then applied to the training
datasets. This process was repeated 500 times. The average
Root Mean Squares Errors (RMSE) of the test sets over 500
simulation runs and the percentage chances for each variable
of the training sets being selected in the final model over 500
simulation runs are presented in Tables 1-3. The potential
variables being selected are also exhibited in the tables. The
best method is the one that has the lowest RMSE and selects
the correct variables (variables X, X5, X, X, X,) in the final
model with no noise variable. The results in Table 1 show that
when there is no outlier in the data, all the six methods are
reasonably closed to each other. The results indicate that our
proposed method is comparable with other existing methods.

Nevertheless, the results change dramatically in the pres-
ence of both outliers scenarios. It can be observed from
Table 2 that the classical multisplit-AIC and multisplit-BIC
methods are much affected in the presence of high leverage
and vertical outliers. Both methods have the highest RMSEs
and tend to be underfitting. In this situation, both the single-
split-AIC and single-split-BIC variable selection techniques
also fail to select the correct variables. Both methods tend
to be overfitting because they also select noise variables in
the final model. The presence of symmetric outliers as can
be seen from Table 3 changes things amazingly. The RMSEs
of the single-split-AIC and single-split-BIC are relatively
larger than those of the other methods and both tend to be
underfitting. Surprisingly, the multisplit-AIC and multisplit-
BIC methods select the correct variables in this situation.
Nonetheless, their RMSEs are slightly larger than the R.
multisplit-AIC and the R. multisplit-BIC. On the other hand,
the RMSEs of the R. multisplit-AIC and the R. multisplit-
BIC are consistently the smallest among the six methods.
Both methods select the correct variables with no noise
variables, when no contamination occurs in the model and
also in both outliers scenarios. Hence, it can be concluded
that our proposed R. multisplit-AIC and the R. multisplit-
BIC methods are the best variable selection methods in the
linear regression model with autocorrelated errors because
they are stable and consistently select the correct variables
without choosing any noise variable.

5. Air Quality Data

In this study, hourly air pollution data which are taken
from the Department of Environment (DoE), Malaysia, is
used to further assess the performance of our method. The
data consists of the PM10 concentration and ten indepen-
dent variables, of which six are pollutant variables (sulphur
dioxide (SO,), nitrogen dioxide (NO,), nitrogen monoxide
(NO), nitrogen oxide (NO,), carbon monoxide (CO), and
ozone (O;)) and four are meteorological variables (wind
speed (WS), wind direction (WD), temperature (Temp), and
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TABLE 1: Selected variables, average RMSE, and percentage for each variable being selected for clean data (threshold = 71.41).

Single-split-AIC

Single-split-BIC

Multisplit-AIC

Multisplit-BIC

R. multisplit-AIC

R. multisplit-BIC

RMSE 0.67 0.67 0.65 0.65 0.65 0.65
1 100 100 100 100 99.9 99.9
2 17.9 1.79 17.5 2.60 0.84 0.84
3 100 99.9 100 100 99.7 99.7
4 100 99.9 100 100 99.6 99.6
5 13 1.65 19.9 3.90 0.84 0.84
6 100 99.9 100 100 99.7 99.7
7 14 1.51 17.00 1.70 0.88 0.88
8 12 1.47 20.3 3.40 0.75 0.75
9 99.9 99.9 100 100 99.8 99.8
10 16.6 1.71 16.7 3.2 0.81 0.81
Selected variables 1,3,4,6,9 1,3,4,6,9 1,3,4,6,9 1,3,4,6,9 1,3,4,6,9 1,3,4,6,9

TABLE 2: Selected variables, average RMSE, and percentage for each variable being selected for high leverage and vertical outliers (threshold =

71.41).
Single-split-AIC  Single-split-BIC ~ Multisplit-AIC ~ Multisplit-BIC ~ R. multisplit-AIC ~ R. multisplit-BIC
RMSE 0.039 0.039 21.93 22.29 0.036 0.036
1 100 100 43.6 16.5 100 100
2 99.89 97.72 28.7 5.4 2.16 2.16
3 100 100 66.7 45.4 100 100
4 100 100 49.6 25.2 100 100
5 17.22 1.72 975 78.1 1.04 1.04
6 100 100 100 99.9 100 100
7 15.8 2.08 16.8 2.8 0.49 0.49
8 19.38 2.79 16.3 3.4 1.31 1.31
9 100 100 971 92.3 99.9 99.9
10 16.65 2.66 16.2 210 1.27 1.27
Selected variables 1,2,3,4,6,9 1,2,3,4,6,9 5,6,9 5,6,9 1,3,4,6,9 1,3,4,6,9
N For the purpose of the statistical analysis, the hourly
e S data were converted to a daily average, giving 3,287 readings.
A Missing values and calibration hours of certain variables are

i

FIGURE 1: Location site of Seberang Perai, Penang [18].

relative humidity (Hum)). PMI10 is a particulate matter 10
micrometers or less in diameter of solid or semisolid material
found in the air. The value of each variable was recorded from
the monitoring station at Seberang Perai, Penang (Figure 1),
on an hourly basis every day from January 2005 to December
2013.

replaced by the coordinate medians for these variables. Let
us first observe the plots in Figure 2. Both the histogram (b)
and the quantile-quantile (Q-Q) plot (¢) of Figure 2 show that
the residuals are contaminated with a heavy-tailed mixture
distribution. Since some points in the Q-Q plot do not fall on
the straight line and the histogram is skewed to the right, this
indicates that this data is not normal. Thus, we suspect that
there are outliers in this dataset. Figure 2(d) also shows that
there are some leverage points in each covariate.

Figure 2(a) indicates the existence of autocorrelation or
serial correlation between the residuals, and it seems that
there is high order autoregression AR(p).

Our proposed robust stability all-subset selection proce-
dures and the existing methods were then applied to the data
(3287 observations) to investigate which important variables
influenced PM10. The dataset consists of 3287 observations,
which include the PMI10 as the response variable and the
ten independent variables already mentioned. Since the air
quality data are taken in time sequence, the Durbin Watson
(DW) test is applied to the data to check the existence of
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TABLE 3: Selected variables, average RMSE, and percentage for each variable being selected for symmetric outlier (threshold = 71.41).

Single-split-AIC ~ Single-split-BIC ~ Multisplit-AIC ~ Multisplit-BIC ~ R. multisplit-AIC ~ R. multisplit-BIC

RMSE 0.663 0.663 0.23 0.23 0.212 0.212
1 91.18 87.54 921 96.7 100 100
2 16.97 3.69 15.8 6.0 L136 1136
3 76.36 63.75 91.0 81.9 100 100
4 88.45 84.26 89.8 75.1 100 100
5 18.07 421 18.3 6.4 1.22 1.22
6 85.88 78.71 93.6 96.8 100 100
7 17.88 3.28 154 35 1.21 1.21
8 158 3.02 17.8 33 0.78 0.78
9 68.45 51.92 91.5 96.5 99.5 99.5
10 18.33 3.696 17.9 4.6 0.95 0.95
Selected variables 1,3,4,6 1,4,6 1,3,4,6,9 1,3,4,6,9 1,3,4,6,9 1,3,4,6,9
Series residuals Histogram of residuals
0.8 -
1000 —
] g
29
)
2 =
0.4 - &
=~
500 —
0.0 D “H“HHHHHH 0 _|—
I I I I I I I I [ I I I I |
0 5 10 20 30 -2 0 2 4 6 8
Lag Residuals
(a) (b)
Normal Q-Q plot Boxplot of air quality data before treatment
8
O o
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= O !
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FIGURE 2: Q-Q plot, histogram of residuals, and plot of PMI0 versus each component of air quality data, Seberang Perai, Pinang.
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TABLE 4: Selected variables, average RMSE, and percentage chance for each variable being selected, for air quality data (threshold = 67.08).

Single-split-AIC Single-split-BIC ~ Multisplit-AIC ~ Multisplit-BIC ~ R. multisplit-AIC ~ R. multisplit-BIC

RMSE 0.51 0.51 0.51 0.51 0.4 0.4

WS 8.53 0.4 24.24 0.64 23.07 6.6

WD 100 76.86 73.34 14.24 100 99.77
Temp 100 100 100 100 100 100

Hum 100 100 100 100 100 100

NO, 91 45.93 79.30 61.22 54.43 26.3

NO 96.5 47.8 87.66 67.54 49.6 24.63

SO, 89.23 13.63 712 0.06 99.93 91.33
NO, 10.46 54.36 32.42 47.06 71 84.77

(O 100 100 100 100 100 100

co 100 100 100 100 100 100
Selected variables  2,3,4,5,6,7,9,10 2,3,4,9,10 2,3,4,5,6,9,10 3,4,5,8,9 2,3,4,7,8,9,10 2,3,4,7,8,9,10

autocorrelation problem. The results of Durbin Watson statis-
tics for the original air quality data (p <« 0.01) confirmed
the existence of autocorrelation and no autocorrelation (p >
0.05) after treating the autocorrelation problem.

After correcting the autocorrelation problem, the data is
then randomly divided into training (70%) and test (30%)
sets.

This process is repeated 3,000 times. The RFCH is used
to concentrate the training and test set data. Following
Meinshausen and Bithlmann [2], each training set and each
test set are split randomly into two sets of equal size and
this process is repeated 50 times. The six variable selection
methods were then applied to the first part of the training
dataset. The variables that are selected in the final model
are determined. For cross validation, the coefficients of each
training model are used to predict the response (PM10) using
test set data. The model residuals and the RMSEs are then
computed. Table 4 exhibits the selected variables and the
percentage of each variable being selected for training set data
and the average RMSE for test set data over 3,000 runs. The
threshold value in Table 4 is calculated as follows:

Ty, = V5 x 10 x (2 x (0.95) — 1) x 10 = 67.08. (13)

A candidate variable is the one whose percentage of being
selected in a model exceeds the threshold value. The best
method is the one that has the lowest average of RMSE.

The results in Table 4 show that the RMSE of our
proposed method, based on both AIC and BIC, is the smallest
compared to the existing methods. This suggests that our
proposed method correctly identified the potential variables,
namely, WD, Temp, Hum, SO,, NO,, O;, and CO, to be
included in the final model. The single-split-AIC method
selects eight covariates, while the single-split-BIC method
selects only six covariates. The classical multisplit-AIC selects
seven covariates and multisplit-BIC selects five covariates.

It is interesting to observe that our proposed methods
select all the pollutant variables except NO, and NO and all
the meteorological variables except WS. From the results in
Table 4, we can clearly infer that the R. multisplit-AIC and R.
multisplit-BIC methods are more efficient than the classical
methods, because the final model that is selected by these

methods is sufficient to include all the nonzero covariates and
has the smallest RMSE. The results of the model validation
suggest that WD, Temp, Hum, SO,, NO,, O;, and CO should
be included in the final model.

6. Conclusions and Recommendation

The main aim of this study was to develop a reliable alterna-
tive approach that is capable of selecting the correct variables
in the final model for data having the combined problem of
outliers and autocorrelated errors. We have considered the
well known all-subsets-AIC and all-subsets-BIC, multisplit-
AIC and multisplit-BIC variables selection methods in this
regard. All the existing methods are not effective in choosing
the correct variables in the final model. In this study, we
proposed a robust stability selection method by incorporating
a high efficient and high breakdown MM-estimator, the
RFCH estimator, and applied the all-subset-BIC and the all-
subset-AIC to the concentrated data. The real air quality data
and simulation experiments show that our proposed methods
successfully and consistently select the correct variables in
the final model with the smallest RMSE. The commonly used
methods failed to correctly select the correct variables in the
final model. Hence, we can consider our proposed methods
as better variable selection methods and strongly recommend
using them especially when outliers and autocorrelated errors
occur in the data.
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