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Abstract

The delegate of monitoring stations of the DOE, Malaysia; observed the air quality in atmosphere of Seberang
Prai, Pulau Pinang during (2004-2007). The data set was depended on PM10 concentration as a response
variable and seven independent covariates distributed into four pollutants and three meteorological. This
paper describes a procedure for extracting a small set of potential covariates to explain response variable
such as the PM10 of air quality. For better the future predictive ability and consistence selection, the set of
explanatory covariates need to be reducing as possible as to the exact observed covariates, and the depen-
dencies among these covariates are need to be low. In order to achieve these goals, all possible regression,
combined with concentration algorithms to reduce the number of selected potential covariates to a necessary
minimum, is developed to be robust against all type of outliers. In addition this robust cleaning all subset
regression is applied to obtain responsible factors describing PM10 concentration level in air quality research.
Keywords: All subsets regression;Robust cleaning; DGK; Median ball ; RFCH.

1 Introduction

This search focuses on analysis and modeling the data of air quality status in Penang which located in the
industrial area of Malaysia. Its well known that air quality status is describe and disseminated according
to the Air Pollution Index (API). This index is a composite reflection of overall air quality based on five
pollutants: sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and suspended
particulates matter of less than 10 microns in size (PM10). The first four indexes are reported in parts per
million by volume (ppmv), but the PM10 is reported in micrograms per cubic meter of Air ( ug/m3 ). These
pollutants are mainly affecting the respiratory system and ecosystem. According to the report Department
of Environment, Malaysian (DOE) the most prevalent pollutants records are PM10 and Ozone (O3).
The delegate of monitoring stations of DOE observed (1354) cases in atmosphere of Seberang Prai, Pulau
Pinang during (2004-2007) was depended on depend PM10 concentration and seven independent variables,
four pollutants and three meteorological (wind speed, temperature and relative humidity). So, we consider
the sample size is large and there is possibility to use cleaning dataset techniques to obtain high breakdown
and fast consistent estimator.
PM10 is the term given to the tiny particles of solid or semi-solid material found in the atmosphere which is a
mixture of materials like smoke, soot, dust, salts, acids and metals. According to DOE, Malaysia, PM10 are
emitted from heavy traffics, industries and open burning activities. Increase the concentration of PM10 in
the atmosphere could cause severe effects health impacts to the human, particularly among the infants and
elderly. People with respiratory illnesses such as asthma, nose and throat irritations, and allergies might cause
premature mortality (for more details see: Fellenberg (2000), Godsh(2004),Tam et. al.(2004), and Baccini
et. al. (2011)). Ul-Saufie et. al. (2012a) mentioned that Sedek et. al. (2006) found PM10 causes negative
impacts on the growth and productivity of small and short cycle plant species such as vegetables. Thus,
many researchers are focusing their studies in predicting PM10 concentration so that necessary preventative
measures can be conducted.



Recently and fortunately predicting PM10 concentration give the attention of researchers in the statistical
literature. The trials for developing models to predict PM10 concentrations due to the fact that statistical
modeling could provide good insights in predicting future air pollutions index. Corani (2005) tried to predict
the Ozone (O3) and PM10 using computational models which are feed forward neural networks (FFNNs),
pruned neural network (PNNs) and lazy learning (LL). On the other hand, Pires et al. (2008) proposed 5
linear models which are multiple linear regression, principal component regression, independent component
regression, quantile regression as well as partial least squares regression to predict the daily PM10 concen-
tration.
Several approaches have been done to predict the PM10 concentrations based on the determination of the
best model. The effort to find the best model is continued until in recent times where Ul-Saufie et al. (2012b)
proposed a new method that combined both the regression models and back propagation models with prin-
cipal component analysis (PCA). Saithanu et al. (2014) proposed using multiple linear regression with best
subset and stepwise methods to predict PM10 concentration in Chonburi , Thailand.
The most commonly used method; linear models may not be the best model to use with the real data when
there is outlier because it could violate the normality assumptions. Therefore, Ul-Saufie et al. (2012b) used
modern robust statistical procedures that could be remedy the problem of presence of outliers and suggested
robust regression model for prediction PM10 concentration in industrial area.
Variable selection is very important tool in the statistical inference. The goals of variable selection are to
satisfy sensitivity (Richness, Adequacy), specificity (Parsimony, Sparsity), future predictive ability and se-
lection consistency which we are willing one of models is true. It well known that many variable selection
methods are relying on estimating the future predictive ability of each model.
Minimizing the criterion of n−1RSS(β) , the average squared predictors error which is obtained from fitted
model of interest on the observed sample, would be equivalent to maximizing coefficient of determinant, and
always select the full model. Since the coefficients and models are being estimated and tested on the same
data respectively. This case will lead to inflate assessment of the reduction in prediction error available from
each predictor.
Mallows Cp (1973), is a powerful technique for model selection in linear regression. Mallows proposed adding
an appropriate bias correction terms2n−1σ2 to n−1 RSS which can be defined as a linear function of Cp
statistics as follows:

Cp =
RSSp

σ̂2
− n+ 2p (1)

where RSSp is the residual sum of squares for sub model p ,n is the number of observations, σ̂2 is an estimate
of the error variance σ2 which is usually counted in the full model. Since the low Cp indicates to a good

future predicting ability where the σ̂2 is a good approximation for σ2 of full model under linear regression
assumptions. Subsets with smal Cp values have a small total mean squared error, and when Cp value is
nearp, the bias of the regression model is small. The shortcoming of this criterion, it is not clear whether is
appropriate substitute to or any case can make the bias correction is not quite large enough will be tendency
to overfit problem.
The Akaike Information Criterion (AIC) [1974] is proportional to the Cp statistic. The AIC is scaled in sum
of squares unit. We search for models that have small values of AIC where the criterion is given by

AIC = −2`(β̂p) + 2p (2)

A min AIC strategy is used for selecting among two or more competing models. In a general sense, the
model for which AIC is smallest represents the best approximation to the true model. That it is the model
with the smallest expected loss of information when MLEs replace true parametric values in the model. The
AIC may be very poor where with small sample size which considered (n < 40p) by Burnham et al. (2004),
therefore, a small-sample correction on the penalty term could lead to the AICc statistic which proposed by
Sugiura (1978) and Hurvich et al (1989). The AICc statistic is given by,

AICc = AIC +−2p(p+ 1)

n− p− 1
(3)



For more information about AIC [see: Burnham et al. (2002, 2004), Hastie etal. (2001), and Kuha (2004)].
Bayesian Information Criterion (BIC) was introduced by Schwarz (1978) is driven from Bayesian theory to
be by far the simplest to use. This criterion set prior probability for each possible model simultaneously set
prior distribution and an independent prior probability for the coefficients of being nonzero in each model.
Setting all prior probabilities are equal, and assuming that only one model along with its associated priors,
is appropriate, Bayes theorem then can maximize the posterior probability of alternative models, given the
data. Schwarz (1978) and Kashyap (1982) suggest criteria derived by taking a Taylor expansion of the log
posterior probabilities of these models. These facts lead to the BIC which is,

BIC = −2`(β̂p) + log(n) + (p+ 2) (4)

BIC tends to under-fit but it is consistent while, AIC and C tend to over-fit and inconsistent respectively.
Robust selection criteria to compare a set of models has been received much attention in robustness literature
by introduce robust versions of some criterions, for more details see e.g. Ronchetti (1997), Ronchetti, Field,
and Blanchard (1997), Muller and Welsh (2005), Maronna et al. (2006), Salibian-Barrera and Van Aelst
(2008), Claeskens and Hjort (2008), Heritier et al.(2009) and Tharmaratnam and Claeskens (2011).
Unfortunately, classical variable selections no long resist selecting the correct model in presence of outliers
or other contamination. To overcome this problem, robust procedures are recommended. Robust selection
criteria to compare a set of models has been received much attention in robustness literature by introduce
robust versions of some criterions, for more details see e.g. Ronchetti (1997), Ronchetti, Field, and Blanchard
(1997), Muller and Welsh (2005), Maronna et al. (2006), Salibian-Barrera and Van Aelst (2008), Claeskens
and Hjort (2008), Heritier et al.(2009) and Tharmaratnam and Claeskens (2011).
Olive and Hawkins (2010) suggested (RFCH) that are used standard method for reweighting Fast Consis-
tent High breakdown estimator (FCH), and gives easily computed

√
n consistent outlier resistant estimator

that can be used for inference. FCH estimator based on two attractors,DGK (Devlin, Gnanadesikan and
Kettenring, 1981) and median ball Olive (2008) with some kind of location criterion. RFCH estimator is a
resistant to multivariate outliers estimator.

The DGK,MB andRFCH were fast consistent, high breakdown or fast consistent and high breakdown esti-
mators respectively. Each estimator built with what is called concentration algorithm which is convergence
after five steps. The target of these algorithms obtains robust location and scatter matrix. The general
framework DGK , MB and RFCH algorithms split the dataset into clean and contaminate dataset. The
main procedure of DGK and MB are that the algorithms should be find out the values of mahalanobis
distance which are less than some cutoff point in each step, then estimate the robust location and scatter
matrix. The last step repeats this procedure at least five times until convergence. The FCH estimator used
DGK or MB as attractor with some criterion. RFCH estimator is the reweighted version of FCH.
This article discussed robust linear regression variable selection for predicting PM10 concentration in Penang
which is the most densed populated states in Malaysia with 1490 persons per square kilometre [12].
We consider the classical variable selection (subset selection) in linear regression as a main part in our pro-
posed algorithm, that because selection predictors in linear regression allows simplified discussion for the
most methods of interest. Variable selection is freer than model selection and more extensions and extensions
to more general settings are often straightforward. (John Dziak, 2007).
We suggest modifying DGK(MDGK) and MB(MMB) algorithms to be fastest convergences than the last
ones, then call the concentrated dataset in the last steps of MDGK,MMB,MRFCH with classical variable
selection methods, then incorporate the cleaning data of DGK, MB andRFCH with all possible subset
based on Cp Mallows, AIC, and BIC respectively. This approach will therefore be called cleaning variable
selection and can be considered a trade-off between quality of data and model interpretability.
Our proposed algorithm aims to find a robust variable selection for the response PM10 that include low
potential covariates and more accurate in order to achieve high interpretability. The rest of this paper is
organized as follows. In Sect. 2, we will describe robust and fast consistent variable selection algorithms in
more detail. Section 3 analyses the air quality dataset of Penang, Malaysia, 4 outlines how our proposed
algorithm can be applied to obtain a small subset of explanatory variables determining PM10, and a simu-
lation study is performed in Sect. 4. The final Sect. 5 concludes.



2 Description of Robust and Fast consisntent Variable selectin

Let a multivariate location and scatter model is a joint distribution of the ith case of P × 1 random vector
that completely specified by a P × 1 population location vector µ and a P × P symetric positive definite
population scatter matrix Σ. Assume that n cases are collected in a n×P matrix x, such that the xT1 , x

T
2 , , x

T
n

are independent. Consider the classical normal regression model Y = xβ + ε, where Y is the vector of
response variable, β is the vector of regression parameter and ε ∼ N(0, σ2In). The algorithm of robust and
fast consistent variable selection consists of three main stages which can explain as follows:
Stage 1. Cleaning dataset.
The assumptions of cleaning algorithms assumed that the normality assumption of linear
regression is violated by outliers or other contaminations, the sample size should be large, moderate mul-
ticollinearity between two or more than two covariates and independent residuals. Suppose matrix X is
combined between the response vector Y and the covariates matrix x. We modified DGK, MB and RFCH
would denote as MDGK, MMB and MRFCH respectively to be suitable for cleaning X, and can be sum-
marized as follows.
Algorithm 1: MDGK
The first step begins with classical estimator (x̄, cov) as initial or starts (T(0,Start), C(0,Start)) to find the
mahalanobis distance.

D(0,MDGK) =
√

(X − T0,start)t(C0,start)−1(X − T0,start) (5)

then reordering the observations of full dataset according to their mahalanobis distances, and find the halfset
that include only the observation which have mahalanobis distance less than the median of whole mahalanobis
distances,

Med(0,MDGK) = Median(D(0,MDGK)) (6)

X̃1,MDGK = {Xij : D(0,MDGK) ≤Med0,MDGK} i = 1, 2, ..., p; j = 1, 2, ...,m (7)

Let C(0,MDGK) = C(0,Start) , again recalculate the average and variance-covariance estimators of X̃(1,MDGK)

halfset to get the first attractor T(1,MDGK), C(1,MDGK). If the diagonal elements of C(1,MDGK) = C(0,Start)

stop the algorithm, if not repeat the procedures until convergence to get the final attractor T(K,MDGK), C(K,MDGK)

and X̃(K,MDGK) where K the convergence step.

Algorithm 2. MMB
Suppose the initial variance- covariance matrix C(0,Start) = diag(p) , and the Med is the median vector of
matrix X , then the mahalanobis distances as follows,

D0,MMB =
√

(X −Med)t(C0,start)−1(X −Med) (8)

Now, let the location criterion cutoff is the median of D(0,MB) , that denoted as luct,

luct = Med(0,MMB) = Median(D0,MMB) (9)

when luct 6= 0.5, the cutoff point should be the quantile of D0,MB with probability equals 0.5.
The concentration for cleaning X need to find the half dataset with only non outlying observations which
have mahalanobis distance less than or equals the median of it,

X̃1,MMB = {Xij : D0,MMB ≤Med0,MMB} i = 1, 2, ..., p; j = 1, 2, ...,m (10)

Now get start with T1,MBA is the average of X̃1,MB and C1,MBA is variance-covariance matrix of it. For more
concentrations we can recalculate the mahalanobis distances and repeat the procedure until convergence to
get the final attractor (TK,MMB , C5,MB) and X̃K,MB where K the convergence step.

Algorithm 3. Modified Reweighted Fast and Consistent High Breakdown (MRFCH)
Olive et al. (2010) developed the idea of MB by adding the location criterion or cutoff point to select the



attractor, and proposed what is so called Modified Fast Consistent and High breakdown (FCH) estimator.
We modified FCH based on the final attractors od MDGK and MMB. If the Euclidian distance between
the MDGK location TK,MDGK and MED(X) less than or equals to MED(Di(MED(X), Ip)) the MFCH
estimator uses only the with tattractorhe smallest determinant as follows,

TMFCH =

 TK,MDGK if
√
|CK,MDGK | <

√
|CK,MMB |

TK,MMB if Otherwise

and the scale as follow,

CMFCH =


MED(D2

i (TK,MDGK ,CK,MDGK))

χ2
(p.0.5)

× CK,MDGK if
√
|CK,MDGK | <

√
|CK,MMB |

MED(D2
i (TK,MMB ,CK,MMB))

χ2
(p.0.5)

× CK,MMB if Otherwise

where χ2
(p.0.5) is the 50th percentile of a chi-square distribution with p degrees of freedom.

Reweighted MFCH attractors by isolate the observation with D2
i (TMFCH , CMFCH) ≤ χ2

(p,0.975) , the using
the classical estimator to obtain T1,MFCH and C1,MFCH from,

X̃1,MFCH = {Xij : D2
i (TMFCH , CMFCH) ≤ χ2

(p,0.975)} i = 1, 2, ..., p; j = 1, 2, ...,m (11)

The new cutoff point is that
MED[D2

i (T1,MFCH ,C1,MFCH)]

χ2
(p,0.5)

and the new variance covariance matrix is,

C2,MFCH =
MED[D2

i (T1,MFCH , C1,MFCH)]

χ2
(p,0.5)

× C1,MFCH (12)

Reweighted the estimators again by repeat the equation . with new cutoff point to get the final attractors
(TMRFCH,CMRFCH) and X̃MRFCH which is consists of from the only the concentrate observation of
response and independent variables.

Stage 2. Best Subset Regression Selection
Although it takes longer to run, the all subset regression guarantees including all potential observed covari-
ates at least in one subset. The classical AIC, and BIC criterions topically have the ability to determine
the best subset. When the assumptions of cleaning are met in stage one, the all subset methods are usage
to select the best subset. The three refined datasets in stage one are constructed based on MDGK,MMB,
andMRFCH algorithms respectively. Actually AIC, and BIC criterions will run for each refined dataset to
select the best subset.

Stage 3. Adjustment the Best Subset Regression Selection This stage suggests for adjustment the
best subsets that were selected by AIC criterions in stage two. Fitting the regression model for each subset
based on the observed dataset which are selected in stage one, the select only the coefficients that associates
with p-vlue less than ∗ = 0.05/d where d is the number of all candidate covariates. We proposed this proce-
dure to overcome the problem of over-fit in AIC selection, and we expect, it will regular the performance of
it to be consistence.

3. Air quality data
A real data of the annual hourly observations for PM10 in Seberang Prai, Pulau Pinang from January 2004
to December 2007 was taken from Department of Environment. This hourly data were transformed A real
data of the annual hourly observations for PM10 in Seberang Prai, Pulau Pinang from January 2004 to
December 2007 was taken from Department of Environment. This hourly data were transformed into daily
data by taking the average and median PM10 concentration level for each day. Figure 1, both histogram and
qq-plot show that residuals are contaminated by with heavy tails mixture distribution. Since some points in



qq-plot is not in the straight line it indicates that these points are not normal. Thus, we suspect that there
are outliers in the average data air quality dataset of Seberang Prai, Pulau Pinang atmosphere. Figure 1,
D indicate to existence some high leverage points in the the relationship between PM10 and O3. All sub-
figures except D are no clear whether, including leverage point unless using the diagnostic method. TTo

Figure 1: QQ-Plot, Histogram of Residuals and plot PM10 vs each the component of air quality
data

cut removes all doubt that there are outliers violated the normality assumption. We note in Figure 2-(b)
the robust mahalanobis distance is identified some leverage points, while the classical one fail to identify
all of them in Figure 2-(a). The DRGP method (Habshah et al, 2009) is employed to average air quality
data to identify the high leverage points. DRGP detected 112 high leverage points for average daily data.
The PM10 concentration data is not normal as they contain leverage points. Thus using the Ordinary Least
Squares (OLS) method in estimating the parameters of the multiple Linear Regression will led to misleading
conclusion. Cleaning algorithm baseMDGK and MMB algorithms identified only 677 clean observations.
Figures 3 and 4 the normal Q−Q plots observe that the all points are enough close to the line; close enough
to say that these 677 clean observations coming from normal distribution, and the histogram in both figures
show the residuals are normally distributed. We note that the subfigures A to G in Figure 3 and 4 are
seem the same, we think MDGK and MMB algorithms diagnose the 677 clean observation which represent
around 50% sample size.
On the other hand, MRFCH algorithm is chosen 1167 clean observation. We note that the MRFCH
algorithm considered only 187 observation as outliers and added 500 observation which excluded by other
algorithms to cleaning observations. We observe in Figure 5 normal Q−Q plot that, this augment in sample
size of cleaning dataset results in the points be quit close to the line of normal distribution and histogram
of residuals too. The subfigures A to G in Figure 5 differed with previous subfigures ( Figure 3 and 4 ) as
a result of the increasing in the sample size of clean air quality dataset. Collection the air quality data was
taken in account the time factor, which requires checking the autocorrelation problem, and whether there
is multicollinearity problem. The statistics of Durbin Watson (D.W ) test of autocorrelation and V IF test
of multicollinearity for three cleaning algorithms are present in table 1 below. The inferred from the values
shown in table 1, that the three clean datasets were collected with independent variables and independent



Figure 2: Classical and Robust mahalanobis distance for Air quality dataset.

residuals.

Table 1: D.W and VIF for cleaning dataset based on MDGK, MMB, MRFCH algorithms.

D.W p -value V IF

Original 2.132 0.992 2.104
MDGK 2.040 0.619 9.245
MMB 2.075 0.567 8.198

MRFCH 2.075 0.683 9.477

Next, we would like to further investigate the important variables that influence the PM10 by employing our
proposed method and other existing methods. Our proposed methodology is carried out with the following
setting. The data set consists of 1354 observations which include the PM10 as the response variable and
seven independent variables already mentioned. We divide the data into training and test sets whereby 70%
and 30% of the data is randomly chosen as training and test sets. This process is repeated for 500 times.
TheMRFCH was used to clean the training and test set data. The classical all subset selection selects the
best model of training set based on the AIC and BIC criterions. Subsequently, the significant variables of
the best model of the training set are determined by observing the coefficients whose p-values are less than
0.007. It is important mentioning that only stage 1 of our proposed method was applied to the test sets data.
For cross validation, the coefficients of each training model are used to predict the response (PM10) with the
test set data. The residuals and the root mean square errors (RMSE) were then computed. Table 2 and
Table 3 exhibit the results of our proposed methods and existing methods before and after adjustment of
the significant levels. Each table shows the average RMSE for 500 test sets data and the percentage of each
variable being selected in a model over 500 training sets data. The threshold values were computed based on
the central point of the 50th and 75th percentiles of the percentage of each variable being selected for each
method. Following Meinshausen and Buhlmann (2009), threshold is defined as:

πth =
√
EV × p× (2× λ− 1)/p (13)

where EV the expected number of falsely variables selected. p is the number of coefficients, and λ=0.80 .



Figure 3: QQ-Plot, Histogram of Residuals and plot PM10 vs. each the components of air quality
for 677 observations are chosen by MDGK algorithm.

Figure 4: QQ-Plot, Histogram of Residuals and plot PM10 vs. each the components of air quality
for 677 observations are chosen by MMB algorithm.

The threshold values in Tables (2-3) is calculated as follows:

πth =
√

3× 7× (2× 080− 1)/7 = 57.14

The potential candidate variable is the one that has percentage of being selected in a model exceeds the
threshold value. The best method is the one that has the lowest average of RMSE.

The results of Tables 2-3 signify that the RMSE of our proposed methods based on both AIC and BIC
(before and after adjustments of significant levels) is the smallest compared to other methods (all subsets
AIC and BIC). This suggests that our proposed method correctly identify the potential variables namely
NO2, CO, and O3 to be included in the final model. The all subset- AIC and all subset- BIC methods
selects four potential variables. It is interesting to observe that all methods only select pollutants variables



Figure 5: QQ-Plot, Histogram of Residuals and plot PM10 vs each the components of air quality
for 1167 observations are chosen by MRFCH algorithm. .

in the final model. The meteorological variables are not selected in the final model perhaps they do not
have much influenced on the PM10 variable. The results also clearly indicate that O3 have a very strong
correlation with the PM10. The percentage of this variable to be included in the final model is 100%. It can
be observed that theAIC tend to over fitting model and BIC tends to under fitting model. For example, for
variable WS, the percentage of selecting this model is 6.40 but it only 0.20 for BIC criterion.

The results of the model validation suggests that NO2, CO, and O3 are finally chosen to be included in the
final model. Once the model has been validated, the entire data set of the original data is used for estimating
the regression model. The Ordinary Least Squares (OLS) method is often used to estimate the parameters
of a model. The PM10 model (OLS) is given by the following equation:

PM10 = −0.0579 NO2 − 0.0548 CO + 0.9606 O3 (14)

The standard errors of each estimates, NO2, Co and O3 are 0.013, 0.018, 0.012 respectively.

It is now evident that outliers have an adverse effect on the OLS estimates. As an alternative we suggest to
use robust method to estimate the parameters of the model. Here, we suggest to employ a high efficient and
high breakdown point MM estimator. The PM10 model (MM) is given by the following equation:

PM10 = −0.066 NO2 − 0.045 CO + 0.9606 O3 (15)

The standard errors of each estimates, NO2, Co and O3 are 0.012, 0.011. 0.012 respectively.

We wish to compare the two models based on their standard errors. The final model selection is based on the
standard errors of each estimate. Since the standard errors of the parameter estimates of the second model
are smaller than the first model, Model 2 is ultimately chosen as the final model.
Both tables (2,3) are shown the lowest RMSE of all subset the ones running with cleaning algorithm
MRFCH. The method which based onBIC selects only three pollutants (NO2, COandO3) before and
after adjustment. On other hand robust lars select SO2, CO and O3 but the RMSE is 0.388. We have
noticed that the meteorological variables have not been a big opportunity to be displayed on the model
chosen. Perhaps this is due to their inability to influence PM10 variable, and therefore presence or absence of
outliers with metrological variables does not make them competitive with the rest of variables (pollutants).
It is very clear in both tables ozone variable is associated with a very strong correlation with the PM10,
where the presence of outliers or not, O3 have a chance of being in the model chosen by 100%. Unlike



Table 2: Selected variables, the average rmse , the percentage of selecting variable of four all subsets
methods before adjustment the significant level.

RMSE WS Temp Humidity SO2 NO2 CO O3 Selected V ar.

Allsubset.aic 0.388 6.40 6.60 20.4 69.8 99.8 100 100 4,5,6,7
Allsubset.bic 0.388 0. 20 0.20 1.20 17.4 87.2 94.8 100 5,6,7
MRFCH.aic 0.320 36.0 30.6 7.00 71.0 100 9.88 100 4,5,6,7
MRFCH.bic 0.320 2.00 3.60 2.00 28.6 99.4 72.6 100 5,6,7

previous methods Lars nominated SO2 variable to be in model chosen, rather than the NO2 variable. This
nomination is unfortunate according to the percentage of the presence for SO2 and NO2 in the final model
which is chosen by rest of methods. We observed that the presence ofNO2 in the best model, have more
stability and stable than SO2 in the previous methods whether robust or non-robust of it. Finally, the final
model results from the procedure with lowest RMSE and high percentage of selecting variables contains the
predictors NO2, CO, and O3 with the following fitting model.

PM10 = −0185 NO2 − 0.0476 CO + 0.7949 O3 (16)

Table 3: Selected variables, the average RMSE , the percentage of selecting variable of four all
subsets methods after adjustment the significant level to 0.007.

RMSE WS Temp Humidity SO2 NO2 CO O3 Selected V ar.

Allsubset.aic 0.388 4.00 7.60 20.8 66.92 99.6 100 100 4,5,6,7
Allsubset.bic 0.388 4.00 7.60 20.8 66.92 99.6 100 100 4,5,6,7
MRFCH.aic 0.322 0.00 00.0 1.00 15.6 92.8 95.2 100 4,5,6,7
MRFCH.bic 0.322 1.20 0.26 0.00 17.4 92.8 95.2 100 5,6,7

3 Simulation

A design matrix coming from a centered multivariate normal distribution with covariance structure is con-
sidered cov(Xj ;XK)|j−k| where ρ = 0.5 , j = 1, 2, ..., 10 and k = 1, 2, ..., 10. The response variable Y is
generated using the following equation,

Y = 7X1 + 6X3 + 5X4 + 7X6 + 7X9 + 0XD + ε (17)

where D=2,5,7,8,10

egarding contamination, we follow Claudio et al., 2010 cases, whereε denotes the fraction of outliers in
the data, for no contamination case the residual is standard norma ε ∼ N(0, 1). The second contami-
nation case is that contaminated the residuals by ε symmetric outliers with the Slash distribution where
ε=0.10;ε ∼ (1 − ε)N(0, 1) + εN(0, 1)/u(0, 1). The last case contaminates Y by ε asymmetric outliers
ε ∼ (1 − ε)N(0, 1) + εN(20, 1) , but contaminated observations contain outliers in X1, X2, , X10 coming
fromN(50, 1). For each case we generated 500 independent simulated dataset. We spilt each of these dataset
randomly into training ntr and test nts sets, and repeat this procedure 50 times. Each training set ntr ,
we use the usual all subsets method based on BIC ( Allsubset.bic) as implemented in R package leaps.
The all subsets method based on AIC(Allsubset.aic), we used the same package by subtract the constant
log(n)p+ 2p from BIC values. The minimum value of AIC or BIC certainly will determine the significant
predictors. Fit the model of choice with and adjusted p-value of the model coefficients. The variable which
poses p-value less than 0.005 is chosen in the final model. These significant variables are recorded to know the



number of times of selected by each method separately, and then we take the average over 50 training sets.
Finally the relative average are computed to determine the opportunity of each predictor remind in the final
model. Again Fit the model with the most significant variables, and take the advantage of its coefficients for
error prediction with test setntr . The average of root of mean square error for 50 test sets is put forward
estimate the average of average of mean square error over all 500 independent simulated dataset. Actually,
MRFCH algorithm clean up training set ntr from outliers and use the remain observations as new set. Let it
is denoted as nRFCHtr which is less than ntr . The MRFCH.aic and MRFCH.bic follow the same procedure
mentioned above with new set nRFCHtr . The cleaning process include the test set ntr.

For no contamination case the results are present in table (4) which is shown that all methods performed
very close to each other. Table (5) shows the results of our simulation with 10% symmetric vertical outliers.
Deciding the best method is that ones minimize RMSE and select the correct variables in the final model.
All methods select the correct variables, but our proposed methods minimize RMSE to be less than others.
On other hand where the leverage points appear in the dataset together with vertical outliers result in over-fit
problem to the classical methods (see table 6). From the results in table (6) we infer that MRFCH.aic and
MRFCH.bic performance better than the classical ones and consistent. Since we observe selecting the correct
variable is stable and the opportunity to choose the noise is virtually nonexistent.

Table 4: Selected variables, the average RMSE , the percentage of selecting variable of four all
subsets methods after adjustment the significant level to 0.005 and for type one contamination
(clean)

RMSE 1 2 3 4 5 6 7 8 9 10 Selected V ar.

Allsubset.aic 0.67 100 17.9 100 100 15.3 100 15.4 15.2 99.9 16.6 1,3,4,6,9
Allsubset.bic 0.67 100 1.79 99.9 99.7 1.65 99.9 1.51 1.47 99.9 1.71 1,3,4,6,9
MRFCH.aic 0.65 99.9 0.84 99.7 99.6 0.84 99.7 0.88 0.75 99.8 0.81 1,3,4,6,9
MRFCH.bic 0.65 99.9 0.84 99.7 99.6 0.84 99.7 0.88 0.75 99.8 0.81 1,3,4,6,9

Table 5: Selected variables, the average RMSE , the percentage of selecting variable of four all
subsets methods after adjustment the significant level to 0.005 and for type one contamination
(sym)

RMSE 1 2 3 4 5 6 7 8 9 10 Selected V ar.

Allsubset.aic 0.66 91.2 17.0 76.4 88.4 18.1 85.9 17.9 15.6 68.4 18.3 1,3,4,6,9
Allsubset.bic 0.66 87.5 3.70 63.8 84.3 4.21 78.7 3.28 3.02 51.9 3.70 1,3,4,6,9
MRFCH.aic 0.21 100 1.14 100 100 1.22 100 1.21 0.78 99.5 0.95 1,3,4,6,9
MRFCH.bic 0.21 100 1.14 100 100 1.22 100 1.21 0.78 99.5 0.95 1,3,4,6,9

Table 6: Selected variables, the average RMSE , the percentage of selecting variable of four all
subsets methods after adjustment the significant level to 0.005 and for type two contamination
(LP)

RMSE 1 2 3 4 5 6 7 8 9 10 Selected V ar.

Allsubset.aic 0.039 100 99.89 100 100 17.22 100 15.8 19.38 100 16.65 1,2,3,4,6,9
Allsubset.bic 0.039 100 97.72 100 100 1.72 100 2.08 2.79 100 2.66 1,2,3,4,6,9
MRFCH.aic 0.036 100 2.16 100 100 1.04 100 0.49 1.31 99.9 1.27 1,3,4,6,9
MRFCH.bic 0.036 100 2.16 100 100 1.04 100 0.49 1.31 99.9 1.27 1,3,4,6,9



4 Conclusion

The practical application motivated us to develop all subsets method for finding robust linear regression
selection which is limited only the variables that describe the response. Our method is based on RFCH
procedure of Olive et al. (2010). Rather than replacing original dataset by clean ones and applying the same
all subsets method. Several methods for all subsets selection are available to date, but only a few proposals
for robust all subsets selection. Our simulation studies suggest that our method is robust to the presence of
vertical outliers, and leverage points in the data, and that in these cases it compares well with classical all
subsets selection based on AIC and BIC respectively.
From the results presented in the tables noticed that the classical all subsets method chooses the correct vari-
ables in most cases, but RMSE higher than the robust ones. Actually, this may be due to cross validation
procedure. Split the data set into two different sets of training and test size by 70% and 30% respectively,
probably make the training set unaffected by outliers. This case when the proportion of outliers in training
set is less than 5%. In any case, our proposed method is more stable and efficient than the traditional all
subset selection.
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