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Abstract 

Gene selection in high-dimensional microarray data has become increasingly important in 

cancer classification. To tackle both estimating the gene coefficients and performing  

gene selection simultaneously, sparse logistic regression using the least absolute  

shrinkage and selection operator (LASSO) was successfully applied in  

high-dimensional microarray data. However, the LASSO has two major limitations. First, it 

does not encourage grouping effects. Second, it is biased in gene selection. The adaptive 

LASSO was originally proposed to overcome the selection bias. Similar to the LASSO, the 

adaptive LASSO does not encourage grouping effects. To address these issues, adjusted 

adaptive sparse logistic regression (AASLR) is proposed. Extensive applications using high-

dimensional gene expression data show that our proposed method has high classification 

accuracy. Furthermore, it is able to select genes consistently, and, simultaneously, it is effective 

in selecting highly correlated genes. Thus, we can conclude that AASLR is a reliable sparse 

logistic regression method in the field of high-dimensional microarray data classification. 
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One of the major advancement made in the field of bioinformatics is the emergence of DNA 

microarray technology. In cancer research, this technology facilitates the determination of the 

expression values of thousands of genes simultaneously. The gene expression data is used for 

various analyses to understand the biological significance of the tissue from which the genes 

were extracted for the experiment [1,2]. In most applications of microarray technology, the 

number of genes, p , is greater than the number of patients (tissues), n [3]. Dealing with the 

situation p n , which is commonly known as high-dimensional data, poses a challenging task 

in the application of the statistical methods [4]. Overfitting and multicollinearity are the most 

common problems that arise in high-dimensional data when applying statistical classification 

methods. 

In general, cancer classification analysis, based on microarray gene data, is a task of 

constructing a decision rule based on the dataset of genes and tissues, which is able to 

automatically assign new tissue to one of two categories [5,6]. High-dimensional cancer 

classification analysis has attracted much attention in both bioinformatics and computational 

biology, because the classical classification methods suffer from the curse of dimensionality 

[7].  

Using all genes in the high-dimensional microarray data often results in model overfitting, 

particularly if there are irrelevant and noisy genes [8]. Consequently, removing irrelevant and 

noisy genes is an important target when dealing with high-dimensional cancer classification. In 

principle, gene selection aims to select a relatively small set of genes from a high-dimensional 

gene dataset, and, therefore, achieves high classification accuracy. Furthermore, selecting 

important genes can also help in early diagnosis and drug discovery for cancer patients [9,10]. 

Numerous statistical methods have been successfully applied in the area of cancer 

classification. Among them, logistic regression (LR) is considered as a powerful discriminative 

method. LR provides predicted probabilities of class membership and easy interpretation of the 
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gene coefficients [8]. However, LR is neither applicable nor suitable for the high-dimensional 

microarray data classification, because the design matrix is singular. Thus, iteration methods, 

such as Newton-Raphson’s method, cannot work [11].  

Recently, there has been growing interest in applying the sparse methods in high-dimensional 

cancer classification [8,12,11]. To tackle both estimating the gene coefficients and performing 

gene selection simultaneously, sparse logistic regression (SLR) has been successfully applied 

in high-dimensional cancer classification [13-17]. A SLR with different penalties can be 

applied. The most widely and popular penalty is the least absolute shrinkage and selection 

operator (LASSO) [18]. The LASSO imposes the 1l -norm penalty to the loss function. Because 

of the 1l -norm property, the LASSO can perform variable selection by assigning some gene 

coefficients to zero. For this reason, the LASSO has gained popularity in  

high-dimensional data. SLR with 1l -norm gives a sparse solution with high classification 

accuracy. 

Despite the advantage of the LASSO, it has three shortcomings [19]. First, it cannot select more 

genes than the number of tissues. Second, in microarray gene data, there is grouping among 

genes, where genes that share a common biological pathway have a high pairwise correlation 

with each other. The LASSO tries to select only one gene or a few of them among a group of 

correlated genes. To overcome the first two limitations, Zou and Hastie [20] proposed the elastic 

net penalty, for which the penalty is a linear combination of 1l -norm and 2l -norm.  Last, the 

LASSO has a bias gene selection, because it penalizes all gene coefficients equally [21,22]. In 

other words, the LASSO does not have the oracle properties, which refer to the probability of 

selecting the right set of genes (with nonzero coefficients) converged to one, and that the 

estimators of the nonzero coefficients are asymptotically normal with the same means and 

covariances as if the zero coefficients are known in advance [23].   



5 

 

In relation to the last limitation of the LASSO, oracle properties, Zou [24] proposed the adaptive 

LASSO in which adaptive weights are used for penalizing different coefficients in the 1l -norm 

penalty. In high-dimensional classification data, however, the adaptive LASSO faces two 

practical problems: (1) a maximum likelihood estimates (MLE) is usually proposed as an initial 

weight. In high-dimensional cancer classification, the MLE is not available, and, hence, the 

adaptive LASSO is no longer applicable. (2) The adaptive LASSO still has poor performance 

when there is grouping among genes [25].  

In this study, a new initial weight inside the 1l -norm penalty in adaptive sparse logistic 

regression is proposed. It is defined as the ratio of the standard error of the ridge regression 

estimator to the ridge regression estimator. The main objective behind this new initial weight 

is to adjust the 1l -norm penalty in sparse logistic regression by improving consistent genes 

selection (oracle property) and encouraging the 1l -norm penalty to select more correlated genes 

inside a group (grouping effects). To evaluate the effectiveness of the new initial weight, we 

apply four public cancer classification datasets. Moreover, a comparison is done with other 

penalties and initial weights.  

The rest of this paper is arranged as follows: Section 2 displays the sparse logistic regression 

and the proposed method. Section 3 describes the results and discussion of the real data analysis. 

The conclusion is covered by section 4.  

 

2 Methods 

2.1 Sparse logistic regression 

 

Logistic regression is a statistical method to model a binary classification problem. The 

regression function has a nonlinear relation with the linear combination of the genes. In cancer 

classification, the response variable of the logistic regression has two values either 1 for the 
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tumor class or 0 for the normal class. Let {0,1}i y  be a vector of size 1n   of tissues, and let 

jx  be a 1p   vector of genes. The logistic transformation of the vector of probability estimates 

( 1| )i i jp y   x  is modeled by a linear function, logit transformation:  

 0

1

ln[ /1 ] , 1,2,..., ,
p

T

i i j j

j

i n   


   x   (1) 

 where 0  is the intercept and j  is a 1p   vector of unknown gene coefficients. The log-

likelihood function of (1) is defined as: 
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Logistic regression offers the advantage of simultaneously estimating the probabilities ( )ij x  

and 1 ( )ij x  for each class and classifying subjects. The probability of classifying the thi  
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predicted class is then obtained by ˆ{ 0.5}iI   , where ( )I g  is an indicator function. 

SLR adds a nonnegative penalty term to (1), such that the size of gene coefficients in high-

dimension can be controlled. Several penalty terms have been discussed in the literature 

[26,8,14,18]. The 1l -norm penalty, proposed by Tibshirani [18], is one of the popular penalty 

terms. The 1l -norm penalty performs genes selection and estimation simultaneously by 

constraining the log-likelihood function of gene coefficients. The sparse method for the logistic 

regression is obtained by adding the penalty term to the log-likelihood function:  

  
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ln ( ) (1 ) ln(1 ( ) ( ).
n
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The estimation of the vector   is obtained by minimizing (3):  

  
1

ˆ arg min ln ( ) (1 ) ln(1 ( ) ( ) ,
n

SLR i ij i ij

i

P    


 
     

 
 y x y x   (4) 



7 

 

where ( )P   is the penalty term that sparse the estimates. The penalty term depends on the 

positive tuning parameter,  , which controls the tradeoff between fitting the data to the model 

and the effect of the penalty. In other words, it controls the amount of shrinkage. For the 0 

, we obtain the MLE solution. In contrast, for large values of   the influence of the penalty 

term on the coefficient estimates increases. Choosing the tuning parameter is an important part 

of the model fitting. If the focus is on classification, the tuning parameter should find the right 

balance between the bias and variance to minimize the misclassification error. Without loss of 

generality, it is assumed that the genes are standardized, 
1

0
n

iji
x


  and 

 1 2

1
( ) 1, 1,2,...,

n

iji
n x j p


   . The estimation of the vector   using the LASSO ( 1l -

norm penalty) is defined as: 

  
1 1

ˆ arg min ln ( ) (1 ) ln(1 ( ) ,
pn

LASSO i ij i ij j

i j

    
 

 
     

 
 y x y x   (5) 

where   is a tuning parameter. It reduces to the MLE estimator when 0  . On the other hand, 

if   , the penalty forces all the genes to be zeros. In practice, the value of   is often 

chosen by a cross-validation procedure. To solve (5), the traditional numerical methods are 

through MLE or the Newton-Raphson algorithm. However, the computation of these methods 

is prohibitive when the number of genes is large [15]. Equation (5) can be efficiently solved by 

the coordinate descent algorithm [27,28]. 

The LASSO has an advantage in that it is computationally feasible in  

high-dimensional classification data. On the other hand, the LASSO has three main drawbacks. 

First of all, if p n , the LASSO selects at most n  genes because of the nature of the convex 

optimization problem. In addition, the LASSO cannot handle the effect of grouping. When the 

pairwise correlations among a group of genes are very high, then the LASSO tends to select 

only one gene from the whole group and does not take into account which one is selected [20]. 

Lastly, the LASSO lacks the oracle properties, as stated in Fan and Li [23]. 
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2.2 Adjusted adaptive sparse logistic regression 

 

According to Fan and Li [23], a good penalty term should result in an estimator with three 

properties: unbiasedness, sparsity and continuity. Unbiasedness means the resulting estimator 

has no over penalization for large parameters to avoid unnecessary modeling biases. Sparsity is 

another property that an estimator enjoys. In other words, the resulting estimator automatically 

sets insignificant parameters to zero. Lastly, continuity is the third property, meaning that the 

resulting estimator is continuous in data in order to avoid instability in model prediction. 

One of the main reasons for the LASSO not to be consistent, i.e., lacking the oracle property 

[23,29,22] is that it equally penalizes all the coefficients, which  

over-penalizes the irrelevant genes leading it to be a biased estimator. To alleviate this 

drawback, Zou [24] proposed the adaptive LASSO in which adaptive weights are used for 

penalizing different coefficients in the 1l -norm penalty. The basic idea behind the adaptive 

LASSO is that by assigning a higher weight to the small coefficients and lower weight to the 

large coefficients, it is possible to reduce the selection bias; therefore, it can consistently select 

the model. Furthermore, the adaptive LASSO solution is continuous from its definition, which 

enables it to enjoy oracle properties. The sparse logistic regression using the adaptive LASSO 

(ASLR) of   is defined by: 

  
1 1

ˆ arg min ln ( ) (1 ) ln(1 ( ) ,
pn

i ij i ij j j

i

A L

j

S R w    
 

 
     

 
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where 1(w ,..., )T

j pww  is 1p   data-driven weight vector. It depends on  

the root n -consistent initial values of ̂  and ˆ(| |)j j

 w , where   is a positive constant. 

The adaptive LASSO originally used MLE estimates for the initial weight [24]. This is no 

longer valid in high-dimensional data. Several researchers have used the LASSO estimates as 

an alternative initial weight [30]. However, using a LASSO estimator in an adaptive LASSO 
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sparse logistic when p n  may not be preferable for three reasons. First, the LASSO estimator 

is inconsistent in itself. In other words, this initial weight is biased in selection genes. Second, 

it does not take into account the weights for all the genes in any implantation which means that 

some genes will be selected and the others will be set to zero. Last, when there is a group of 

correlated genes, the LASSO fails to select the grouped genes together.  

To overcome these limitations, the ratio of the standard error of the ridge regression estimator 

to the ridge regression estimator has been proposed as an initial weight in the adaptive LASSO 

sparse logistic regression. According to the nature of the 2l -norm, the ridge penalty tries to 

force the estimated gene coefficients of highly correlated genes to be close to each other. 

However, this property loses the capability of estimating the coefficients of highly correlated 

genes with different magnitude, especially with different signs [19,31]. The advantage of using 

the standard error of the ridge estimator ˆ
Ridge

s


 is to adjust the sparse logistic regression using 

the adaptive LASSO (AASLR) when using ridge regression estimates as an initial value. As a 

result, the AASLR is able to improve gene selection consistently (oracle property) and 

encourage the 1l -norm penalty in selecting more correlated genes inside a group (grouping 

effects). Cule and De Iorio [32] proposed a procedure to calculate the ˆ
Ridge

s


 depending on the 

principal component analysis. Let 
1( ) p( )

ˆ ˆˆ ( ,..., )T

Ridge Ridge Ridgeβ β   be the vector of ridge 

regression estimate, 
ˆ ˆ1( p() )

ˆ ( ,..., )
Ridge Ridge Ridge

Ts s
 

s  be the vector of the standard error of the ridge 

regression, and 1( ) ( )( ,..., )T

Ratio ratio p ratiow ww  be the ratio weight vector where

ˆ ( )( )

ˆ( / | |) , 1, 2,...,
Ridge

j j Ridgej
j p  

β
w s . Then a coordinate descent method can be used to 

solve AASLR. The computation details are given in algorithm 1. 

 

Algorithm 1  The coordinate descent method for AASLR 
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Step 1: Input ijx  and .Ratiow   

Step 2: Define / , 1,2,..., .ij ij Ratio j p  x x w  

Step 3: Solve the sparse logistic regression using the LASSO for all   and   values, 

  ( )

1 1

ˆ arg min ln ( ) (1 ) ln(1 ( ) .AAS

pn

i ij i ij j RatioLR j

i j

    

 

 
     

 
 **

β y x y x w β  

Step 4: Output ˆ ˆ /j (AASLR) j Ratio   w . 

 

 

2.3 Tuning parameter selection 

 

For practical applications, one has to decide the values of  . Classically, cross-validation (CV) 

has been widely used. However, it is computationally intensive for AASLR, simply because 

there are two tuning parameters:   and  . For simplicity, 1   was used for the simulation 

study and the real data application. Then, the AASLR tuning parameters were reduced to only 

 . 

 

 

3 Results and discussion 

To evaluate our proposed method AASLR in the field of cancer classification, four publicly 

well-known binary cancer classification datasets were used: diffuse large B-cell lymphoma 

(DLBCL) [33], prostate cancer [34], leukemia cancer [35], and colon cancer [36]. The detailed 

information of these datasets is summarized in Table 1. The DLBCL dataset consisted of the 

gene expression values of 77 samples that were measured by high-density oligonucleotide 

microarrays of the two most prevalent adult lymphoid malignancies, which comprised 58 

samples of diffuse large B-cell lymphomas (DLBCL) and 19 samples of follicular lymphoma 

(FL). Each sample contained 7,129 gene expression values. The original prostate dataset 

contained 12600 genes for 52 prostate tumor samples and 50 non-tumor tissues. A subset of 
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5966 genes was adapted in the classification. In the leukemia dataset, there were two types of 

patients: 47 patients of acute lymphoblastic leukemia (ALL) and 25 patients of acute myeloid 

leukemia (AML). The total expression profiles were 7129 genes. The colon cancer dataset, 

contained gene expression levels of 40 tumor and 22 normal colon tissues for 6500 human 

genes obtained with an Affymetrix oligonucleotide array. A subset of 2000 genes with the 

highest minimal intensity across the samples was used. 

 

Table 1 The detail information for the used data sets 

Data set # samples # genes Classes 

DLBCL 77 7129 DLBCL / FL 

Prostate 102 5966 Tumor / Non-tumor 

Colon 62 2000 Tumor / Normal 

Leukemia 72 7129 ALL / AML 

 

In order to enable a fair comparison, we randomly partitioned each dataset into a training 

dataset, which comprised 70% of the samples, and a test dataset, which consisted of 30% of the 

samples. In order to get the best value of  , the 10-fold CV was employed using the training 

dataset with 25 times. All the applications were conducted in R using the glmnet package. The 

averaged number of selected genes, the averaged classification accuracy (%) (CA), and 

Youden’s index (YI) in both the training and testing datasets are reported in Table 2. For 

comparison purposes, the performance of the LASSO, adaptive sparse logistic regression with 

LASSO as an initial weight (ASLRLASSO), and adaptive sparse logistic regression with ridge 

regression as an initial weight (ASLRRidge) was also evaluated. 

As can be seen from Table 2, AASLR selected more genes than the other three methods. In 

leukemia, for instance, AASLR selected 25 genes compared to 18, 15, and 14 genes for 

ASLRRidge, ASLRLASSO, and the LASSO, respectively. Importantly, AASLR has the potential 

to select more genes than the other three methods, indicating that most of these additionally 

selected genes were probably highly correlated.  
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Furthermore, AASLR has average classification accuracy in both the training and testing sets, 

and is much better than ASLRRidge, ASLRLASSO, and the LASSO in the DLBCL, prostate, and 

leukemia datasets, respectively. For the colon dataset, AASLR has slightly better classification 

accuracy. For example, in the DLBCL data, the classification accuracy of AASLR in the 

training (testing) set was 99.583 (96.741), which was greater than 97.736 (93.674) for the 

ASLRRidge, 96.287 (92.035) for ASLRLASSO, and 96.011 (91.731) for the LASSO. In terms of 

Youden’s index, the averaged values in all the datasets were considerably higher for AASLR 

in both the training and testing datasets, where the maximal Youden’s index is 1 [37].      

On the other hand, the LASSO generally performed slightly worse than the other three methods 

in terms of classification accuracy and Youden’s index for either the training or the testing 

dataset, although it did select less genes. Besides, ASLRRidge performed slightly better than 

ASLRLASSO. This is because ASLR is dependent on the LASSO weight, which was biased in 

gene selection.  

 

 

 

 

Table 2  The averaged evaluation criteria over 25 time for the used data sets 

 Training set   Testing set  

 # genes CA YI CA YI 

DLBCL      

    LASSO 12 96.011 0.895 91.731 0.859 

    ASLRLASSO 13 96.287 0.905 92.035 0.907 

    ASLRRidge 19 97.736 0.912 93.674 0.912 

    AASLR 24 99.583 0.937 96.741 0.940 

Prostate      

    LASSO 14 98.441 0.894 88.749 0.877 

    ASLRLASSO 16 98.718 0.903 88.782 0.883 

    ASLRRidge 18 98.872 0.910 89.107 0.891 

    AASLR 25 99.014 0.955 93.317 0.917 

Colon      

    LASSO 10 93.551 0.743 78.882 0.721 
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    ASLRLASSO 10 93.803 0.754 79.107 0.738 

    ASLRRidge 10 94.325 0.769 79.438 0.741 

    AASLR 15 94.484 0.784 80.107 0.757 

Leukemia      

    LASSO 14 98.891 0.947 95.148 0.907 

    ASLRLASSO 15 98.904 0.951 95.471 0.918 

    ASLRRidge 18 98.974 0.955 96.076 0.924 

    AASLR 25 99.638 0.981 98.085 0.977 

 

 

3.1 The consistency of the proposed method 

To further evaluate the ability of AASLR in consistent gene selection, Fig. 1 depicts the 

boxplots of the number of selected genes of AASLR, ASLRRidge, ASLRLASSO, and the LASSO 

in all the data over the 25 times. It is clear that AASLR gave much more consistent results than 

the other three methods. For instance, using the whiskers of the boxplots as a reference, the 

AASLR is likely to choose a subset of genes of size 23 to 28 genes, as compared to a subset of 

size 11 to 22, 10 to 22, and 5 to 22 genes for the ASLRRidge, ASLRLASSO, and the LASSO in the 

prostate dataset, respectively. This clearly demonstrated that the size of the selected genes 

obtained from AASLR was consistent each time. 
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Fig. 1 Number of selected genes over 25 times for the used methods. (a) DLBCL. (b) prostate. 

(c) colon. (d) leukemia   

 

3.2 Grouping effects  

To focus on the capability of AASLR in encouraging grouping effects, we listed the most 

frequently highly correlated selected genes in the leukemia dataset in Table 3. The correlation 

matrix of these selected genes is given in Fig. 2. We can observe that the AASLR successfully 

selected the most highly correlated genes. For example, the highest correlation among the 

selected genes was 0.918 between gene index 2348 and 4535. These two correlated genes were 

selected together by AASLR with 100% compared to 72% for ASLRRidge, 36% for ASLRLASSO, 

and 20% for the LASSO.  

Furthermore, AASLR selected the most important highly correlated genes 21 times out of 25 

times, with the percentage equal to 84%. On the other hand, it can be observed that the 

ASLRRidge did not perform well in selecting highly correlated genes, although it selected more 
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genes compared to the LASSO and ASLRLASSO. In contrast, the LASSO and ASLRLASSO failed 

to select the highly correlated genes together; their percentages were 16% and 20%, 

respectively. The success of AASLR in selecting more correlated genes than the other methods, 

especially ASLRLASSO, is due to its ability to adjust the adaptive weight.  

 

Fig. 2 The correlation matrix between the top 13 selected genes for leukemia dataset  
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Table 3 Frequencies of the most 13 selected genes in leukemia data set over 25 times 

  Frequency    

Gene 

Index 

Gene name LASSO ASLRLASSO ASLRRidge AASLR 

4535 SSR2 Signal sequence 

receptor, beta  

21 22 18 25 

4328 MCP Membrane 

cofactor protein 

7 5 20 25 

2348 ACADM acyl-

coenzyme A 

dehydrogenase, C-4 to 

C-12 straight chain 

5 9 17 25 

1745 C-yes-1 mRNA 19 18 25 25 

2242 INTEGRAL 

MEMBRANE 

PROTEIN E16 

16 11 10 22 

6919 Skeletal beta-

tropomyosin 

13 17 16 21 

1882 CST3 cystatin C 

(amyloid angiopathy 

and cerebral 

hemorrhage) 

7 7 20 22 

6797 GYPB Glycophorin B 5 10 24 25 

3320 Guanine nucleotide 

exchange factor p532 

mRNA 

4 5 17 21 

5501 TOP2B topoisomerase 

(DNA) II b (180 kDa) 

16 15 18 25 

1903 Recombination 

activating protein 

(RAG-1) 

gene 

9 6 17 23 

6855 TCF3 transcription 

factor 3 (E2A 

immunoglobulin 

enhancer-binding 

factors E12/E 

6 7 14 25 

6281 MYL1 myosin light 

chain (alkali) 

9 8 17 23 

 

 

3.3 Stability test 

In the stability test for the proposed method, the AASLR seeks to prove that it can classify high-

dimensional cancer data with a high degree of accuracy compared to the other three used 
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methods. Depending on the training dataset, a two-way analysis of variance (ANOVA) was 

used as a statistical test to check whether the AASLR, ASLRRidge, ASLRLASSO, and the LASSO 

were statistically significant and if there was any significant difference between the four 

datasets used in terms of classification accuracy. Table 4 reports the two-way ANOVA results. 

From Table 4, the results showed statistically significant differences between the AASLR and 

the three other used methods in terms of classification accuracy. In addition, we can see that 

the DLBCL, prostate, colon, and leukemia datasets had different classification accuracy values.  

Furthermore, Duncan's multiple range test was used to obtain more detailed information about 

the differences between the AASLR and the two three used methods. Table 5 lists the p-value 

of each compared pair of methods. It is apparent from Table 5 that the AASLR showed 

statistical differences compared to the ASLRRidge, ASLRLASSO, and LASSO in terms of 

classification accuracy.  

 

Table 4 Two-way ANOVA for average classification accuracy over 25 times 

Source df SS MS F p-value 

Methods 3 7362.3 2454.1 103.1 0.000 

Datasets 3 1826.7 608.9 25.5 0.008 

Error 396 9426.8 23.8   

Total 399 18615.8    

 

 

Table 5 P-value of Duncan’s multiple range test for average classification accuracy 

 LASSO ASLRLASSO ASLRRidge AASLR 

LASSO  0.036 0.000 0.000 

ASLRLASSO   0.007 0.000 

ASLRRidge    0.004 

AASLR     

 

To summarize, it is obvious that the microarrays real datasets results demonstrated the use of 

AASLR in terms of classification accuracy, Youden’s index for both the training and testing 



18 

 

sets. In addition, it outperformed the other competitor methods in terms of consistent selection, 

selection of highly correlated genes, and stability test. 

 

4 Conclusion 

Cancer classification is one of the most important applications in gene expression data. 

However, due to the high-dimensionality problem of genes, many supervised computational 

methods have failed to identify a small subset of important genes. To tackle both estimating the 

gene coefficients and performing gene selection simultaneously, sparse logistic regression was 

successfully applied in high-dimensional microarray data classification. In this research, we 

have proposed AASLR for consistent gene selection and selecting highly grouped genes 

simultaneously in high-dimensional tumor classification. The results, which were based on four 

microarray real datasets, proved that AASLR yielded positive and useful results in terms of (a) 

classification accuracy and Youden’s index for both the training and testing datasets, (b) 

consistency in gene selection, (c) selecting highly correlated genes, and (d) stability test. 

Therefore, we can conclude the effectiveness of the proposed AASLR method in practice. We 

restricted our attention to the binary case, but AASLR can be extended to cover high-

dimensional multi-classification microarray data. 
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