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Abstract A new series of 2-amino-4-alkylamino-6-methy-
lamino-5-nitrosopyrimidine derivatives 10–14 have been
synthesized from 5-nitrosopyrimidine analog 9 by nucleo-
philic aromatic substitution reaction with various amines
using dimethylformamide as a solvent at 70–90 °C. Simi-
larly, various 4-alkylamino-5-nitrosopyrimidine analogs
16–24 were obtained from 9 and primary and secondary
amines using dichloromethane at room temperature. Ana-
logously, treatment of 9 with 2-thioglycolic acid afforded 4-
thioalkyl derivative 15. Treatment of 9 with chloroacetyl
chloride (26) gave the corresponding chloroacetamido
analog 27, which afforded the desired 2-(benzothiazol-2-
ylthio)-N-(4-isopropoxy-6-(methylamino)-5-nitrosopyr-
imidine-2-yl)acetamide (29) on treatment with 2-
mercaptobenzothiazole (28) in the presence of triethyla-
mine and dichloromethane. Condensation of 9 with butyr-
aldehyde in acidic ethanol gave the corresponding 2-
butylideneamino analog 30. Selected examples of the syn-
thesized compounds were evaluated for their 17β-

hydroxysteroid dehydrogenase type 1 and 2 (17β-HSD1
and 2) inhibitory activity. Futhermore, same compounds
were evaluated for their antiproliferative activity against
two solid tumour-derived cell lines consisting Hep-G2
(human hepatocarcinoma) and MCF-7 (breast cancer).
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Introduction

Pyrimidines are compounds with in vitro biological activity
against a wide spectrum of unrelated viruses, such as polio-
virus (Yamazi et al. 1970), herpes (Prichard et al. 2009), and
HIV (Miyasaka et al. 1989; Tanaka et al. 1992; Balzarini
et al. 1995). 2,4-Diamino-N4-6-diarylpyrimidines were
identified to block the proliferation of tumour cell lines
in vivo, especially duodenum cancer (Gong et al. 2004). The
pyrimidine antibiotic, bacimethrin (4-amino-5-(hydro-
xymethyl)-2-methoxypyrimidine) is a known drug against
several staphylococcal bacteria (Reddick et al. 2001),
meanwhile trimethoprim (2,4-diamio-5-(3,4,5-trimethox-
ybenzyl)pyrimidine) (Stenbuck and Hood HM inventors
1962; Brumfitt and Hamilton-Miller 1993) is used, in com-
bination with sulfamethoxazole for treatment of urinary tract
infections and Pneumocystis jirovecii pneumonia (Hughes
et al. 1977). In addition, several pyrimidine derivatives
exhibited significant antitumor activity e.g., imatinib mesy-
late (Gleevec) (Pindola and Zarowitz 2002), contains a 2-
amino-4-pyridyl substituted pyrimidine moiety, is a novel
agent for treatment of chronic Leukemia via the tyrosine
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kinase inhibition. Recently, Yoon et al. (2010) have reported
some novel pyrimidine derivatives as potent acid pump
antagonists (APAs). Jain et al. (2006) have reviewed the
biological and medicinal significance of pyrimidine analogs
extensively. Furthermore, nitrosopyrimidines constitute a
class of biologically relevant molecules and some of these
analogs exhibited inhibition activity against cyclin-dependent
kinases (CDKs) (e.g.: 1 and 2) (Marchetti et al. 2007;
Mesguiche et al. 2003; Sayle et al. 2003; Arris et al. 2000)
and of the DNA-repair protein O(6)-alkylguanine-DNA alkyl
transferase (AGT) 3 (Terashima and Kohda 1998; Chae et al.
1995; Arris et al. 2000) leading to a renewed interest in the
synthesis of these pyrimidine derivatives. Marchal et al.
(2002, 2010) and Melguizo et al. (2002) have synthesized
several alkoxy-5-nitrosopyrimidine analogs, meanwhile
some nitrosopyrimidines have been reported as potential
antifungal (Olivella et al. 2012) and antibacterial agents
(Olivella et al. 2015). Recently, we have tested a series of 5-
nitrosopyrimidines against HIV activity, meanwhile one of
these analogs exhibited in vitro remarkable activity against
HIV-1 (Al-Masoudi et al. 2016a). In addition, Perspicace
et al. (2013) have reported new thieno[3,2-d]pyrimidines and
analogs (e.g: 4) as inhibitors for 17β-hydroxysteroid dehy-
drogenase type 2 (17β-HSD2), the enzyme catalyses the
intracellular conversion of inert cortisone to physiologically
active cortisol. Few examples of 17β-HSD2 inhibitors have
been described in the literature (Poirier et al. 2001; Bydal
et al. 2004).

In respect with the biological significance of pyr-
imidines and in continuation of our ongoing work (Al-
Masoudi et al. 2008, 2011, 2012, 2014a, b, 2015, 2016a, b;
Fröhlich et al. 1999; Marich et al. 2014; Jaffer et al. 2013)
on the synthesis, antiviral and nitric oxide synthase inhi-
bition activities of various pyrimidine derivatives, we
report here the synthesis and the biological activity of new
4-alkylamino-and 4-thioalkyl-5-nitrosopyrimidine deriva-
tives as inhibitors of 17β-HSD1 or 17β-HSD2 enzymes
(Fig. 1).

Results and discussion

Chemistry

A facile nucleophilic aromatic substitution reaction (SNAr)
can been proceeded smoothly in the presence of a good
leaving group and highly electron-deficient residues such as
nitro, nitroso and azoaryl residues (Riabova et al. 2008;
Hammarström et al. 2003; Lucrezia et al. 2000). In accor-
dance with such interesting SNAr reaction, we have syn-
thesized a series of pyrimidine derivatives 6 (Al-Masoudi
et al. 2008) and 8 (Al‐Masoudi et al. 2014b) in good yields
by treatment of the nitro-5 and azoaryl-7 analogs with
arylthiolate anion and alkyl amino groups, respectively
(Scheme 1).

These results encouraged us to explore similar amino-
lysis reaction at C-5 of pyrimidine ring in the presence of
adjacent highly electron-deficient nitroso group. In our
present work, 2-amino-4-isopropoxy-6-methylamino-5-
nitropyrimidine (9) has been selected as a key intermediate
for the synthesis of new 4-alkylamino and thio analogs,
aiming to evaluate their inhibitory activity against HSD-1.
Thus, treatment of 9 with various alkyl amines: e.g.: ethy-
lamine, isopropylamine, ethanolamine, diethylamine and N-
vinylpropenen-2-ene-1-amine in DMF at 70–90 °C afforded
mainly, after purification, the 4-alkylamino-5-
nitropyrimidine analogs 10–14 (75–53%). Alternatively,
treatment of 9 with 2-thioglycolic acid gave the corre-
sponding 4-thioalkyl analog 15 (66%) (Scheme 2).

Next, we examined the reactivity of compound 9 towards
the displacement reaction in aprotic solvent at ambient tem-
perature. Thus, subsequent treatment of 9 with the desired
primary amines such as: vinyl, propyl, butyl, pentyl, hexyl
and cyclohexyl amines or secondary amines e.g.: dimethyl
and dipropyl amines as well as piperazine in dichloromethane
as a solvent at room temperature for 20 h till 3 days, pro-
ceeded smoothly to give the substituted 4-aminoalkyl-5-
nitrosopyrimidines 16–24 in 70–61% yield (Scheme 3).

Fig. 1 Some potentially active
pyrimidine analogues
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The structures of 10–24 were assigned on the basis of
their IR, 1H, 13C and 2D NMR spectra. The 1H NMR
spectra showed similar patterns of the aliphatic protons, NH
and NH2 which identified by D2O exchange. The 1H and
13C NMR spectra of non-symmetrically substituted com-
pounds 10–12 and 16–21 showed two sets of signals,
especially for the NHMe at C-6 of pyrimidine ring, indi-
cating that, in solution, these compounds existed in equili-
brium as α and β rotamers (Fig. 2). This equilibrium is due
to two possible N=O···H–N hydrogen bonds existed at both
rotamers.

The two singlets at the regions δ 2.93–2.86 and
2.86–2.85 ppm of compounds 10–20 were assigned to two
rotamers (α and β) of methyl protons of NHMe group,
except 21, which appeared as a multiplet with cyclohexane
protons at δ 2.86 ppm. NCH2 protons of the alkyl groups at
C-4 of the analogs 10–13, 18–20 and 23 appeared as triplet,
quartet or multiplet at the regions δ 3.75–3.23 ppm, except
11 where CH proton of isopropyl group appeared as mul-
tiplets of two rotamers at δ 4.47 and 4.25 ppm. Compounds
14 and 16 showed two multiplets at δ 3.79 and 4.0 9 ppm
attributed to NCH2 protons allyl group, meanwhile the
multiplets at δ 5.55 and 5.97 ppm were assigned to
CH=CH2 protons, respectively. Further, the olefinic
methylene protons CH=CH2 appeared at δ 5.15 and 5.13
ppm, respectively. SCH2 protons of 15 resonated as a

singlet at δ 3.94 ppm, whereas the piperazine
protons appeared as two multiplets at δ 4.23 and 2.24 ppm.
Other protons of N-alkyl groups at C-4 of the
pyrimidine ring were fully analysed (c.f. Experimental
section). In the 13C NMR spectra of 10–24, C-2 of all
pyrimidines resonated at the regions δ 170.1–162.5 ppm,
while C-4 and C-6 were resonated at the regions δ
170.6–151.2 ppm and δ 170.3–151.7 ppm, respectively.
Interestingly, C-5 of the analogs 11, 19 and 24 appeared at
low field (δ 136.4, 136.7 and 138.8 ppm, respectively),
indicating for non-hydrogen bonding between N=O and
NH groups, meanwhile C-5 of the other analogs were
resonated at the regions δ 70.4–69.6 ppm. Resonances at the
regions δ 27.8–26.3 ppm were assigned to methyl carbon
atom of NHMe group. Carbon atom of the allylic group
(CH2-CH=CH2) of 14 and 16 appeared at δ 49.2 and 42.5
ppm, respectively, whereas (CH=CH2) carbon atom reso-
nated at δ 134.7 and 116.2 ppm, respectively. In addition,
the resonance at δ 116.3 and 116.2 ppm were assigned to
the olefinic carbon atoms (CH=CH2), respectively. The
carbon atoms of N-alkyl groups and piperazine at C-4 of
pyrimidine molecule were fully analyzed (c.f. Experimental
section).

Our efforts have been focused also on the synthesis of 5-
nitrosopyrimidines carrying 2-thiobenzothiazole moiety as
potential pharmacological compounds. Recently, Shi et al.
(2012) have synthesized novel 2-mercaptobenzothiazole
derivatives with potential anticancer activity, since one of
these analogs; 25 exhibited activity against liver carcinoma
of HepG2 cell line with IC50= 48 nM. Such result promp-
ted us to modify our 5-nitrosopyrimidine 9 by conjugation
with benzothiazole moiety via 2-thiocetamido linkage,
aiming to evaluate the inhibitory activity against 17βHSD-1
or 17βHSD-2. Treatment of 9 with chloroacetyl chloride
(26) in chloroform at room temperature afforded the
chloroacetamide 27 (71%), which furnished 29 (57%) on
refluxing with 2-mercaptobenzothiazole (28) in dichlor-
omethane and triethylamine. Analogously, treatment of 9
with butyraldehyde in boiling ethanol in the presence of
acid furnished the shiff base 29 in 55% yield (Scheme 4).

Scheme 1 Nucleophilic
displacement of chloro residue
by arylthiolate anion and
alkylamino groups

Scheme 2 Synthesis of 2-amino-4-alkylamino- or 4-alkylthio-6-
methylamino-5-nitrosopyrimidine analogues
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The structures of 27, 29 and 30 were assigned on the
basis of their IR, 1H, 13C and 2D NMR spectra. In the 1H
NMR spectra of 27 and 30, the multiplets at δ 5.54 and 5.55
ppm were assigned to CHMe2 proton, whereas the two
singlets at δ 1.40/1.39 ppm and 1.49/1.40 ppm were attrib-
uted to two rotamers of ethyl residues of CHMe2 group,
respectively. CH2Cl and NHMe protons of 27 were
appeared as singlets at δ 4.81 and 2.86 ppm, respectively,
while NHMe protons of 30 resonated as two singlets of α/β
rotamers at δ 2.88 and 2.86 ppm. Furthermore, 30 showed a
doublet at δ 7.91 ppm (J= 8.9 Hz) assigned to CH=N
proton at C-2 of pyrimidine backbone, whereas the two
multiplets at δ 2.25 and 1.55 ppm were attributed to
methylene protons of propyl group (=NCH2CH2CH3),
respectively. Methyl protons of propyl residue appeared as a
triplet at δ 0.88 ppm (J= 7.3 Hz). All the new compounds
have been identified by their HSQC NMR spectroscopy
(Davis et al. 1992).

Compounds 16 and 29 were selected for 2D NMR study.
The gradient HMBC (Willker et al. 1993) NMR spectrum
of 16 revealed two 2JC;H couplings between H-2′ of allyl
group at δH 5.97 ppm and C-3′ at δC 134.7 ppm as well as
C-1′ at δC 42.5 ppm of the same group. Further, a 3JC;H
coupling between CH2-1′ of allyl residue at δH 4.09 ppm
and C-4 of the pyrimidine ring at δC 170.6 ppm was
observed (Fig. 3). The gradient HMBC NMR spectrum of
29 allowed 3JC,H coupling the assignment of C-4 at δC
163.3 ppm by correlation with CHMe2 proton at δH 5.54
ppm. A 2JC;H coupling between SCH2 protons at δH 3.05
ppm and carbon atom of carbonyl group at δC 170.0 ppm, in
addition, to a 3JC;H coupling of the same protons with C-2′

of the benzothiazole backbone at δC 164.5 ppm were wit-
nessed. The aromatic protons C-4′ and C-7′ at the
regions δH 7.93–7.35 ppm showed two 2JC;H correlations
with C-3a′ and C-7a′ at δC 134.9 and 138.7 ppm, respec-
tively (Fig. 3).

Bioactivity

In vitro inhibition activity of 17β-HSD1 and 17β-HSD2

17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1)
catalyzes the conversion of the weakly active estrone (E1)
to the highly active estradiol (E2), meanwhile 17β-
hydroxysteroid dehydrogenase type 2 (17β-HSD2) cata-
lyzes the conversion of E2 and testosterone (T) into the
estrone (E1) and δ4-androstene-3,17-dione (δ4-AD),
respectively (Wu et al. 1993). Recently, 17β-HSD1 came
into the focus of interest as a novel therapeutic target for the
treatment of estrogen dependent diseases like breast cancer
(BC) and endometriosis (Masuzaki and Flier 2003). 17β-
HSD2 is expressed in osteoblastic cells (Dong et al. 1998),
therefore its inhibition can lead to the desired increase of E2
and T levels in the bone tissue and may thus be a novel
approach for the treatment of osteoporosis. Since 17β-
HSD2 catalyzes the inactivation of E2 into E1, inhibitory
activity toward this enzyme must be avoided. Gargano et al.
(2015) and Wetzel et al. (2011) have reported numerous
analogs as inhibitors of 17β-HSD1 and 2, leading for
treatment of breast cancer and osteoporosis, respectively.
However, 17β-HSD1 inhibitors should not inhibit 17-HSD2
and, of course, should not be estrogenic. Our new synthe-
sized compounds were tested for their ability to inhibit 17β-
HSD1 and 17β-HSD2. For the determination of 17β-HSD1
and 17β-HSD2 inhibition, tritiated substrates E1 or E2 were
incubated with placental enzymes 17β-HSD1 or 17β-HSD2,
respectively, cofactor and inhibitor as described by Kruch-
ten et al. (2008) (compound concentration: 1 μM). The
inhibition values of the test compounds are shown in
Table 1. All compounds showed less than 10% inhibition at
1.0 μM and were considered to be inactive.

Scheme 3 Synthesis of 2-
amino-4-alkylamino-6-
methylamino-5-
nitrosopyrimidine derivatives

Fig. 2 Rotamers of non-symmetrically substituted 5-nitrosopyrimidines
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In vitro antiproliferative activity

Compounds 9–11, 16–20 and 29 have been selected for
their antiproliferative activity against two solid tumour-
derived cell lines consisting Hep-G2 (human

hepatocarcinoma) and MCF-7 (breast cancer) using the
microculture tetrazolium assay (MTT) method (Alley et al.
1988). Doxorubicin (Uyeki et al. 1981) has been used for
comparative purposes of the cytotoxic activities. All com-
pounds were inactive against MCF-7 cell line (IC50> 50
μM). However, compounds 16 and 29 exhibited IC50 values
of 8.2± 0.08 μM and 1.6± 0.1 μM against Hep-G2 cell
lines, respectively.

Both compounds did not show superior activity than
doxorubicin against Hep-G2 cell lines with IC50 value of
0.03 μM.

Experimental

Chemistry

Melting points are uncorrected and were measured on a
Buchi melting point apparatus B-545 (Buchi Labortechnik
AG, Switzerland). Microanalytical data were obtained with
a Vario, Elementar apparatus (Shimadzu, Japan). The IR
spectra were recorded on Schimadzu Fourier Transform
Infra-red spectrophotometer (Model 270), using KBr discs.
NMR spectra were recorded on 400 and 600MHz (1H) and
at 100MHz and 150.91MHz (13C) spectrometers (Bruker,
Germany) with TMS as the internal standard and on δ scale

Scheme 4 . Reagents and
conditions: (i) CHCl3, K2CO3, 4
h, r.t.; (ii) E3N, CH2Cl2, reflux,
4 h; (iii) EtOH/AcOH, reflux, 3 h

Fig. 3 JC,H correlations in the
HMBC NMR spectra of 16 and
29

Table 1 17β-HSD1 and 17β-HSD2 inhibitory activity for some
nitrosopyrimidines

Comp. 17β-HSD1a % inhib.
(1 μM)

17β-HSD2b % inhib.
(1 μM)

9 ni 5.6± 0.10

10 ni 4.6± 0.06

11 0.7± 0.02 1.6± 0.04

16 5.8± 0.09 6.1± 0.12

17 ni ni

18 ni 6.1± 0.21

19 ni 1.9± 0.03

20 ni 6.0± 0.10

29 ni 6.4± 0.11

ni no inhibition
a Human placenta, cytosolic fraction, substrate [3H]E1+E1 [500 nM],
cofactor NADH [500 μM]
b Human placenta, microsomal fraction, substrate [3H]E2+E2 [500
nM], cofactor NAD+ [1500 μM]
c Mean values of two determinations, standard deviation less than 10%
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in ppm. The reagents used were of analytical grade while
the solvents were purified before use.

General procedure for the synthesis of 2-amino-4-
alkylamino-6-methylamino-5-nitroso- pyrimidine in DMF
(10–14)

To a solution of 9 (211 mg, 1.00 mmol) in DMF (10 mL)
was added the required amine (1.00 mmol) and the mixture
was heated at 70–90 °C for 5 h. Water (10 mL) was added
and the mixture was cooled and the precipitate was col-
lected, washed with water, dried and recrystallized from
ethanol to give the required product.

2-Amino-4-ethylamino-6-methylamino-5-nitrosopyrimidine (10)

From ethylamine (45 mg). Yield: 147 mg (75%) as a violet
solid, m.p. 121–124 °C; IR (KBr): 3116 (NH2), 2977 (NH),
2778 (CH), 1646 (C=N), 1570 (C=C); 1524 (N=O). 1H
NMR (400MHz, DMSO-d6)ː δ= 11.76, 11.53 ((2xs, 1H,
NH (2 isomers)), 8.68 (d, 1H, J= 5.1 Hz, NHMe) 7.40 (d,
2H, J= 6.5 Hz, NH2), 3.50, 3.47 ((2×q, 2H, J= 7.0 Hz,
CH2CH3 (2 rotamers)), 2.92, 2.86 ((2xs, 1H, NHMe (2
rotamers)), 1.17, 1.13 ((2xt, 6H, CH2CH3).

13C NMR (100
MHz, DMSO-d6): δ = 164.8 (C-2), 163.9 (C-4), 152.0,
151.1 (C-6, (2 isomers)), 70.1 (C-5), 35.2, 34.0 (CH2CH3 (2
rotamers)), 27.8, 26.3 ((NHMe (2 rotamers)), 15.2, 14.9
(CH2CH3 (2 isomers)). Anal. Calcd. for C7H12N6O
(196.11): C, 42.51; H, 6.16; N, 42.83. Found; C, 42.71; H,
6.00; N, 42.60.

2-Amino-4-isopropylamino-6-methylamino-5-
nitrosopyrimidine (11)

From isopropylamine (59 mg). Yield: 126 mg (60%) as a
violet solid, m.p. 146–148 °C, IR (KBr, cm−1): 3332 (NH2),
3000 (NH), 2870 (CH), 1653 (C=N), 1605 (C=C), 1573
(N=O). 1H NMR (400MHz, DMSO-d6)ː δ= 11.77, 11.75
(2xs, 1H, NH (2 rotamers)), 8.67 (d, 1H, J= 4.7 Hz,
NHCH3) 7.47 (d, 2H, J= 6.5 Hz, NH2), 4.47, 4.25 (2×m,
1H, CHMe2 (2 rotamers)), 2.93, 2.86 ((2×s, 1H, NHMe (2
rotamers)), 1.21, 1.17 (2m, 6H, CHMe2 (2 rotamers)). 13C
NMR (100MHz, DMSO-d6): δ= 164.9 (C-4), 163.9 (C-6),
162.5 (C-2), 136.4 (C-5), 41.9 (CHMe2), 27.8 (NHCH3),
22.8 (CHMe2). Anal. Calcd. for C9H14N6O (210.24): C,
45.70; H, 6.71; N, 39.97. Found; C, 45.51; H, 6.60; N,
39.65.

2-((2-Amino-6-(methylamio)-5-nitrosopyrimidin-4-yl)
amino)ethan-1-ol (12)

From ethanolamine (61 mg). Yield: 153 mg (72%), as a
brown solid, m.p. 138–141 °C; IR (KBr, cm−1): 3325 (OH),

2980 (NH), 2760 (CH), 1660 (C=N), 1600 (C=O), 1560
(N=O). 1H NMR (400MHz, DMSO-d6)ː δ= 11.54, 11.26
(2xs, 1H, NH (2 rotamers)), 8.27 (br s., 1H, NHMe), 7.81
(br s., 2H, NH2), 4.32 (br s., 1H, OH), 3.23 (t, 2H, J= 6.0
Hz, CH2), 2.97 (q, 2H, J= 6.0 Hz, CH2), 2.89, 2.86 ((2xs,
1H, NHMe (2 rotamers)), 1.23 (2×t, 6H, 2xCH3).

13C NMR
(100MHz, DMSO-d6): δ= 167.8 (C-2), 165.7 (C-4), 162.0
(C-6), 70.4 (C-5), 61.4 (CH2OH), 44.2 (NCH2), 27.8, 26.3
(NHMe (2 rotamers)). Anal. Calcd. for C7H12N6O2

(212.10): C 39.62, H 5.70, N 39.60. Found; C, 45.51; H,
6.60; N, 39.65.

2-Amino-4-diethylamino-6-methylamino-5-
nitrosopyrimidine (13)

From diethylamine (72 mg). Yield: 148 mg (66%) as a red
crystals, m.p. 180–182 °C; IR (KBr, cm−1): 3332 (NH2),
3116 (NH), 2977 (CH), 1653 (C=N), 1573 (C=C), 1488
(N=O). 1H NMR (400MHz, DMSO-d6)ː δ= 11.20 (br s.,
1H, NH), 7.87 (d, 2H, J= 6.1 Hz, NH2), 3.75 (2xq, 4H, J=
7.1 Hz, 2×CH2), 1.23 (2×t, 6H, 2×CH2CH3).

13C NMR
(100MHz, DMSO-d6): δ= 170.6 (C-6), 163.9 (C-4), 162.9
(C-2), 70.2 (C-5), 46.0 (NCH2), 26.6 (NHMe), 13.8
(NCH2CH3). Anal. Calcd. for C9H16N6O (224.27): C,
48.20; H, 7.19; N, 37.47. Found; C, 47.91; H, 7.01; N,
37.21.

2-Amino-4-diallylamino-6-methylamino-5-
nitrosopyrimidine (14)

From diallylamine (83 mg). Yield: 131 mg (53%) as a
brown solid, m.p. 158–161 °C; IR (KBr, cm−1): 3335
(NH2), 3120 (NH), 3000 (CH), 1660 (C=N), 1590 (C=C),
1480 (N=O). 1H NMR (400MHz, DMSO-d6)ː δ= 11.21
(br s., 1H, NH), 7.94 (d, 2H, J= 6.2 Hz, NH2), 5.55 (m, 2H,
2×CH2CH=CH2), 5.15 (m, 4H, 2×CH2CH=CH2), 3.79
(m, 4H, 2×CH2CH=CH2), 2.89 (br s, 3H, NHMe). 13C
NMR (100MHz, DMSO-d6): δ= 170.6 (C-6), 163.9 (C-4),
162.9 (C-2), 134.8 (CH2CH=CH2), 118.3 (CH2CH=CH2),
70.2 (C-5), 49.2 (CH2CH=CH2), 26.7 (NHMe). Anal.
Calcd. for C11H9N16O (248.29): C, 53.21; H, 6.50; N, 6.50.
Found; C, 52.89; H, 6.39; N, 6.27.

2-((2-Amino-6-(methylamio)-5-nitrosopyrimidin-4-yl)thio)
acetic acid (15)

To a stirred solution of 9 (200 mg, 0.95 mmol) in dichlor-
omethane (10 mL) containing triethylamine (0.5 mL) was
added 2-thioglycolic acid (88 mg, 0.95 mmol) and the
mixture was heated at 50 °C for 8 h. After cooling, the
mixture was evaporated to dryness and the residue was
recrystallized from ethanol to give 15 (160 mg, 66%) as a
light brown powder, m.p. 123–126 °C; IR (KBr, cm−1):
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3520 (OH), 3250 (NH2), 2977 (NH), 2780 (CH), 1709
(C=O), 1620 (C=N), 1588 (C=C), 1470 (N=O). 1H NMR
(400MHz, DMSO-d6)ː δ= 11.30 (br s., 1H, CO2H), 11.0
(br s., 1H, NH), 8.11 (br s., 1H, NHMe), 7.92 (d, 2H, J=
6.8 Hz, NH2), 3.94 (s, 2H, SCH2), 2.90 (br s., 3H, NHMe).
13C NMR (100MHz, DMSO-d6): δ= 171.5 (CO2H), 168.2
(C-6), 163.0 (C-4), 160.8 (C-2), 90.2 (C-5), 31.3 (SCH2),
28.9 (NHMe). Anal. Calcd. for C7H9N5O3S (243.24): C,
34.57; H, 3.73; N, 28.79. Found; C, 34.28; H, 3.83; N,
28.92.

General procedure for the synthesis of 2-amino-4-
alkylamino-6-methylamino-5-nitroso- pyrimidine in
dichloromethane (16–24)

To a solution of 9 (211 mg, 1.00 mmol) in CH2Cl2 (10 mL)
was added the corresponding amine (1.00 mmol) and the
mixture was stirred at room temperature and the reaction
monitored by thin layer chromatography (CH2Cl2/MeOH
9:1) until no starting material was observed. The mixture
was evaporated to dryness and the residue was suspended in
water, and the precipitate was filtered washed with water,
dried and recrystallized from ethanol.

2-Amino-4-allylamino-6-methylamino-5-nitrosopyrimidine
(16)

From allylamine (57 mg). Yield: 127 mg (61%) as a violet
crystals, m.p. 145–147 °C; IR (KBr, cm−1): 3332 (NH2),
3178 (NH); 1655 (C=N), 1573 (C=C), 1527 (N=O). 1H
NMR (600MHz, DMSO-d6)ː δ= 11.50 (br s., 1H, NH),
8.75 (br s, 1H, NHMe), 7.87 (d, 2H, J= 7.8 Hz, NH2), 5.97
(m, 1H, CH2CH=CH2), 5.13 (m, 2H, CH2CH=CH2), 4.09
(m, 2H, CH2CH=CH2), 2.86 (br s, 3H, NHMe). 13C NMR
(150.91, DMSO-d6): δ= 170.6 (C-4), 164.8 (C-6), 163.4
(C-2), 134.7 (CH2CH=CH2), 116.2 (CH2CH=CH2), 70.2
(C-5), 42.5 (CH2CH=CH2), 27.9 (NHMe). Anal. Calcd. for
C8H12N6O (208.11): C, 46.15; H, 5.81; N, 40.36. Found; C,
45.98; H, 5.73; N, 40.08.

2-Amino-6-methylamino-4-propylamino-5-
nitrosopyrimidine (17)

From propylamine (59 mg). Yield: 143 mg (68%); as a
violet crystals, m.p. 160–162 °C; IR (KBr, cm−1): 3110
(NH2), 2973 (NH), 2772 (CH), 1650 (C=N), 1562 (C=C);
1520 (N=O). 1H NMR (400MHz, DMSO-d6)ː δ= 11.79,
11.53 (2xs, 1H, NH (2 rotamers)), 8.66 (d, 1H, J= 4.6 Hz,
NHMe), 7.42 (d, 2H, J= 6.9 Hz, NH2), 3.40 (m, 2H,
NCH2-1′), 2.93, 2.85 (2x d, 3H, NHMe (2 rotamers)), 1.57
(m, 2H, CH2-2′), 0.89 (t, 3H, J= 7.2 Hz, Me-3′). 13C NMR
(100MHz, DMSO-d6): δ= 170.6 (C-6), 164.9 (C-4), 163.9
(C-2), 70.2 (C-5), 42.1 (CH2-1′), 26.7 (NHMe), 22.3 (CH2-

2′), 11.9 (Me-3′). Anal. Calcd. for C8H14N6O (210.24): C,
45.70; H, 6.71; N, 39.97. Found; C, 45.54; H, 6.64; N,
39.74.

2-Amino-4-butylmino-6-methylamino-5-nitrosopyrimidine
(18)

From butylamine (73 mg). Yield: 133 mg (63%) as a violet
solid, m.p. 148–150 °C; IR (KBr, cm−1): 3317 (NH2), 3170
(NH), 1630 (C=N), 1573 (C=C); 1530 (N=O). 1H NMR
(400MHz, DMSO-d6)ː δ= 11.19 (br s., 1H, ΝΗ), 7.87 (d,
2H, J= 7.9 Hz, NH2), 3.47 (m, 2H, CH2-1′), 2.92, 2.86 (s,
3H, NHMe (2 rotamers)), 1.50-1.38 (m, 4H, CH2-2′+CH2-
3′), 0.92 (t, 3H, J= 7.1 Hz, Me-4′). 13C NMR (100MHz,
DMSO-d6): δ= 170.6 (C-6), 164.9 (C-2), 163.9 (C-4), 70.2
(C-5), 52.9 (C-1′), 31.1 (C-2′), 26.7 (NHMe), 20.1 (C-3′),
14.1 (C-4′). Anal. Calcd. for C9H16N6O (224.27): C, 48.20;
H, 7.19; N, 37.47. Found; C, 47.96; H, 7.01; N, 37.2.

2-Amino-6-methylamino-4-pentylamino-5-
nitrosopyrimidine (19)

From pentylamine (87 mg). Yield: 155 mg (70%) as a pink
crystals, m.p. 128–130 °C; IR (KBr, cm−1): 3317 (NH2),
3186 (NH), 1610 (C=N), 1573 (C=C); 1473 (N=O). 1H
NMR (400MHz, DMSO-d6)ː δ= 11.79, 11.53 (2xs, 1H,
NH (2 rotamers)), 8.69 (d, 1H, J= 4.5 Hz, NHMe), 7.41 (d,
2H, J= 5.4 Hz, NH2), 3.45 (m, 2H, NCH2-1′), 2.93, 2.86
(2xd, 3H, NHMe (2 rotamers)), 1.61, 1.52 (m, 4H, CH2-2′
+CH2-3′), 1.30 (m, 2H, CH2-4′), 0.88 (t, 3H, J= 7.0 Hz,
Me-5′). 13C NMR (100MHz, DMSO-d6): δ= 164.8 (C-4),
163.9 (C-6), 163.4 (C-2), 136.7 (C-5), 40.6 (C-1′), 29.2 (C-
2′), 28.7 (C-3′+NHMe), 22.4 (C-4′), 14.4 (C-5′). Anal.
Calcd. for C10H18N6O (238.30): C, 50.40; H, 7.61; N,
35.27. Found; C, 50.21; H, 7.00; N, 33.12.

2-Amino-4-hexylmino-6-methylamino-5-nitrosopyrimidine
(20)

From hexylamine (101 mg). Yield: 162 mg (68%) as a pink
crystals, m.p. 118–121 °C; IR (KBr, cm−1): 3332 (NH2),
3178 (NH), 1593 (C=N), 1567 (C=C), 1473 (N=O). 1H
NMR (400MHz, DMSO-d6)ː δ= 11.79, 11.53 (2s, 1H, NH
(2 rotamers)), 8.67 (d, 1H, J= 4.9 Hz, NHMe), 7.41 (d, 2H,
J= 6.9 Hz, NH2), 3.37 (m, 2H, CH2-1′) 2.93, 2.86 (2xd.
3H, NHMe (2 rotamers)), 1.59-1.40 (m, 8H, CH2-2′ - CH2-
5′), 0.86 (t, 3H, J= 7.2 Hz, Me-6′). 13C NMR (100MHz,
DMSO-d6): δ= 170.2 (C-6), 164.3 (C-4), 162.8 (C-2), 69.6
(C-5), 41.0 (C-1′) 31.0 (C-2′+C-4′), 30.8 (C-3′), 26.0
(NHMe), 21.9 (C-5′), 13.8 (C-6′). Anal. Calcd. for
C11H20N6O (252.32): C, 52.36; H, 7.99; N, 33.31. Found;
C, 52.19; H, 7.82; N, 33.09.
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2-Amino-4-cyclohexylamino-6-methylamino-5-
nitrosopyrimidine (21)

From cyclohexyamine (99 mg). Yield: 145 mg (61%) as a
red powder, m.p. 222–225 °C; IR (KBr, cm−1): 3317
(NH2), 3163 (NH), 1600 (C=N), 1558 (C=C), 1450
(N=O). 1H NMR (400MHz, DMSO-d6)ː δ= 11.51 (br s.,
1H, NH), 8.26 (d, 1H, J= 4.9 Hz, NHMe), 7.39 (br s., 2H,
NH2), 2.86 (m, 4H, NHCH3+Hcyclohexane), 1.86–1.27 (m,
10H, Hcyclohexane).

13C NMR (100MHz, DMSO-d6): δ=
170.6 (C-6), 164.9 (C-4), 162.5 (C-2), 70.2 (C-5), 49.0 (C-
1′), 32.4 (C-2′+C-6′), 27.8 (NHMe), 24.5, 22.2 (C-3′+C-4′
+C-5′). Anal. Calcd. for C11H18N6O (250.31): C, 52.78; H,
7.25; N, 33.58. Found; C 52.56; H, 7.13; N, 33.36.

2-Amino-4-dimethylamino-6-methylamino-5-
nitrosopyrimidine (22)

From dimethylamine (45 mg). Yield: 165 mg (69%) as a
violet solid, m.p. 117–120 °C; IR (KBr, cm−1): 3332 (NH2),
3170 (NH), 1589 (C=N), 1527 (C=C), 1498 (N=O). 1H
NMR (400MHz, DMSO-d6)ː δ= 11.19 (br s., 1H, NH),
8.65 (br s., 1H, NHMe), 7.91 (d, 2H, J= 7.9 Hz, NH2),
3.18, 3.15 (2×s, 6H, NMe2), 2.87, 2.85 (2×s., 3H, NHMe
(2 rotamers)). 13C NMR (100MHz, DMSO-d6): δ= 170.0
(C-6), 163.4 (C-2), 151.2 (C-4), 69.7 (C-5), 39.8, (NMe2),
26.2 (NHMe). Anal. Calcd. for C7H12N6O (196.21): C,
42.85; H, 6.16; N, 42.83. Found; C, 42.66; H, 6.02; N,
42.59.

2-Amino-6-methylamino-4-dipropylamino-5-
nitrosopyrimidine (23)

From dipropylamine (101 mg). Yield: 165 mg (69%) as a
violet crystals, m.p. 120–123 °C; IR (KBr, cm−1): IR (KBr,
cm−1): ν 3120 (NH2), 2980 (NH), 1642 (C=N), 1570
(C=C); 1510 (N=O). 1H NMR (400MHz, DMSO-d6)ː δ=
11.19 (br s., 1H, NH), 7.89 (d, 1H, J= 7.9 Hz, NH2), 3.44
(m, 4H, 2×CH2CH2CH3), 2.86 (br s., 3H, NHMe), 1.64 (m,
4H, 2×CH2CH2CH3), 0.90 (2×t, 3H, J= 7.5 Hz,
2xCH2CH2CH3).

13C NMR (100MHz, DMSO-d6): δ=
170.0 (C-6), 163.4 (C-2), 151.2 (C-4), 69.7 (C-5), 48.3
(CH2CH2CH3), 26.2 (NHMe), 21.7 (CH2CH2CH3), 10.9
(CH2CH2CH3). Anal. Calcd. for C11H20N6O (252.32): C,
52.36; H, 7.99; N, 33.31. Found; C, 52.16; H, 7.84; N,
33.04.

2-Amino-6-methylamino-4-piprazino-5-nitrosopyrimidine
(24)

From piperazine (86 mg). Yield: 145 mg (65%) as a violet
solid; m.p. 185–188 °C; IR (KBr, cm−1): 3348 (NH2), 3170
(NH), 1589 (C=N) 1595 (C=C), 1535 (N=O). 1H NMR

(400MHz, DMSO-d6)ː δ= 11.19 (br s., 1H, NH), 8.64 (s,
1H, NHCH2), 7.89 (d, 2H, J= 8.0 Hz, NH2), 4.23 (m, 4H,
2×CH2), 2.86 (br s., 3H, NHMe), 2.24 (m, 4H, 2×CH2).
13C NMR (100MHz, DMSO-d6): δ= 170.1 (C-2), 163.4
(C-4), 151.2 (C-6), 138.8 (C-5), 69.7 (CH2), 44.1 (CH2),
26.2 (NHMe). Anal. Calcd. for C9H15N7O (237.27): C,
45.56; H, 6.37; N, 41.32. Found; C, 45.35; H, 6.31; N,
41.11.

2-Chloro-N-(4-isopropoxy-6-(methylamino)-5-
nitrosopyrimidin-2-yl)acetamide (27)

2-Chloroacetyl chloride (170 mg, 1.50 mmol) was added
dropwise to a mixture of 9 (211 mg, 1.00 mmol) and
potassium carbonate (276 mg, 2.00 mmol) in chloroform
(20 mL) at room temperature with stirring for 4 h. After
removal of the dichloromethane and vacuum filtration, the
solid was washed with water and dried under vacuum.
Recrystallization from ethyl acetate/ petroleum ether gave
27 (204 mg, 71%) as oil; IR (KBr, cm−1): 3322 (NH2),
3180 (NH); 1670 (C=O), 1650 (C=N), 1580 (C=C), 1520
(N=O); 1330 (C–O). 1H NMR (400MHz, DMSO-d6)ː δ=
11.20. (br s., 1H, NH), 8.61 (br s., 1H, NHCO), 5.54 (m,
1H, CHMe2), 4.81 (s, 2H, CH2Cl), 2.86 (br s., 3H, NHMe)
1.40, 1.39 (2×s, 6H, CHMe2).

13C NMR (100MHz,
DMSO-d6): δ= 167.2 (C=O), 162.1 (C-6), 159.3 (C-4),
151.7 (C-2), 130.1 (C-5), 72.1 (CHMe2), 41.6 (CH2Cl),
26.7 (NHMe), 22.3 (CHMe2). Anal. Calcd. for
C10H14ClN5O3 (287.70): C, 41.75; H, 4.91; N, 24.34.
Found; C, 41.52; H, 4.82; N, 24.21.

2-(Benzothiazol-2-ylthio)-N-(4-isopropoxy-6-
(methylamino)-5-nitrosopyrimidine-2-yl)acetamide (29)

To a mixture of 27 (288 mg, 1.00 mmol) and triethylamine
(184 mg, 1.82 mmol) in dichloromethane (30 mL) was
added 2-mercaptobenzothiazole (28) (152 mg, 0.91 mmol)
and the mixture was heated under reflux for 4 h. After
cooling, the mixture was evaporated to dryness and the
residue was purified on a SiO2 column chromatography
(5 g) using methanol, in gradient (0–10%) and chloroform
as eluent to give 29 (238 mg, 57%) as a brown solid, m.p.
152–155 °C; IR (KBr, cm−1): 3317 (NHamide), 3163 (NH),
1774 (C=O), 1615 (C=N), 1589 (C=C), 1526 (N=O). 1H
NMR (600MHz, DMSO-d6)ː δ= 11.19 (s, 1H, NH), 8.06
(br s., 1H, NHMe), 7.93–7.35 (m, 5H, Harom.), 5.54 (m, 1H,
CHMe2), 3.05 (m, 2H, SCH2), 2.87 (br s., 3H, NHMe),
1.40, 1.38 (2xs, 6H, CHMe2).

13C NMR (150.91, DMSO-
d6): δ= 170.0 (C=O), 164.5 (C-2′), 163.3 (C-4+C-6),
152.2 (C-2), 151.2 (C-3′), 138.7 (C-7a′), 134.9 (C-3a′+C-
5), 124.7, 121.9, 121.3 (Carom.), 69.6 (CHMe2), 36.3
(SCH2), 26.1 (NHMe), 21.7 (CHMe2). Anal. Calcd. for

Med Chem Res (2017) 26:830–840 837

Author's personal copy



C17H18N6O3S2 (418.49): C, 48.79; H, 4.34; N, 20.08.
Found; C, 48.56; H, 4.22; N, 19.84.

2-(Butylideneamino)-6-isopropoxy-4-methylamino-5-
nitrosopyrimidine (30)

To a solution of 9 (200 mg, 1.00 mmol) in ethanol (15 mL)
was added butyraldehyde (0.1 mL, 1.00) followed by three
drops of glacial acetic acid and the mixture was heated
under reflux for 3 h. (148 mg, 55%) as a brown solid, m.p.
160–164 °C; IR (KBr, cm−1): 2990 (NH), 1620 (C=N),
1590 (C=C); 1530 (N=O). 1H NMR (DMSO-d6)ː δ=
11.23 (br s., 1H, NH), 7.91 (d, 1H, J= 8.9 Hz, CH=N);
5.55 (m, 1H, CHMe2), 2.88, 2.87 (2xs, 3H, NHMe (2
rotamers)), 2.25 (m, 2H, CH2CH2Me), 1.55 (m, 2H,
CH2CH2Me), 1.49, 1.40 (2xs, 6H, CHMe2), 0.88 (t, 3H, J
= 7.3 Hz, CH2CH2Me). 13C NMR (DMSO-d6): δ= 173.2
(C-4), 170.6 (C-6), 163.9 (CH=N), 151.7 (C-2), 82.3 (C-5),
73.6 (CHMe2), 33.7 (CH2CH2Me), 26.7 (NHMe), 22.2
(CHMe2), 18.5 (CH2CH2Me), 13.8 (CH2CH2Me). Anal.
Calcd. for C12H19N5O2 (265.32): C, 54.32; H, 7.22; N,
26.40. Found; C, 54.09; H, 7.11; N, 26.17.

Biological methods

[2, 4, 6, 7-3H]-E2 and [2, 4, 6, 7-3H]-E1 were bought from
Perkin Elmer, Boston. Quickszint Flow 302 scintillator fluid
was bought from Zinsser Analytic, Frankfurt.

17β-HSD1 and 17β-HSD2 were obtained from human
placenta according to previously described (Zhu et al. 1993;
Qiu et al. 2002; Kruchten et al. 2008). Fresh human pla-
centa was homogenized and centrifuged. The pellet fraction
contains the microsomal 17β-HSD2, while 17β-HSD1 was
obtained after precipitation with ammonium sulphate from
the cytosolic fraction.

Inhibition of 17β-HSD1

Inhibitory activities were evaluated by an established
method (Lin et al. 1992; Sam et al. 1995, 1998) with minor
modifications. Briefly, the enzyme preparation was
incubated with nicotinamide adenine dinucleotide-hydrogen
(NADH) [500 μM] in the presence of inhibitors at 37 °C
in a phosphate buffer (50 mm) supplemented with 20%
of glycerol and ethylenediaminetetraacetic acid (EDTA)
(1 mm). Inhibitor stock solutions were prepared in
DMSO. The final concentration of dimethylsulfoxide
(DMSO) was adjusted to 1% in all samples. The enzymatic
reaction was started by addition of a mixture of unlabelled-
and [2, 4, 6, 7-3H]-E1 (final concentration: 500 nM,
0.15 μCi). After 10 min, the incubation was stopped with
HgCl2 and the mixture was extracted with diethylether.
After evaporation, the steroids were dissolved in

acetonitrile. E1 and E2 were separated using acetonitrile/
water (45:55) as mobile phase in a C18 reverse phase
chromatography column (Nucleodur C18 Gravity, 3 μm,
Macherey-Nagel, Düren) connected to a HPLC-system
(Agilent 1100 Series, Agilent Technologies, Waldbronn).
Detection and quantification of the steroids were performed
using a radioflow detector (Berthold Technologies, Bad
Wildbad). The conversion rate was calculated after analysis
of the resulting chromatograms according to the following
equation: % conversion=(% E2)/(% E2+% E1)×100. Each
value was calculated from at least three independent
experiments.

Inhibition of 17β-HSD2

The 17β-HSD2 inhibition assay was performed similarly to
the 17β-HSD1 procedure. The microsomal fraction was
incubated with NAD+ [1500 μM], test compound and a
mixture of unlabelled- and [2, 4, 6, 7-3H]-E2 (final con-
centration: 500 nM, 0.11 μCi) for 20 min at 37 °C. Further
treatment of the samples and HPLC separation were carried
out as mentioned above.

The conversion rate was calculated after analysis of the
resulting chromatograms according to the following equa-
tion: % conversion=(% E1)/(% E1+% E2)×100.

Cytotoxicity assays

Cell cultures were seeded at 1× 105 cells per ml in 96
multiwell plates in specific media [RPMI-1640 medium with
20mM HEPES buffer (Life Technologies)], supplemented
with 10% FCS and antibiotic (gentamicin), and incubated at
37 °C in a humidified CO2 (5%) atmosphere in the absence
or presence of serial dilutions of test compounds. Cell via-
bility was determined after 96 h at 37 °C by the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
(MTT) method). Compounds were dissolved in dimethyl
sulfoxide at 100 mm and then diluted into culture medium.

Conclusion

In conclusion, a new series of 4-alkylamino and 4-alkylthio-
5-nitrosopyrimidine derivatives were prepared from 2-
amino-4-isopropoxy-6-methylamino-5-nitropyrimidine, as a
key intermediate, via aromatic nucleophilic substitution
reaction (SNAr), since the nitroso group at C-5 of pyr-
imidine backbone would highly activates it towards such
nucleophilic substitution of isopropoxy group. The key
intermediate has been further modified by conjugation with
2-mercaptobenzothiazole via a thioacetamide linkage at C-2
of pyrimidine backbone. Compounds 9–11, 16–20 and 29
were screened for their inhibitory activity against 17β-
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hydroxydehyrogenase type 1 (17β-HSD1) and type 2 (17β-
HSD2). All these compounds showed less than 10% inhi-
bition for both enzymes at concentration of 1.0 μM. Fur-
thermore, all compounds were tested against two solid
tumour-derived cell lines consisting Hep-G2 (human
hepatocarcinoma) and MCF-7 (breast cancer). Compound
29 showed a moderate antitumor activity against Hep-G2
(IC50= 1.6± 0.1 μM) and led to be promising agent for
further structural modification.
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