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Abstract 

Existing sufficient dimension reduction methods provide us with a 
way to find sufficient dimensions without the need to pre-specify a 
model or an error distribution. These methods replace the original 
variables with low-dimensional linear combinations of predictors 
without any loss of regression information. However, these methods 
suffer from the fact that each dimension reduction component is a 
linear combination of all the original predictors, so that it is difficult to 
interpret the resulting estimates. 

In this article, we propose to combine the shrinkage ideas of the 
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Adaptive Lasso, SCAD and MCP with a well-known sufficient 
dimension reduction method, the minimum average variance estimator 
MAVE, to produce sparse and accurate solutions. The performance of 
the proposed methods is verified by both simulation and real data 
analysis. 

1. Introduction 

In many statistical applications, the dimension p of X becomes large and 
therefore the statistical analysis becomes difficult. A usual approach to cope 
with this problem is to reduce the dimension of the explanatory part of the 
regression model without much loss of information on regression and 
without requiring a pre-specified parametric model. This has been obtained 
through the introduction of sufficient dimension reduction. 

Sufficient dimension reduction (SDR) theory (Cook [1]) has been 
developed to reduce the predictors dimensions, while preserving full 
regression information and imposing few assumptions. Various methods 
have been proposed to estimate the SDR space. Some of these methods focus 
on the knowledge of the central subspace, which is denoted by ,X|YS  to 

answer the question, how does the conditional distribution of X|Y  change 

with the value assumed by X?. This category includes ordinary least squares 
(OLS), graphical regression (Cook [2]), sliced average variance estimation 
(SAVE) (Cook and Weisberg [3]), and sliced inverse regression (SIR) (Li 
[4]). 

In many situations, regression analysis is mostly concerned with 
deducing the conditional mean of the response given to the predictors, and 
less concerned with the other sides of the conditional distribution. Cook    
and Li [5] evolved dimension reduction methods that incorporate this 
consideration. The authors introduce the idea of the Central Mean Subspace 
(CMS), a natural inferential object for dimension reduction when the mean 
function is of interest. There are some dimension reduction methods included 
in this category, for example, principal Hessian direction (PHD) (Li [6]) and 
minimum average variance estimation (MAVE) (Xia et al. [7]) which are 
perhaps the most popular methods to estimate the CMS. However, all the 
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sufficient dimension methods suffer from the fact that each dimension 
reduction component is a linear combination of all the original predictors, so 
that it is difficult to interpret the resulting estimates. 

The selection of predictors plays a decisive role in building a multiple 
regression model. The choice of an appropriate subset of predictors can help 
to improve prediction precision. Also, in practice, the interpretation of a 
smaller subset of predictors is easier than a large set of predictors. Variable 
selection by penalizing the least squares has attracted significant research 
interest. See for example: least absolute shrinkage and selection operator 
Lasso (Tibshirani [8]), smoothly clipped absolute deviation SCAD (Fan and 
Li [9]), Adaptive Lasso (Zou [10]) and the minimax concave penalty MCP 
(Zhang [11]). 

Under the framework of sufficient dimension reduction, the work of Li et 
al. [12] has produced good results. For example, Ni et al. [13] suggested a 
shrinkage SIR; Li and Nachtsheim [14] proposed Sparse SIR; and Li [15] 
unified the inverse dimension reduction methods to have sparse sufficient 
dimension reduction. Zhou and He [16] suggested Constrained Canonical 
Correlation (C3), which uses CANCOR (Fung et al. [17]) with a 1l  norm 

constraint. Furthermore, a variable filtering and re-estimation procedure        
was added to promote sparsity and precision. However, Fung et al. [17] 
demonstrated that CANCOR is based on the SIR matrix; thus C3 may         
be thought of as an alternative approach to that of Li [15]. Thus, the major 
thrust of these methods concentrates on the conditional distribution of Y|X  

without assuming any particular model. However, they do need certain 
probabilistic assumptions on the predictors (X) such as the linearity 
condition, which restricts a more general use of these methods. Li and Yin 
[18] suggested a regularized SIR approach based on the least-squares 
formulation of SIR. The 2l  regularization is introduced, and an alternating 

least-squares algorithm is developed, to enable SIR to work with pn <  and 

highly correlated predictors. The 1l  regularization is further introduced to 

achieve a simultaneous reduction estimation and predictor selection. Wang 
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and Yin [19] proposed the Sparse MAVE (SMAVE) method which adds an 

1l  penalty term to the MAVE loss function to generate a sparse estimate. 

Fan and Li [9] studied a class of penalization methods including the 
Lasso. The authors stated a good penalty function should result in an 
estimator with three properties. These properties are unbiasedness, sparsity 
and continuity. They showed that the Lasso shrinkage produces biased 
estimates for the large coefficients and thus it could be suboptimal in terms 
of estimation risk. Fan and Li [9] conjectured that the oracle properties do 
not hold for the Lasso. 

In this paper, we consider sufficient dimension reduction and variable 
selection on the mean function ( )X|YE  only. We combine the dimension 

reduction method MAVE (Xia et al. [7]) with the SCAD (Fan and Li [9]), 
Adaptive Lasso (Zou [10]) and the MCP (Zhang [11]). Our proposed 
methods have advantages over SMAVE (Wang and Yin [19]) because all of 
these penalization methods have the oracle properties and have advantages 
over sparse inverse dimension reduction methods (Li [15]) in that it does not 
require any particular distribution on X and it can exhaustively estimate the 
dimensions in the conditional mean function. 

The rest of the paper is organized as follows: In Section 2, a brief review 
of sufficient dimension reduction for the mean function and MAVE is given. 
SMAVE is reviewed in Section 3. Sparse MAVE with Adaptive Lasso 
penalty, SCAD and MCP penalties are introduced in Sections 4, 5 and 6, 
respectively. Simulation studies are conducted under different settings in 
Section 7. The applications of the methods using two sets of real data are 
reported in Section 8. Finally, the conclusions are summarized in Section 9. 

2. Sufficient Dimension Reduction for the 
Mean Function and MAVE 

For regression problems with a scalar response variable Y on a 1×p  

predictor vector X, assume the following model: 

 ( ) ,...,,, 11 ε+= pXXXfY  (1) 
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where ( ) ( )X|= YEXXXf p...,,, 11  and ( ) .0=|ε XE  The aim of sufficient 

dimension reduction for the mean function is to find a subset S of the 
predictor space such that 

 ( ) ,XPYEY s||⊥⊥ X  (2) 

where ⊥⊥  indicates independence and ( )⋅P  stands for a projection operator 

with respect to the standard inner product. Subspaces satisfying condition (2) 
are called mean dimension reduction subspaces (Cook and Li [5]). Thus, if 

( )Sd dim=  and ( )dβββ 2 ...,,,1=B  is a basis for S, the predictors X can 

be replaced by linear combinations ,...,,, 21 XXX T
d

TT βββ  pd ≤  without loss 

of information on the conditional mean function. That is, ( )pXXXf ...,,, 11  

( ).XTf β=  When the intersection of all subspaces satisfies condition (2), it 

is called the central mean subspace (CMS) (Cook and Li [5]) and denoted  
by ( ).X|YES  ( )X|YES  is assumed existent throughout the paper. Several 

methods are available for estimating ( ),X|YES  and one of the most well-

known methods of them is MAVE (Xia et al. [7]). We will describe MAVE 
in details as follows: 

Xia et al. [7] proposed MAVE such that the matrix B is the solution of 

 { [ ( )] },min 2XBT
B

|− YEYE  (3) 

where .d
T IBB =  The conditional variance given XBT  is 

 ( ) [{ ( )} ].22 XBXBXBσ TTT
B ||−= YEYE  (4) 

Thus, 

 [ ( )] { ( )}.minmin 2 XBσXB T2
BB

T
B

EYEYE =|−  (5) 

For any given ,0X  ( )0
T2

B XBσ  can be approximated using local linear 

smoothing as 
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where ( )0i
T XXBb −+ Ta 00  is the local linear expansion of ( )i

TXB|iYE       

at ,0X  and 00 ≥iw  are the kernel weights centred at 0
TXB  with 

∑ = =n
i i .w1 0 1  So the problem of finding B is equivalent to that of solving 

the following optimization: 

 [ { ( )}] .
1 1

2∑∑
= =

−+−
n

j

n

i
ij

T
jji waY ji

T XXBb  (6) 

3. Sparse MAVE (SMAVE) 

Wang and Yin [19] proposed the SMAVE. The authors add an 1l  penalty 

term to the MAVE loss function in (6) to produce a sparse estimate. The 
authors solve the following minimization problem: 

 [ { ( )}] ,
1 1 1

,
2∑∑ ∑

= = =
λ+−+−

n

j

n

i

p

k
kmij

T
jji waY βXXBb ji

T  (7) 

....,,1 dm =  

They suppose that d is known, then propose a modified BIC criterion to 
estimate d. The algorithm for SMAVE is as follows: 

1. Initialize ,1=m  and set ,0βB =  any arbitrary 1×p  vector. 

2. For given B, obtain ( ),, jja b  where ,...,,1 nj =  by solving the 

following minimization problem: 
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3. For given ( ),ˆ,ˆ jja b  ,...,,1 nj =  mLassoβ  can be obtained by solving 

the following minimization problem: 

[ { ( ) ( )}]
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4. Replace the mth column of B by ,ˆ mLassoβ  and repeat steps 2 and 3 

until convergence. 

5. Update B by ( ),,ˆ...,,ˆ,ˆ
021 ββββ mLassoLassoLasso  and set m to be 

.1+m  
6. If ,dm <  then continue steps 2 to 5 until .dm =  

Wang and Yin [19] adopted the refined multidimensional Gaussian 
Kernel proposed by Xia et al. [7] for MAVE, 

{ ( )} { ( )}∑
=

−−=
n

i
hhij KKw

1

ˆˆ ji
T

ji
T XXBXXB  

and the optimal bandwidth in the sense of minimizing the mean integrated 
squared errors. Also, they used the Gaussian product kernel, and =opth  

( ) ( ),41 dndA +−  where ( ) ( )
( )

,2
4 41 d

ddA
+







+
=  and d is the dimension of 

the kernel function. 

4. Sparse MAVE with Adaptive Lasso Penalty (ALMAVE) 

Fan and Li [9] studied a class of penalization methods including the 
Lasso. They showed that the Lasso shrinkage produces biased estimates for 
the large coefficients, and thus it could be suboptimal in terms of estimation 
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risk. Fan and Li [9] conjectured that the oracle properties do not hold for the 
Lasso. The Adaptive Lasso can be viewed as a generalization of the Lasso 
penalty. Basically, the idea is to penalize the coefficients of different 
covariates at a different level by using adaptive weights. In the case of least 
squares regression, Zou [10] proposed the Adaptive Lasso in which adaptive 
weights are used to penalize different coefficients in the 1l  penalty. The 

author showed that the Adaptive Lasso benefits from the oracle properties 
that Lasso does not have. Zou [10] defined the Adaptive Lasso as follows: 

 ( ) ,~min
1 1

2













βλ+−∑ ∑

= =

n

i

p

k
kkn

T
i wY iXβ

β
 (10) 

where 0>λ  is the tuning parameter controlling the amount of penalty given. 

The weights are set to be ,~1~ δβ= kkw  ,...,,1 pk =  β
~

 is non-penalized 

regression estimates and .0>δ  

Sparse MAVE with the Adaptive Lasso penalty has been proposed as 
follows: 
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for ....,,1 dm =  

The algorithm of Sparse MAVE with the Adaptive Lasso penalty                
is similar to the algorithm in Section 3, except in step 3, for given        

( ),ˆ,ˆ jja b  ,...,,1 nj =  mALassoβ  can be obtained by solving the following 

minimization problem: 

[ { ( ) ( )}]
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and then we follow the same steps in the algorithm in Section 3. 
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5. Sparse MAVE with SCAD Penalty (SCADMAVE) 

Fan and Li [9] demonstrated the oracle properties for the SCAD in the 
variable selection aspect. The SCAD penalty Fan and Li [9] defined on 
[ )∞,0  is given by 

 ( ) ( )

( )
( )














λ>θ
−
−λ

λ≤θ<λ
−

λ+θ−λθ

λ≤θλθ

=θλ

,if12
1

,if1
5.0

,if

22

22
,

cc
c

cc
cp cSCAD  (13) 

and its first derivative is given by 

 ( )
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λ≤θλ

=θ′ λ
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,if

c

cc
cpSCAD  (14) 

where 2>c  and 0≥λ  are tuning parameters. 

The SCAD penalized regression solves the following minimization 
problem: 

 ( ) ( ) .min
1 1

,
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T
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 (15) 

Sparse MAVE with SCAD penalty has been proposed as follows: 

 [ { ( )}] ( ) .min
1 1 1
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k
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The algorithm of Sparse MAVE with SCAD penalty is similar to the 

algorithm in Section 3, except in step 3, for given ( ),ˆ,ˆ jja b  ,...,,1 nj =  
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mSCADβ  can be obtained by solving the following minimization problem: 

[ { ( ) ( )}]





−+−∑∑

= =
−
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j
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i
ij
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m
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1 1
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p
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1
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and then we follow the same steps in the algorithm in Section 3. 

6. Sparse MAVE with MCP Penalty (MCPMAVE) 

Zhang [11] proposed a minimax concave penalty MCP. The MCP 
provides the convexity of the penalized loss in sparse regions to the greatest 
extent given certain thresholds for variable selection and unbiasedness. 

The MCP Zhang [11] defined on [ )∞,0  is given by 

 ( )










λ>θλ

λ≤θθ−λθ
=θλ

,if2
1

,if2

2

2

,

cc

ccp cMCP  (18) 

and its first derivative is given by 

 ( )








λ>θ

λ≤θθ−λ
=θ′ λ

,if0

,if
,

c

ccp cMCP  (19) 

where 1>c  and 0≥λ  are tuning parameters. The rationale behind the 
penalty can be understood by considering its derivative: MCP begins by 
applying the same rate of penalization as the Lasso, but continuously relaxes 
that penalization until, when ,λ>θ c  the rate of penalization drops to 0. 

The MCP penalized regression solves the following minimization 
problem: 
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Sparse MAVE with MCP penalty has been proposed as follows: 
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The algorithm of Sparse MAVE with the MCP penalty is similar to the 

algorithm in Section 3, except in step 3, for given ( ),ˆ,ˆ jja b  ,...,,1 nj =  

mSCADβ  can be obtained by solving the following minimization problem: 

[ { ( ) ( )}]
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1
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and then we follow the same steps in the algorithm in Section 3. 

The R codes for the proposed methods are available from the authors. 

7. A Simulation Study 

Many simulations have been carried out in order to check the feasibility 
of the proposed methods and some typical examples are reported below: 

Example 1. 200=R  data-sets were generated with size 200=n  

observations from the model ( )
{ ( ) }

,2.0
5.15.0 2

2

1 ε+
+β+

β=
X
X

T

T
y  where =X  

( ) ,...,, 101
Txx  ix  and ε are independent and are identically distributed 

standard normal random variables, ( )T0...,,0,11 =β  and ( ) .0...,,0,1,02
T=β  

( ) ( ).2X BspanS YE =|  
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Example 2. 200=R  data-sets were generated with size 60=n  and 

120 observations from the linear model ,5.0 ε+β= XTy  where =X  

( ) ,...,, 241
Txx  ix  and ε are independent and are identically distributed 

standard normal random variables, ( ) .0...,,0,1,1,1 T=β  ( ) ( ).1X BspanS YE =|  

To assess the impact of correlated predictors on the performance of our 
proposed methods, we also adopt Tibshirani’s [8] correlated predictors 

setting to generate X from a multivariate normal with ( ) ji
ji xxcov −= 5.0,  

for this model. 

Example 3. 200=R  data-sets were generated with size 200=n  

observations from the model ( ) ( ) ,2.0logsign 21 ε++ββ= 5XX TTy  where 

( ) ,...,, 201
Txx=X  ix  and ε are independent and are identically distributed 

standard normal random variables. There are three different forms for 1β  and 

2β  as follows: 

(1) ( )T0...,,0,1,1,1,11 =β  and ( ) .1,1,1,1,0...,,02
T=β  

(2) ( )T0...,,0,1.0,1.0,1,11 =β  and ( ) .1,1,1.0,1.0,0...,,02
T=β  

(3) ( )T0...,,0,1...,,11 =β  and ( ) ,1...,,1,0...,,02
T=β  where there are 

10 coordinates equal to one in each direction. 

( ) ( ).2X BspanS YE =|  

Example 4. 200=R  data-sets were generated with size 60=n  and 

120 observations from the linear model ,5.0 ε+β= XTy  where =X  

( ) ,...,, 241
Txx  ix  and ε are standard normal random variables, =β  

( ) .1...,,1 T  ( ) ( ).1X BspanS YE =|  This model (Zhou and He [16, model 4]) 

has no sparseness in the predictors. 
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After we write the first term in equations (12), (17) and (22) in least 
squares form, we use the functions (adalasso) from Package ‘parcor’ 
(Kraemer and Schaefer [20]), ncvreg (, penalty=c(“SCAD”)), and ncvreg          
(, penalty=c(“MCP”)) from Package ‘ncvreg’ in R (Breheny and Huang [21]) 
to do the computations in equations (12), (17) and (22), respectively.  

To evaluate the estimation accuracy, we report the mean and standard 
deviation of the absolute correlation ir  between the estimated predictor 

XT
jβ̂  and the true one XT

jβ  and the mean and standard deviation of the 

mean squared error, ( ) .ˆˆ 2XX T
j

T
jE β−β  

According to the mean and standard deviation of the absolute correlation 

ir  between the estimated predictor XT
jβ̂  and the true one ,XT

jβ  and the 

mean and standard deviation of the mean squared error, ( ) .ˆˆ 2XX T
j

T
jE β−β  

From Tables 1, 2 and 3, it can be seen that the proposed methods (ALMAVE 
and SCADMAVE) have a better performance than the other methods for all 
cases under consideration except in Example 3, case (1) where the proposed 
methods (ALMAVE and MCPMAVE) were the best two methods amongst 
of all the methods. Also, we can see from Table 4 that the proposed methods 
(SCADMAVE and MCPMAVE) have a better performance than the other 
methods. In general, this indicates that the proposed methods give precise 
estimates and these methods are more significantly efficient than the 
SMAVE method. 

It can be observed that in all of the examples, the proposed methods 
produce a lower mean squared error and bigger absolute correlation ir  than 

the SMAVE method. The variations in the ALMAVE, SCADMAVE and 
MCPMAVE estimates are approximately similar in the majority of cases and 
less than the variations in the estimate of the SMAVE method. 
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8. Real Data Examples 

8.1. Air pollution data 

In this subsection, we illustrate our methods through an analysis of air 
pollution data. The data consist of 500=n  observations that originate in a 
study where air pollution on a road is related to traffic volume and 
meteorological variables. 

The data-set is available at the website http://lib.stat.cmu.edu/datasets/ 
NO2.dat. The response variable Y is hourly values of the logarithm of        
the concentration of Nitrogen dioxide (particles), measured at Alnabru                
in Oslo, Norway, between October 2001 and August 2003. The 7=p  

predictor X variables are the logarithm of the number of cars per hour ( ),1x  

temperature 2m above ground ( ),Cdegree,2x  wind speed ( ),sm,3x  the 

temperature difference between 25 and 2m above ground ( ),Cdegree,4x  

wind direction ,( 5x  degrees between 0 and 360), hour of day ( )6x  and day 

number from October 1st, 2001 ( ).7x  

Table 5 reports the values of the adjusted R-squared for the model fit 
based on air pollution data for all the studied methods. All of these methods 
find nonlinear structure, which can be approximated by a cubic fit, and the 
adjusted R-squared is a little bit larger than SMAVE (Wang and Yin [19]) for 
the ALMAVE method (adjusted R-squared=0.94), and it is similar to the 
SMAVE for the other methods (adjusted R-squared=0.93). 

Table 6 presents the prediction error of the models which are selected by 
the studied methods based on air pollution data for the cubic fit. It is clear 
that all of the proposed methods have less prediction error than the SMAVE 
method. This means, these methods have better performance than the 
SMAVE method. 

Figure 1 presents a plot and explains the estimated β̂ ’s which are 

estimated by studied methods based on air pollution data. It can be seen from 
this figure that the estimated coefficients for the SMAVE, SCADMAVE and 
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MCPMAVE methods were approximately similar maybe because they have 
the same value for the adjusted R-squared. 

8.2. Body fat data 

Percentage of body fat is an important measure of health, which can be 
accurately estimated by underwater weighing techniques. These techniques 
often require special equipment and are sometimes not easily achieved, thus 
fitting percentage body fat to simple body measurements is a convenient way 
to predict body fat. Johnson [22] introduced a data-set in which percentage 
body fat and 13 simple body measurements (such as weight, height and 
abdomen circumference) are recorded for 252 men. The data-set is available 
at the package (‘mfp’) in R. The response variable Y is the percent body fat 
(%). The 13=k  predictor variables x are the age (years) ,1x  the weight 

(pounds) ,2x  the height (inches) ,3x  the neck circumference (cm) ,4x  the 

chest circumference (cm) ,5x  the abdomen circumference (cm) ,6x  the           

hip circumference (cm) ,7x  the thigh circumference (cm) ,8x  the knee 

circumference (cm) ,9x  the ankle circumference (cm) ,10x  the extended 

biceps circumference ,11x  the forearm circumference (cm) 12x  and the wrist 

circumference (cm) .13x  

Table 7 reports the values of the adjusted R-squared for the model fit 
based on body fat data for all the studied methods. All of these methods find 
the nonlinear structure better than the linear, and the adjusted R-squared is 
same for the all methods and for the all fitted models. 

Table 8 presents the prediction error of the models which are selected by 
the studied methods based on body fat data for the cubic fit. It is clear that all 
of the proposed methods have better performance than the SMAVE method. 
In general, the results are similar to those which are based on the air pollution 
data in Table 6. 

Figure 2 presents a plot and explains the estimated β̂ ’s which are 

estimated by studied methods based on body fat data. It can be seen from this 
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figure that there are no big differences among the estimated coefficients for 
all of the methods. 

9. Conclusions 

In this study, Sparse MAVE with Adaptive Lasso, SCAD and MCP 
penalties methods have been proposed. The proposed methods have been 
theoretically investigated and numerically compared with Sparse MAVE 
(Wang and Yin [19]). In order to assess the numerical performance, a 
simulation study was conducted based on the models in Examples 1, 2, 3 and 
4 as described in Section 7. From the simulation study and the real data 
examples, it can be concluded that the proposed methods perform well in 
comparison to Sparse MAVE (Wang and Yin [19]) and thus the authors 
believe that the proposed methods are useful practically. 
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Table 1. Simulation results for the studied methods based on the model in 
Example 1 

 
1β̂  2β̂  

 1r  1r  MSE MSE 2r  2r  MSE MSE 

 Mean SD Mean SD Mean SD Mean SD 

SMAVE 0.9516 0.0497 0.0005 0.0005 0.8090 0.1266 0.0060 0.0080 

ALMAVE 0.9791 0.0422 0.0003 0.0001 0.9840 0.0338 0.0003 0.0006 

SCADMAVE 0.9619 0.0425 0.0004 0.0004 0.8511 0.1103 0.0028 0.0065 

MCPMAVE 0.9590 0.0479 0.0004 0.0005 0.8263 0.1146 0.0058 0.0075 

Table 2. Simulation results for the studied methods based on the model in 
Example 2 

 Independent predictors Correlated predictors 

 r  r  MSE MSE r  r  MSE MSE 

 Mean SD Mean SD Mean SD Mean SD 

  60=n    60=n   

SMAVE 0.9796 0.0075 0.0155 0.0400 0.9479 0.1085 0.0119 0.0088 

ALMAVE 0.9918 0.0074 0.0147 0.0360 0.9866 0.0348 0.0112 0.0074 

SCADMAVE 0.9919 0.0074 0.0149 0.0363 0.9866 0.0349 0.0111 0.0074 

MCPMAVE 0.9920 0.0100 0.0157 0.0380 0.9865 0.0350 0.0111 0.0088 

  120=n    120=n   

SMAVE 0.98985 0.00465 0.0050 0.0100 0.9934 0.0022 0.0062 0.0087 

ALMAVE 0.99689 0.00305 0.0043 0.0065 0.9988 0.0007 0.0057 0.0081 

SCADMAVE 0.99561 0.00464 0.0044 0.0065 0.9982 0.0015 0.0060 0.0082 

MCPMAVE 0.99559 0.00489 0.0045 0.0066 0.9978 0.0019 0.0061 0.0085 
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Table 3. Simulation results for the studied methods based on the model in 
Example 3 

 
1β̂  2β̂  

 r  r  MSE MSE r  r  MSE MSE 

 Mean SD Mean SD Mean SD Mean SD 
    Case (1)     

SMAVE 0.9760 0.0071 0.0062 0.0087 0.8603 0.1045 0.0095 0.0096 
ALMAVE 0.9938 0.0029 0.0061 0.0080 0.9641 0.0882 0.0045 0.0028 

SCADMAVE 0.9924 0.0062 0.0062 0.0082 0.8674 0.1075 0.0088 0.0076 
MCPMAVE 0.9934 0.0043 0.0062 0.0080 0.8729 0.0889 0.0086 0.0074 

    Case (2)     
SMAVE 0.9798 0.0078 0.0009 0.0012 0.6903 0.2194 0.0036 0.0066 

ALMAVE 0.9954 0.0024 0.0007 0.0008 0.8049 0.1202 0.0015 0.0032 
SCADMAVE 0.9920 0.0055 0.0008 0.0010 0.7348 0.1213 0.0016 0.0038 
MCPMAVE 0.9918 0.0059 0.0009 0.0011 0.6972 0.2359 0.0039 0.0069 

    Case (3)     
SMAVE 0.9159 0.0408 0.0192 0.0165 0.9313 0.0398 0.0239 0.0355 

ALMAVE 0.9409 0.0360 0.0179 0.0145 0.9545 0.0309 0.0231 0.0354 
SCADMAVE 0.9189 0.0360 0.0190 0.0163 0.9352 0.0309 0.0238 0.0355 
MCPMAVE 0.9158 0.0365 0.0192 0.0163 0.9332 0.0337 0.0240 0.0356 

Table 4. Simulation results for the studied methods based on the model in 
Example 4 

 r  r  MSE MSE 

 Mean SD Mean SD 
  60=n    

SMAVE 0.9959 0.0101 0.0564 0.0645 
ALMAVE 0.9466 0.1895 0.0587 0.0653 

SCADMAVE 0.9958 0.0100 0.0563 0.0645 
MCPMAVE 0.9958 0.0100 0.0563 0.0645 

  120=n    
SMAVE 0.9976 0.0008 0.0619 0.0557 

ALMAVE 0.9976 0.0009 0.0619 0.0559 
SCADMAVE 0.9975 0.0008 0.0619 0.0557 
MCPMAVE 0.9975 0.0008 0.0619 0.0557 
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Table 5. The values of the adjusted R-squared for the model fit based on air 
pollution data 

  SMAVE ALMAVE SCADMAVE MCPMAVE 

Linear 0.76 0.93 0.76 0.76 

Quadratic 0.90 0.94 0.90 0.90 

Cubic 0.93 0.94 0.93 0.93 

Model fit 

Quartic 0.93 0.94 0.93 0.93 

Table 6. Prediction error of the models which are selected by the studied 
methods based on air pollution data 

Method Prediction error 

SMAVE 0.7768 

ALMAVE 0.6692 

SCADMAVE 0.7740 

MCPMAVE 0.7741 

Table 7. The values of the adjusted R-squared for the model fit based on 
body fat data 

 SMAVE ALMAVE SCADMAVE MCPMAVE 

Linear 0.92 0.92 0.92 0.92 

Quadratic 0.95 0.95 0.95 0.95 

Cubic 0.96 0.96 0.96 0.96 

Model fit 

Quartic 0.96 0.96 0.96 0.96 

Table 8. Prediction error of the models selected by the studied methods 
based on body fat data 

Method Prediction error 

SMAVE 24.4095 

ALMAVE 22.6263 

SCADMAVE 23.5089 

MCPMAVE 23.0635 
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Figure 1. Plot and explanation of the estimated β̂  which is estimated by 

studied methods based on air pollution data. 

 

Figure 2. Plot and explanation of the estimated β̂  which is estimated by 

studied methods based on body fat data. 


