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The aim of this study is to obtain robust canonical vectors and correlation coefficients based on the
percentage bend correlation and winsorized correlation in the correlation matrix and fast consistent high
breakdown (FCH), reweighted fast consistent high breakdown (RFCH), and reweighted multivariate normal
(RMVN) estimators to estimate the covariance matrix and then compare these estimators with the existing
estimators. In the correlation matrix of canonical correlation analysis (CCA), we present an approach that
substitutes the percentage bend correlation and the winsorized correlation in place of the widely employed
the Pearson correlation. Moreover, we employ the FCH, RFCH, and RMVN estimators to estimate the
covariance matrix in the CCA. We conduct a simulation study and employ real data with the objective
of comparing the performance of the different estimators for canonical vectors and correlation with that
of our proposed approaches. The breakdown plots and independent tests are employed as differentiating
criteria of the robustness and performance of the estimators. Based on our computational and real data
studies, we propose suggestions and guidelines on the practical implications of our findings.

Keywords: dimension reduction; robust canonical correlation

1. Introduction

Canonical correlation analysis (CCA), originally proposed by Hotelling [1], is a method used for
measuring the linear relationship between two multidimensional variables. This method can be
seen as the problem of finding basis vectors for two sets of variables such that the correlations
between the projections of the variables into these basis vectors are mutually maximized.

Suppose that X is a p-dimensional random variable and Y is a q-dimensional random variable,
with p ≤ q. Furthermore, suppose that X and Y have the covariance matrix (if it exists)

∑
=

⎛
⎜⎜⎝

∑
XX

∑
XY∑

YX

∑
YY

⎞
⎟⎟⎠, (1)

where
∑

XX and
∑

YY are non-singular. The objective of the CCA is to study the linear relationship
between X and Y as measured by the correlation between the linear combination of both sets of
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variables. Specifically, we look for

(α1, β1) = argmaxa,b Corr(atX, btY), (2)

where Corr is the Pearson correlation and the vectors α1 ∈ Rp and β1 ∈ Rq are the resulting first
pair of canonical vectors. The linear combinations U1 = αt

1X and V1 = β t
1Y are called the first

pair of canonical variates. Note that according to Equation (2), the vectors α1 and β1 are only
determined up to a multiple, and in order to identify them uniquely (up to a sign), the maximizing
linear combinations are normalized as Var(αt

1X) = Var(β t
1Y) = 1.

While the first canonical vectors are useful, they do not capture the complete dependency
structure between X and Y . To this end, higher order canonical vectors defined for k = 2, 3, . . . , p as

(αk , βk) = argmaxa,b Corr(atX, btY) (3)

are used where the pairs of canonical variates of order k are Uk = αt
kX and Vk = β t

kY and

Cov(Uk , Uj) = αt
k

∑
XX

αj = Cov(Vk , Vj) = β t
k

∑
XX

βj =
{

1 if k = j,

0 if 1 ≤ j < k.
(4)

The correlation ρk between the canonical variates of the kth pair, ρk = Corr(Uk , Vk), is the
kth canonical correlation. Moreover, the canonical vectors αk and αk are the eigenvectors
corresponding to the eigenvalues ρ2

1 ≥ · · · ≥ ρ2
p > 0 of the matrices

∑
A

=
−1∑
XX

∑
XY

−1∑
YY

∑
YX

and
∑

B

=
−1∑
YY

∑
YX

−1∑
XX

∑
XY

(5)

or

RA = R−1
XXRXY R−1

YY RYX and RE = R−1
YY RYXR−1

XXRXY , (6)

where R =
(

RXX RXY

RYX RYY

)
is the correlation matrix. The matrices in Equations (5) and (6) have

the same eigenvalues, ρ2
k , which correspond to the squared canonical correlations.

A major attraction of the CCA is its application for dimension reduction and thus it acts
as a valuable tool that facilitates the understanding of complex relationships among sets of
variables [2].

To estimate the population canonical correlations and canonical vectors, we first estimate
∑

by the sample covariance matrix followed by the computation of the eigenvalues and eigenvectors
of the matrices

∑
A and

∑
B as given by Equation (5). This procedure is best when X and Y are

from a multivariate normal distribution; however, it appears to be less efficient with respect to
outlying observations. From a practical point of view, it is well known that the sample covariance
matrix is not resistant to outliers and thus a canonical analysis based on this matrix will result in
uncertain and misleading results. Similarly, Romanazzi [3] showed that the classical canonical
vectors and correlations are also sensitive to outlying observations. Consequently, in order to
obtain accuracy and robustness, there is a need to estimate the population covariance matrix using
robust approaches.

An apparent approach to ‘robustify’ canonical correlation is to estimate sample covariance or
correlation matrix using methods that can account for outliers. One such approach was presented
by Karnel [4], who considered M-estimators of multivariate location and scatter as robust esti-
mators of

∑
and then followed the classical approach. However, the robustness properties of the

M-estimators are poor in high dimensions.
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692 A. Alkenani and K. Yu

There are many robust estimators for robust multivariate location and dispersion. The fastest
estimator of multivariate location and dispersion that has been shown to be both consistent and
having a high breakdown point is the minimum covariance determinant (MCD) estimator with
O(nν) complexity, where v = 1 + (p(p + 3)/2) [5]. The complexity of the minimum volume
ellipsoid (MVE) estimator is far higher, and there may be no known method for computing S, τ ,
projection-based, constrained M, M-estimate of the scale of the residuals and M-estimate of the
parameters, and Stahel–Donoho estimators [6].

Since the above estimators are computationally time consuming, they have been replaced by
practical estimators which strike a balance between accuracy and computing cost. However, none
of the practical estimators have been shown to be consistent and having a high breakdown point.
For example, the Rousseeuw and Van Driessen [7] fast minimum covariance determinant (FMCD)
estimator is used to replace the MCD estimator. So, the robust multivariate techniques (one of
which is the robust canonical correlation) that claim to use the impractical MCD estimator actually
use the Rousseeuw and Van Driessen [7] FMCD estimator.

Croux and Dehon [8] used the FMCD estimator (see [7,9] for a fast algorithm). Taskinen
et al. [10] obtained the influence function and asymptotic distributional properties for CCA based
on robust estimates of the covariance matrix. Following the approach suggested by Wold [11],
Filzmoser et al. [12] devised a robust method for obtaining the first canonical variates using robust
alternating regressions (RARs).

Branco et al. [13] compared and discussed a number of approaches for robust canonical correla-
tion analysis (RCCA), and they proposed a robust method for obtaining all the canonical variates
using RARs. They suggested that the canonical correlation estimators based on the FMCD estima-
tor for the covariance matrix are often preferred due to their high breakdown point. Furthermore,
the simulations which they conducted clearly indicate that the FMCD estimator is preferable,
even for relatively small levels of contamination.

Jiao and Jian [14] studied the association between two sets of random variables based on the
projection pursuit (pp) method, and they derived the asymptotic normal distributions of estima-
tors of the pp based on canonical correlations and canonical vectors. Recently, Kudraszow and
Maronna [15] proposed a method for the RCCA based on the prediction approach.

Olive and Hawkins [6] showed that the FMCD estimator is not a high breakdown estimator.
They proposed practical

√
n consistent outlier resistant estimators for multivariate location and

dispersion. They suggested that the fast consistent high breakdown (FCH) estimator is fast, consis-
tent, and highly outlier resistant and that the reweighted fast consistent high breakdown (RFCH)
estimator is the reweighted FCH estimator, and they used the reweighted multivariate normal
(RMVN) estimator for CCA, discrimination, factor analysis, principal components, and regres-
sion. The RMVN estimator uses a slightly modified method for reweighting such that it gives good
estimates of (μ,

∑
) for multivariate normal data, even when certain types of outliers are present.

Zhang and Olive [16] used the RMVN estimator with principle component analysis. They
suggested the application of the classical multivariate procedures to the RMVN subset. Zhang
[17, Ch. 5] used the RMVN estimator for CCA.

The computational complexity of the FCH, RFCH, and RMVN estimators is O[p3 + np2 +
nplog(n)], and these estimators are roughly 100 times faster than the FMCD estimator [18].

Cannon and Hsieh [19] suggested the use of robust variants of nonlinear canonical correlation
analysis (NLCCA) to improve performance on data sets with low signal-to-noise ratios. To achieve
this, they employed a neural network model architecture of standard NLCCA; however, the cost
functions used to set the model parameters were replaced with more robust variants, and in the
double-barreled network, the Pearson correlation was replaced with a biweight midcorrelation.

Wilcox [20] studied the percentage bend correlation which is motivated in part by asymptotic
results associated with the M-estimators of location and the percentage bend measure of scale
studied by Shoemaker and Hettmansperger [21].
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Wilcox [22] stated that robust versions of the Pearson correlation are divided into two types.
The first type are those that ‘robustify’ against outliers without taking into account the general
structure of the data, whereas the second type take into account the general structure of the data
when dealing with outliers. In the literature, the first and second types are, respectively, referred
to as the M correlation and the O correlation. Moreover, Wilcox [22] described the four types of
M correlations as the percentage bend correlation, the biweight midcorrelation, the winsorized
correlation, and Kendall’s tau correlation. Similarly, he also presented a number of O correlation
methods such as the fast minimum volume ellipsoid (FMVE), FMCD, and skipped measures of
correlations. The FMVE and FMCD measures employ the central half of the data to estimate
location, scatter, covariance, and correlation. For instance, one can simply compute the Pearson
correlation based on the central half of the data. Skipped correlations are obtained by detecting
the outliers using one of the multivariate outlier detection methods (for details, see [22], Section
6.4) and then removing these outliers and applying some of the correlation coefficients to the
remaining data.

To our knowledge, there is no research paper that has focused on replacing the Pearson correla-
tion in the correlation matrix of canonical correlation with the percentage bend correlation and the
winsorized correlation. However, Olive and Hawkins [6] suggested using the FCH, RFCH, and
RMVN estimators for CCA, discrimination, factor analysis, principal components, and regres-
sion, and Zhang [17, CH.5] used the RMVN estimator for CCA, but until now, no research has
employed the FCH and RFCH estimators to estimate the covariance matrix in the CCA. To this
end, the goal of this paper is to obtain robust canonical vectors and correlation coefficients that
depend on percentage bend correlation and the winsorized correlation in the correlation matrix.
Furthermore, we aim to employ the FCH and RFCH estimators to estimate the covariance matrix
and then compare these estimators with other known estimators.

In this paper, we conduct a comparative study to explore the performance of 13 different
estimators for canonical vectors and correlation. Simulation studies are used to compare the
numerical performances of the 13 different estimators under different sampling schemes similar
to that done in [13]. To assess the robustness of the estimators, we make use of the breakdown
plots and apply the test of independence.

In Section 2, 12 different robustifications of CCA are discussed. In Section 3, the different
estimators are compared using a simulation study. In Section 4, we use the breakdown plots to
study the robustness of the estimators. In Section 5, tests of independence are done for the different
estimators. The conclusions are summarized in Section 6.

2. RCCA based on robust correlation coefficients and robust covariance matrix

2.1. The percentage bend correlation

Let a special case of Huber’s function be defined as

ψ(χ) = max[−1, min(1, χ)].

Furthermore, let θx and θy be the respective population medians for the random variables X and
Y and define Wx as the solution of the following equation:

P(|X − θx| < Wx) = 1 − β. (7)

Let Φpbx and Φpby denote the percentage bend measure of location for X and Y , respectively. Fur-
thermore, let U = (X − Φpbx)/Wx and V = (Y − Φpby)/Wy such that [ψ(U)] = E[ψ(V)] = 0.
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694 A. Alkenani and K. Yu

The percentage bend correlation between X and Y is

ρpb = E{ψ(U)ψ(V)}√
E{ψ2(U)}E{ψ2(V)} , (8)

where −1 ≤ ρpb ≤ 1 and ρpb is a robust measure of the linear association between X and Y
such that the variables X and Y are said to be independent when ρpb = 0. It can be noted that
ρpb depends in part on the measure of scale, Wx, which is a generalization of median absolute
deviation (MAD). Similarly, Wx is a measure of dispersion when ψ(X) = max[−1, min(1, χ)].

The Huber’s function is selected to be used in the percentage bend correlation for a number
of reasons. First, Huber’s function is a monotonic function. Second, Huber’s function gives a
consistent estimator of location. Third, it is has the convenient feature of a single iteration being
sufficient in the applied work. Finally, when ψ(X) = max[−1, min(1, x)], the resulting measure
of scale is a measure of dispersion [20].

To estimate the percentage bend correlation,

(1) Let (X1, Y1), . . . , (Xn, Yn), be a random sample. Let Mx be the sample median for the
observations X1, . . . , Xn. Select a value for β, where 0 ≤ β ≤ 0.5.

(2) Compute Wi = |Xi − Mx| and m = [(1 − β)n], and let ŵx = W(m), where W(1) ≤ · · · ≤ W(n)

are the Wi values written in ascending order.
(3) Compute Sx = ∑n−i2

i=i1+1 X(i), �x = (ŵx(i2 − i1) + Sx)/(n − i1 − i2), where i1 is the number
of Xt values such that (Xi − Mx)/ŵx < −1 and i2 is the number of Xt values such that (Xi −
Mx)/ŵx > 1.

(4) Set Ui = (Xi − �x)/ŵx. Repeat these computations for the Yi values, Vi = (Yi − �y)/ŵy.
(5) The estimated percentage bend correlation (rpb) between X and Y is

rpb =
∑

AiBi√∑
Ai

2
∑

Bi
2

, (9)

where AiBi = ψ(U1)ψ(Vi), Bi = ψ(Vi) and ψ(x) = max[1−, min(1, x)].

To test the hypothesis

H0 : ρpb = 0, (10)

when X and Y are independent, we need to compute

Tpb = rpb

√
n − 2

1 − r2
pb

. (11)

We reject H0 if |Tpb| > t1−α , the 1 − α quantile of Student’s t distribution with v = n − 2 degrees
of freedom.

2.2. The biweight midcorrelation

Let ψ be any odd function and let μx and μy be any measure of location for random variables
X and Y , respectively. Let τx, and τy be some measure of scale for random variables Xand Y ,
respectively. Let K be some constant and let U = (X − μx)/(Kτx) and V = (Y − μy)/(Kτy).
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Then, a measure of covariance between X and Y is

γxy = nK2τxτyE{ψ(U)ψ(V)}
E{ψ(U)ψ(V)} (12)

with a corresponding measure of correlation given by

ρb = (γxy)/(
√

γxxγyy) − 1 ≤ ρb ≤ 1. (13)

Wilcox [22] chose ψ as the biweight function and K = 9, where the biweight function is defined
as follows:

ψ(x) =
{

x(1 − x2)2 if |χ | < 1,

0 if |χ | ≥ 1.
(14)

Let Mx and My denote the respective medians calculated from the random samples
(X1, Y1), . . . , (Xn, Yn). Define Ui = (Xi − Mx)/(9 MADx) and Vi = (Yi − My)/(9 MADy), then
the MADx and MADy are the values of MAD for the X and Y values.

Let

ai =
{

1 if − 1 ≤ Ui ≤ 1,

0 otherwise.

bi =
{

1 if − 1 ≤ Vi ≤ 1,

0 otherwise.

It follows that the sample biweight midcovariance between X and Y is

bicov(x, y) = n
∑

ai(Xi − Mx)(1 − U2
i )2bi(Yi − My)(1 − V 2

i )2

(
∑

ai(1 − U2
i )(1 − 5U2

i ))(
∑

bi(1 − V 2
i )(1 − 5V 2

i ))
, (15)

and the biweight midcorrelation is then given by

rb = bicov(x, y)√
bicov(x, x)bicov(y, y)

. (16)

To test the null hypothesis

H0 : ρb = 0 (17)

when x and y are independent, we need to compute the test statistic

Tb = rb

√
n − 2

1 − r2
b

, (18)

and we reject H0 if |Tb| > t1−α/2, the 1 − α/2 quantile of Student’s t distribution with v = n − 2.

2.3. The winsorized correlation

The population winsorized correlation between two random variables X1 and X2 is given by

ρw = E{(X1 = μw1)(X2 − μw2)}
σw1σw2

= σw12

σw1σw2
, −1 ≤ ρw ≤ 1. (19)

where σwj is the population winsorized standard deviation of Xj and Ew(X) is the winsorized
expected value of X .
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696 A. Alkenani and K. Yu

To estimate ρw, based on the random sample (X11, X12), . . . , (Xn1, Xn2), first winsorize the
observations by computing the Yij values as follows:

Yij =

⎧⎪⎨
⎪⎩

X(g+1)j if Xij ≤ X(g+1)j ,

Xij if X(g+1)j < Xij < X(n−g)j ,

X(n−g)j if Xij ≥ X(n−g)j ,

(20)

where g is the number of observations trimmed or Winsorized from each end of the distribution
corresponding to the jth group. Then ρw is estimated by computing the Pearson’s correlation with
the Yij values:

rw =
∑

(Yi1 − Ȳ1)(Yi1 − Ȳ2)√∑
(Yi1 − Ȳ1)2

∑
(Yi2 − Ȳ2)2

. (21)

To test the null hypothesis

H0 : ρw = 0 (22)

we need to compute

Tw = rw

√
n − 2

1 − r2
w

(23)

and we reject H0 if |Tw| > t1−α/2, 1 − α/2 quantile of Student’s t distribution with v = h − 2
degrees of freedom, where h, the effective sample size, is the numbher of pairs of observations
that are not winsorized.

2.4. Kendall’s tau correlation

Kendall’s tau correlation is a non-parametric M-type correlation. Because of being resistant to
outlying observations, it is often said to be robust. Let two pairs of observations (X1, Y1) and
(X2, Y2) be such that X1 < X2 and assuming that tied values never occur. If Y1 < Y2, then (X1, Y1)

and (X2, Y2) will be concordant; otherwise (X1, Y1) and (X2, Y2) are discordant.
For n pairs of points, let

Sij =
{

1 if ith and jth are concordant,

−1 otherwise.

Kendall’s tau correlation formula is

rτ = 2
∑

i<j Sij

n(n − 1)
. (24)

Although Kendall’s tau correlation provides resistance against outliers, the presence of outliers
can substantially change its value.

Under independence, the population Kendall’s tau correlation ρτ = 0.
To test the null hypothesis

H0 : ρτ = 0 (25)

we compute

z = 6
∑

i<j Sij√
2n(n − 1)(2n + 5)

. (26)

If |Z| > Z1−α/2, our decision will be to reject H0.
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To compare the canonical correlation estimators based on Kendall’s tau correlation with
other canonical correlation estimators, we apply the transformation sin

(
π
2 ρτ

)
to get a consistent

estimation under normality.

2.5. Spearman’s rho correlation

Spearman’s rank correlation ρs is the most popular non-parametric correlation, which is just a
Pearson correlation based on the ranks of the observations. This correlation provides resistance
against outliers; however, outliers that are properly placed can alter its value considerably. In
applications where ties are known to be absent, a simpler procedure can be used to calculate rs.
The differences, di = xi = yi, between the ranks of each observation on the two variables were
calculated by Myers and Arnold [23] and ρs was given by

rs = 1 − 6
∑

d2
i

n(n2 − 1)
. (27)

When sampling from a bivariate normal distribution, rs does not estimate the same quantity as the
Pearson correlation. To compare the estimators of canonical correlations based on Spearman’s
rho correlation with other estimators, we need to apply the transformation sin

(
π
2 ρτ

)
to get a

consistent estimation under normality.
The population Spearman’s tau correlation ρs = 0 under independence. To test

H0 : ρs = 0, (28)

we need to calculate the statistic

Ts = rs

√
n − 2

1 − r2
s

. (29)

Our decision will be to reject H0 if |Ts| > t1−α/2, the 1 − α/2 quantile of Student’s t distribution
with v = n − 2 degrees of freedom.

2.6. The MVE estimator

The MVE estimator is one of the affine-equivariant estimators having a high breakdown point
(for details, see [24]). Assume any ellipsoid containing half of the data. The idea is to find the
ellipsoid having the smallest volume among all the ellipsoids. When we find this ellipsoid, the
mean and covariance matrix of its points are taken as the estimated measures of location and
scatter, respectively. In the multivariate normal model, the covariance matrix needs to be rescaled
to get consistency. In general, the group of all ellipsoids containing half of the data is very large,
so the approximation must be used to find the MVE.

Let h = (n/2) + 1, rounded down to the nearest integer. An approach to computing the FMVE
estimator is to randomly select h points, without replacement, from the n points available, compute
the volume of the ellipse containing these points and then repeat this process many times. The
FMVE ellipsoid will be the set of points giving the smallest volume.

2.7. The MCD estimator

The MCD estimator is also one among the affine-equivariant estimators having a high breakdown
point .The difference between the MCD and MVE estimators is that rather than searching for the
subset of half the data that has the smallest volume, the MVE estimator searches for the half that
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698 A. Alkenani and K. Yu

has the smallest generalized variance. The MCD estimator searches for the half of the data that
are most tightly clustered together among all the subsets containing half the data, as measured by
the generalized variance. Like the MVE estimator, the group of all subsets of half the data is very
large, hence an approximate method must be used. Rousseeuw and Van Driessen [7] described an
FMCD algorithm employed to achieve this aim. After we find an approximation of the subset of
half the data that minimize the generalized variance, we can obtain the MCD estimate of location
and scatter by computing the usual mean and covariance matrix based on this subset. In our
comparative study, we used the FMCD and reweighted MCD (WMCD) measures as practical
approximations for the MCD.

2.8. The constrained M-estimators

Rocke [25] suggested a modified biweight estimator, which is basically a constrained M-estimator,
where for values of g and a to be determined, the non-decreasing function ξ(d) is defined as

ξ(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2

2
− g2(g4 − 5g2a2 + 15a4)

30a4
+ d2

(
0.5 + g4

2a4
− g2

a2

)

+ d3

(
4g

3a2
− 4g3

3a4

)
+ d4

(
3g2

2a4
− 1

2a2

)
− 4gd5

5a4
+ d6

6a4

if g ≤ d ≤ g + a,

d2

2
if 0 ≤ d < g,

g2

2
+ a(5a + 16g)

30
if d > g + a.

(30)
The values of g and a can be chosen by an investigator to acquire the desired breakdown point
and the asymptotic rejection probability, approximately referring to the probability that a point
will get zero weight when the sample size is large. If the asymptotic rejection probability is to be
γ , say, then g and a are determined by Eχ2

p
(ξ(d)) = b0 and

g + a =
√

χ2
p,1−γ ,

where χ2
p,1−γ is the 1 − γ quantile of a chi-squared distribution with p degrees of freedom. Rocke

(1996) showed that this estimator can be computed iteratively.

2.9. The FCH estimator

Olive and Hawkins [6] proposed a robust
√

n consistent estimator. The FCH estimator uses the
√

n
consistent estimator, DGK (Devlin, Gnanadesikan, and Kettenring [26]) estimator and the high
breakdown estimator the Olive [27] median ball (MB) estimator as attractors. The FCH estimator
also uses a location criterion to choose the attractors. If the DGK location estimator TK ,D has a
greater Euclidean distance from MED(X) than half the data, then the FCH estimator uses the MB
attractor. The FCH estimator uses only the attractor with the smallest determinant if

‖TK,D − MED(X)‖ ≤ MED(Di(MED(X), Ip)). (31)

Let TA, CA be the attractor used. Then, the estimator (TF, CF) takes TF, TA and

CF = MED(D2
i (TA, CA))

χ2
p,0.5

CA, (32)
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where χ2
p,0.5 is the0.50th percentile of a chi-squared distribution with p degrees of freedom and F

is the FCH estimator. Olive and Hawkins [6] showed that TF is a high breakdown estimator and
CF is non-singular even with up to nearly 50% outliers.

2.10. The RFCH breakdown estimator

Olive and Hawkins [6] used a standard method of reweighting to produce the RFCH estimator.
The RFCH estimator uses two standard reweighting steps. Let (μ̂,

∑̃
1) be the classical estimator

applied to the n1 cases with D2
i (TFCH, CFCH) ≤ χ2

p,0.975 and let∑̂
1

= MED(D2
i (μ̂1,

∑̃
1))

χ2
p,0.5

∑̃
1
. (33)

Then, let (TRFCH,
∑̃

2) be the classical estimator applied to the cases with D2
i (μ̂1,

∑̃
1) ≤ χ2

p.0.975
and let

CRECH = MED(D2
i (TRFCH,

∑̃
2))

χ2
p,0.5

∑̃
2
. (34)

Olive and Hawkins [6] showed that the RFCH estimator is a
√

n consistent estimator of (μ, c
∑

).

2.11. The RMVN estimator

Olive and Hawkins [6] suggested the RMVN estimator as a robust multivariate location and
dispersion estimator, and they showed that this estimator is a (μ, d

∑
) consistent estimator of

(μ, d
∑

). The RMVN estimator uses a slight modification for a standard reweighting method so
that the RMVN estimator gives good estimates of (μ,

∑
) for multivariate normal data, even when

certain types of outliers are present (for details, see [6]).
The FCH, RFCH, and RMVN methods of RCCA produce consistent estimators of the

kth canonical correlation ρk on a large class of elliptically contoured distributions. To see

this, suppose Cov(x) = cx
∑

and C ≡ C(X)
P→ c

∑
, where cx > 0 and c > 0 are some con-

stants. Then, C−1
XY CXY C−1

YY CYX
P→ ∑

A = ∑−1
XX

∑
XY

∑−1
YY

∑
YX , and C−1

YY CYXC−1
XX CXY

P→ ∑
B =∑−1

YY

∑
YX

∑−1
XX

∑
XY . Note that

∑
A and

∑
E only depend on

∑
and do not depend on the constant

c or cx.
(If C is also the classical covariance matrix applied to some subset of the data, then the correla-

tion matrix G ≡ RC applied to the same subset satisfies G−1
XXGXY G−1

YY GYX
P→ RA = R−1

XXRXY R−1
YY RYX

and G−1
YY GYXG−1

XXGXY →P RE = R−1
YY RYXR−1

XXRXY ). Since eigenvalues are continuous functions of
the associated matrix, and the FCH, RFCH, and RMVN estimators are consistent estimators
of c1

∑
, c2

∑
, and c3

∑
on a large class of elliptically contoured distributions, these three

RCCA methods produce consistent estimators of the kth canonical correlation ρk on that class of
distributions.

Eigenvectors are not continuous functions of the associated matrix, hence it may not be true
that the three RCCA methods produce consistent estimators of the canonical vectors σk and βk . In
principal component analysis, the eigenvectors from two different methods often roughly differ
by a factor of −1. This may be the case for CCA, too.

3. Simulation study

In this section, we employ a simulation study to compare the different methods. We considered
the following:
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CL: Classical CCA based on eigenvalues and eigenvectors of the matrices (5), which were
estimated using the sample covariance matrix.

RP, RM, RW, RK, RS: CCA based on eigenvalues and eigenvectors of the matrices (6) after
we used the percentage bend correlation, the biweight midcorrelation, the winsorized correlation,
Kendall’s tau correlation, and Spearman’s rho correlation, respectively, instead of the Pearson
correlation.

MV, MC, WM, CM, FC, RF, RMV: CCA based on eigenvalues and eigenvectors of the matrices
(5), which are estimated using the FMVE, FMCD, WMCD, CM, FCH, RFCH, RMVN estimators
instead of the classical sample covariance matrix.

We used the functions pball and winall from the Wilcox package at http://www.unt.edu/rss/
class/mike/Rallfun-v9_2.txt to compute the percentage bend and the winsorized correlation matri-
ces, respectively. We used the function bicor from the package (weighted gene co-expression
network analysis (WGCNA)) to compute the midcorrelation matrix and the base functions
cor(,method = c("kendall")) and cor(, method = c("spearman")) to compute the Kendall and
the Spearman correlation matrices, respectively.

We used the base functions cov.mve and cov.mcd to compute the FMVE and FMCD covariance
matrices and covRob(,estim="weighted") and covRob(,estim="M") from the package (robust) to
compute the weighted MCD (WM) and constrained M (CM) covariance matrices, respectively.
The function covfch from the package (rpack.txt) at www.math.siu.edu/olive/rpack.txt was used to
compute the FCH and RFCH covariance matrices and the function covrmvn was used to compute
the RMVN covariance matrix.

We followed the simulation settings given in [13]. We generated m = 500 samples with size
n = 500 and assumed

∑
XX = Ip and

∑
YY = Iq. We summarize the choices for

∑
XY in Table 1.

Following the work of Branco et al. [13], the following sampling distributions were assumed:

(1) Normal distribution (NOR), Np+q(0,
∑

).
(2) Multivariate t distribution with three degrees of freedom.
(3) Symmetric contamination (SCN): there is a probability of 0.95 that an observation is generated

from Np,q(0,
∑

) and a 0.05 probability that it is generated from Np+q(0.9�).
(4) Asymmetric contamination (ACN): 95% of the data are generated from the Np+q(0,

∑
), and

5% of the observations equal the point tr(
∑

)1t (where tr(
∑

) is the trace of
∑

).

The estimated parameters for a replication j(j = 1, . . . , m) of a specific sampling distribution are
denoted by ρ̂

j
k , α̂j

k , and β̂
j
k for k = 1, . . . , l. These values were compared with the ‘true’parameters

ρk , αk , and βk , which were derived from the specific matrix
∑

. The measures of mean squared
error (MSE) were computed as follows:

MSE(ρ̂k) = 1

m

m∑
i=1

(φ(ρ̂
j
k) − φ(ρk))

2, (35)

Table 1. Simulation setup:
∑

XX = Ip and
∑

YY = I1.

p q
∑

XY

2 2

[
0.9 0
0 1/2

]

4 4

⎡
⎢⎣

0.9 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

⎤
⎥⎦
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Table 2. The MSEs of α1, α2, β1, β2, φ(ρ1), and φ(ρ2) multiplied by 1000 for 13 different methods – NOR – p = 2 and
q = 2.

α1 α2 β1 β2 φ(ρ1) φ(ρ2)

CL 22.33 44.07 22.41 44.29 2.02 2.21
RP 23.96 45.83 24.08 43.67 5.46 3.22
RM 22.92 44.71 23.23 43.62 2.44 2.39
RW 25.74 47.34 27.04 45.49 21.19 6.74
RK 21.91 39.74 21.75 38.69 2.30 2.57
RS 23.75 45.72 23.82 43.97 4.37 2.89
MV 28.48 56.15 28.73 54.79 3.35 3.68
MC 27.78 54.07 28.78 53.02 2.76 3.32
WM 27.12 55.78 27.99 54.04 3.11 2.90
CM 28.12 52.62 29.52 56.39 3.24 3.24
FC 62.89 123.70 60.29 121.65 16.26 16.72
RF 26.59 50.94 24.88 50.03 2.66 2.35
RMV 26.57 51.30 24.98 50.14 2.64 2.36

Table 3. The MSEs of α1, α2, β1, β2, φ(ρ1), and φ(ρ2) multiplied by 1000 for 13 different methods – SCN – p = 2 and
q = 2.

α1 α2 β1 β2 φ(ρ1) φ(ρ2)

CL 35.38 69.18 35.32 70.82 5.28 5.09
RP 25.11 46.32 25.82 46.21 9.04 3.46
RM 26.14 47.38 26.99 46.46 8.57 3.48
RW 26.24 46.69 27.79 47.76 25.73 7.09
RK 22.71 41.48 23.55 41.28 2.93 2.45
RS 25.29 46.71 26.01 46.71 7.93 3.29
MV 29.54 56.49 27.89 55.89 3.49 3.27
MC 28.59 55.61 28.34 54.68 3.11 3.03
WM 27.89 54.50 28.13 56.11 3.16 3.37
CM 28.82 58.54 26.75 56.45 3.39 2.99
FC 62.54 119.45 60.79 124.31 18.30 7.94
RF 25.73 49.93 25.97 49.13 2.42 2.74
RMV 26.25 51.18 26.08 49.89 2.43 2.88

Table 4. The MSEs of α1, α2, β1, β2, φ(ρ1), and φ(ρ2) multiplied by 1000 for 13 different methods – T – p = 2 and
q = 2.

α1 α2 β1 β2 φ(ρ1) φ(ρ2)

CL 67.91 124.76 65.26 125.41 21.35 17.01
RP 27.50 48.27 28.14 49.69 14.96 5.02
RM 29.64 48.29 28.94 48.96 22.78 7.09
RW 28.19 46.66 27.46 47.53 37.32 8.62
RK 25.41 43.36 24.98 44.46 3.61 3.05
RS 27.54 48.21 28.01 49.45 14.89 4.89
MV 35.49 71.66 37.39 72.03 5.73 5.63
MC 32.12 61.98 32.30 64.74 4.12 4.38
WM 35.68 68.63 34.08 66.88 4.93 4.65
CM 33.85 66.66 36.30 67.89 5.20 4.39
FC 54.34 107.443 53.76 105.34 11.87 10.95
RF 33.89 68.71 34.26 66.93 4.65 4.06
RMV 34.81 69.36 35.27 67.73 4.78 4.41

where φ(ρk) = tanh−1(ρk) is the Fisher transformation of ρk

MSE(α̂k) = 1

m

m∑
j=1

cos−1

(
|αt

kα̂
j
k|

‖α̂j
k‖ · ‖αk‖

)
, MSE(β̂k) = 1

m

m∑
j=1

cos−1

(
|β t

kβ̂
j
k|

‖β̂ j
k‖ · ‖βk‖

)
. (36)
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Table 5. The MSEs of α1, α2, β1, β2, φ(ρ1), and φ(ρ2) multiplied by 1000 for 13 different methods – ACN – p = 2 and
q = 2.

α1 α2 β1 β2 φ(ρ1) φ(ρ2)

CL 103.36 482.04 103.80 483.60 113.22 44.62
RP 37.09 159.47 37.49 163.25 3.94 5.11
RM 39.72 175.93 39.07 179.34 8.54 8.16
RW 33.89 118.39 34.30 122.33 7.52 2.92
RK 70.08 162.09 70.95 165.02 15.96 12.00
RS 39.64 174.70 40.14 178.36 4.71 5.63
MV 29.47 56.70 29.55 55.85 3.32 3.29
MC 29.58 55.49 28.29 53.65 3.16 2.89
WM 27.53 55.40 27.54 53.51 3.12 3.00
CM 29.14 55.79 28.23 55.02 3.17 2.93
FC 66.19 133.87 64.49 136.49 19.01 19.50
RF 25.64 50.06 26.24 48.01 2.46 2.66
RMV 26.59 50.89 27.01 49.27 2.56 2.79

Table 6. The MSEs of α1, α2, β1, β2, φ(ρ1), φ(ρ2), φ(ρ3), and φ(ρ4) multiplied by 1000 for 13 different methods –
SCN – p = 4 and q = 4.

α1 α2 α3 α4 β1 β2 β3 β4 φ(ρ1) φ(ρ2) φ(ρ3) φ(ρ4)

CL 40.15 189.28 369.99 350.81 42.11 189.49 367.54 345.01 2.04 2.27 1.74 2.03
RP 42.95 203.04 396.64 372.65 45.01 203.64 395.71 369.29 5.10 2.64 1.73 2.60
RM 40.97 194.49 379.41 357.41 43.43 195.57 377.49 353.03 2.40 2.24 1.69 2.13
RW 46.02 223.12 431.24 398.82 48.87 220.10 429.79 397.56 20.74 5.56 2.63 3.96
RK 38.28 196.35 391.94 366.69 40.36 197.40 388.87 362.13 2.38 2.47 1.94 2.15
RS 42.02 201.21 393.09 368.89 44.80 201.54 391.33 364.59 4.26 2.49 1.71 2.43
MV 47.67 223.02 445.73 419.86 47.85 224.81 439.87 411.03 2.87 3.35 2.55 2.86
MC 45.66 212.69 412.24 388.61 47.65 213.21 412.51 387.79 2.66 2.91 2.25 2.50
WM 45.81 219.42 413.98 376.50 45.45 219.86 418.74 383.53 2.85 2.77 2.41 2.74
CM 47.15 222.10 434.49 411.44 45.75 222.22 434.86 406.45 2.29 2.60 2.17 2.60
FC 86.01 440.42 744.16 651.38 90.43 446.29 746.01 660.04 12.95 9.85 7.03 10.79
RF 43.64 205.93 427.14 402.41 43.44 207.57 426.55 401.69 2.54 2.49 2.08 2.01
RMV 43.86 206.75 426.44 401.35 43.49 208.57 426.90 402.02 2.57 2.49 2.08 2.02

Table 7. The MSEs of α1, α2, α3, α4, β1, β2, β3, β4, φ(ρ1), φ(ρ2), φ(ρ3), and φ(ρ4) multiplied by 1000 for 13 different
methods – SCN – p = 4 and q = 4.

α1 α2 α3 α4 β1 β2 β3 β4 φ(ρ1) φ(ρ2) φ(ρ3) φ(ρ4)

CL 63.62 322.68 594.32 523.05 61.61 321.48 585.41 515.44 5.29 5.69 4.14 4.54
RP 46.32 217.61 435.31 400.07 45.25 213.39 428.93 395.49 7.14 2.93 1.98 2.62
RM 47.59 218.25 438.98 406.41 46.52 214.81 431.98 400.96 6.82 2.92 1.95 2.73
RW 49.22 232.68 450.93 412.94 48.60 228.24 443.27 407.85 22.66 5.28 2.87 3.80
RK 42.07 209.78 432.99 398.58 41.14 209.54 425.92 392.86 2.57 2.55 2.25 2.15
RS 46.59 218.19 435.19 398.99 45.29 215.10 427.74 394.17 6.09 2.85 1.97 2.57
MV 48.36 232.67 465.5 428.65 46.68 228.35 459.11 423.46 2.83 2.74 2.54 2.63
MC 45.64 224.39 454.15 422.36 45.97 218.40 449.79 417.72 2.58 2.65 2.41 2.48
WM 46.48 212.17 448.65 423.27 48.26 213.44 451.16 423.24 3.04 2.85 2.19 2.29
CM 47.57 221.75 448.16 411.73 46.977 223.21 448.45 417.50 2.32 2.41 2.27 2.55
FC 88.49 453.17 707.26 615.99 88.71 452.50 707.51 628.79 10.93 10.39 6.79 10.88
RF 44.22 200.74 393.69 369.01 42.95 200.71 395.05 374.93 2.48 2.43 2.08 2.16
RMV 44.56 203.59 400.11 373.51 43.35 203.99 401.85 379.48 2.52 2.54 2.11 2.24

The results of the simulation are presented in Tables 2–9 and Figures 1–4.
From Table 2, where the data are from NOR, we can observe that the best three estimators for

the canonical variates α1 and α2 are RK, CL, and RM, respectively, and the worst three estimators
are FC, CM, and MV, respectively, for α1; and FC, MV, and WM, respectively, for α2. Also,

D
ow

nl
oa

de
d 

by
 [

B
ru

ne
l U

ni
ve

rs
ity

] 
at

 0
7:

46
 0

7 
M

ay
 2

01
3 



Journal of Statistical Computation and Simulation 703

Table 8. The MSEs of α1, α2, α3, α4, β1, β2, β3, β4, φ(ρ1), φ(ρ2), φ(ρ3), and φ(ρ4) multiplied by 1000 for 13 different
methods – SCN – p = 4 and q = 4.

α1 α2 α3 α4 β1 β2 β3 β4 φ(ρ1) φ(ρ2) φ(ρ3) φ(ρ4)

CL 102.26 499.41 767.89 694.97 104.46 489.55 761.29 676.90 44.41 23.98 9.23 10.73
RP 48.33 226.85 474.58 445.26 49.98 223.58 476.29 448.82 15.44 3.37 2.40 3.38
RM 51.55 242.47 510.29 472.53 53.45 239.23 511.10 475.12 7.89 4.68 2.84 4.30
RW 48.95 231.89 479.51 450.85 50.71 228.88 487.78 456.43 38.65 6.18 3.44 4.48
RK 43.81 222.98 461.69 435.89 45.22 218.88 466.13 439.97 3.59 3.22 2.47 2.55
RS 48.28 227.47 468.55 441.38 49.74 223.65 472.04 445.08 15.59 3.40 2.36 3.42
MV 58.30 282.65 548.73 505.16 57.76 289.23 559.46 510.15 4.22 5.02 3.95 4.48
MC 54.79 267.12 528.93 493.06 54.83 271.66 533.95 493.19 4.05 4.33 3.51 3.78
WM 60.57 293.19 533.81 484.42 59.09 290.98 532.47 477.83 4.25 5.02 3.58 3.96
CM 60.01 298.43 555.98 511.50 56.65 393.52 547.92 494.39 4.69 4.68 3.55 4.09
FC 78.63 380.48 686.59 612.51 77.45 295.59 685.76 614.86 23.74 7.78 5.54 6.95
RF 59.15 267.28 555.07 506.06 57.58 271.41 557.49 517.87 4.14 4.52 3.24 3.83
RMV 59.86 273.32 549.40 505.33 57.89 273.87 548.34 507.93 4.25 4.80 3.54 3.83

Table 9. The MSEs of α1, α2, α3, α4, β1, β2, β3, β4, φ(ρ1), φ(ρ2), φ(ρ3), and φ(ρ4) multiplied by 1000 for 13 different
methods – SCN – p = 4 and q = 4.

α1 α2 α3 α4 β1 β2 β3 β4 φ(ρ1) φ(ρ2) φ(ρ3) φ(ρ4)

CL 237.72 1101.3 962.36 693.29 238.47 1101.1 960.81 690.75 777.12 198.49 15.391 3.14
RP 61.99 497.71 711.55 579.35 63.45 497.79 710.77 576.68 4.09 12.65 6.05 2.24
RM 40.91 190.51 404.49 383.77 41.51 190.18 403.03 379.29 2.42 2.04 1.86 2.08
RW 57.56 429.79 666.64 566.08 59.183 431.94 665.12 564.07 7.23 3.16 2.58 2.25
RK 117.89 583.91 756.69 595.23 118.91 583.92 755.21 592.90 17.91 32.53 10.15 2.98
RS 66.04 529.45 735.64 592.06 67.36 530.35 734.56 590.09 4.86 15.01 6.37 2.31
MV 45.54 219.39 454.23 428.75 46.82 214.26 449.97 427.47 2.71 2.77 2.4 2.61
MC 45.23 211.48 436.61 410.57 46.06 210.11 433.29 409.14 2.71 2.71 2.29 2.43
WM 46.96 211.37 434.43 411.74 47.51 211.50 437.98 415.38 2.73 2.79 2.26 2.35
CM 46.16 221.53 440.88 409.34 47.13 225.23 444.34 411.39 2.54 2.86 2.49 2.54
FC 91.31 461.02 742.70 645.59 92.33 456.84 734.41 643.08 11.44 11.41 7.70 10.01
RF 44.51 196.56 406.58 384.62 44.51 198.57 405.11 387.70 2.48 2.58 2.06 2.19
RMV 44.72 199.59 414.11 391.04 44.91 201.03 413.33 395.49 2.51 2.65 2.21 2.22

the best three estimators for the canonical variate β1 are RK, CL, and RM, respectively, and the
worst three estimators are FC, CM, and MC, respectively. While the best three estimators for the
canonical variate β2 are RK, RM, and RP, respectively, and the worst three estimators are FC, CM,
and MV, respectively. For canonical correlations, the best three estimators for the transformed
canonical correlation φ(ρ1) are CL, RK, and RM, respectively, and the worst three estimators are
RW, FC, and RP, respectively. The best three estimators for the transformed canonical correlation
φ(ρ2) are CL, RF, and RMV, respectively, and the worst three estimators are FC, RW, and MV,
respectively.

From Table 3, where the data are from SCN, we can see that the best three estimators for the
canonical variate α1 are RK, RP, and RS, respectively, and the worst three estimators are FC,
CL, and MV, respectively. For α2, the best three estimators are RK, RP, and RW and the worst
are FC, CL, and CM, respectively. Also, the best three estimators for the canonical variate β1 are
RK, RP, and RF, respectively, and the worst three estimators are FC, CL, and MC, respectively.
While the best three estimators for the canonical variate β2 are RK, RP, and RM, respectively, the
worst three estimators are FC, CL, and MV, respectively. For canonical correlations, the best three
estimators for the transformed canonical correlation φ(ρ1) are RF, RMV, and RK, respectively,
and the worst three estimators are RW, FC, and RP, respectively. The best three estimators for the
transformed canonical correlation φ(ρ2) are RK, RF, and RMV, respectively, and the worst three
estimators are FC, RW, and CL, respectively.
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MSE for aa1 MSE for a2

MSE for b1 MSE for b2

MSE for transformed s1

The methods The methods

The methods The methods

The methods
The methods

MSE for transformed s2

Figure 1. The MSEs for the canonical correlations and vectors for 13 different estimators and under 4 different sampling
schemes for p = 2 and q = 2.

From Table 4, where the data are from T, we can see that the best three estimators for the
canonical variate α1 are RK, RP, and RS, respectively, and the worst three estimators are CL,
FC, and WM, respectively. For α2, the best three estimators are RK, RW, and RS and the worst
are CL, FC, and MV, respectively. Also, the best three estimators for the canonical variate β1 are
RK, RW, and RS, respectively, and the worst three estimators are CL, FC, and MV, respectively.
While the best three estimators for the canonical variate β2 are RK, RW, and RM, respectively, the
worst three estimators are CL, FC, and MV, respectively. For canonical correlations, the best three
estimators for the transformed canonical correlation φ(ρ1) are RK, MC, and RF, respectively, and
the worst three estimators are RW, RM, and CL, respectively. The best three estimators for the
transformed canonical correlation φ(ρ2) are RK, RF, and MC, respectively, and the worst three
estimators are CL, FC, and RW, respectively.

From Table 5, where the data are from ACN, we can see that the best three estimators for
the canonical variates α1, α2, β1, and β2 are RF, RMV, and WM, respectively. The worst three
estimators for α1 and β1 are CL, RK, and FC, respectively, and for α2 and β2, they are CL, RM, and
RS. For canonical correlations, the best three estimators for the transformed canonical correlation
φ(ρ1) are RF, RMV, and WM, respectively, and the best three estimators for the transformed
canonical correlation φ(ρ2) are RF, RMV, and MC, respectively. The worst three estimators for
φ(ρ1) and φ(ρ2) are CL, FC, and RK, respectively.

Figure 1 shows the MSEs for dimensions p = 2 and q = 2. The first picture from the left and
that from the right present the MSEs for the canonical vectors α1 and α2. The second picture from
the left and that from the right present the MSEs for β1 and β2. The third picture from the left
and that from the right present the MSEs for the transformed canonical correlations φ(ρ1), φ(ρ2).
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MSE for aa1

MSE for a2

MSE for a3

MSE for a4

Figure 2. The MSEs for canonical vectors α for 13 different estimators and under 4 different sampling schemes for
p = 4 and q = 4.

The horizontal axis refers to the 13 different methods and the vertical axis refers to the MSEs of
the estimators. From Figure 1, it is clear that the largest MSEs are for the estimators in the case of
ACN and then for those in the case of T distribution. In the case of ACN, the best estimators for
the canonical variates α1, α2, β1, and β2 and transformed canonical correlations φ(ρ1) and φ(ρ2)

are RF and RMV and the worst are CL and RK for α1 and β1 or CL and RM for α2 and β2 or CL
and FC for φ(ρ1) and φ(ρ2). In the case of T distribution, the best estimators for the canonical
variates α2, β1, and β2 are RK and RW, while the best estimators for α1, φ(ρ1) and φ(ρ2) are RK
and RP, RK and MC, and Rk and RF, respectively. The worst estimators for α1, α2, β1, β2, and
φ(ρ2) are CL and FC, and for φ(ρ1), they are RW and RM.

From Table 6, where the dimensions p = 4 and q = 4 and the data are from NOR, we can
see that the best three estimators for the canonical variates α1, α2, and β1 are RK, CL, and RM,
respectively. The worst three estimators for α1 are FC, MV, and CM, respectively, and for α2,
they are FC, CM, and RW, respectively, and for β1, they are FC, RW, and MV, respectively. The
best three estimators for α2, α4, β2, β3, and β4 are CL,RM, and RK, and the worst three estimators
are FC, MV, and CM. For canonical correlations, the best three estimators for the transformed
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MSE for bb1

MSE for b2

MSE for b3

MSE for b4

Figure 3. The MSEs for canonical vectors β for 13 estimators and under 4 different sampling schemes for p = 2 and
q = 2.

canonical correlation φ(ρ1) are CL, CM, and RK, respectively, and the worst three estimators are
RW, FC, and RP, respectively. The best three estimators for the transformed canonical correlation
φ(ρ2) are RM, CL, and RK, respectively. The best three estimators for the transformed canonical
correlation φ(ρ3) are RM, RS, and RP. The best three estimators for the transformed canonical
correlation φ(ρ4) are RM, RS, and RP, respectively. The worst three estimators for (ρ2), φ(ρ2),
and φ(ρ4) are FC, RW, and MV, respectively.

From Table 7, where the dimensions p = 4 and q = 4 and the data are from SCN, we can see that
the best three estimators for the canonical variates α1 and β1 are RK, RF, and RMV, respectively,
and the worst three estimators are FC, CL, and RW, respectively. The best three estimators for
α2, α3, α4, β2, β3, and β4 are RF, RMV, and RK, and the worst three estimators are FC, CL, and MV.
For canonical correlations, the best three estimators for the transformed canonical correlations
φ(ρ1) and φ(ρ2) are CM, RF, and RMV, respectively, and the worst three estimators for φ(ρ1) are
RW, FC, and RP, respectively. The best three estimators for the transformed canonical correlation
φ(ρ3) are RM, RS, and RP, respectively. The best three estimators for the transformed canonical
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MSE for transformed ss1

MSE for transformed s2

MSE for transformed s3

MSE for transformed s4

Figure 4. The MSEs for canonical correlations for 13 different estimators and under 4 different sampling schemes for
p = 4 and q = 4.

correlation φ(ρ4) are RK, RF, and RMV. The worst three estimators for (ρ2), φ(ρ3), and φ(ρ4)

are FC, CL, and RW, respectively.
From Table 8, where the dimensions p = 4 and q = 4 and the data are from T, we can see that

the best three estimators for the canonical variates α1 and β1 are RK, RS, and RP, respectively,
and the worst three estimators are CL, FC, and WM, respectively. The best three estimators for
α2 and β2 are RK, RP, and RS, and the worst three estimators are CL, FC, and CM. The best three
estimators for α3, α4, β2, and β4 are RK, RS, and RP, respectively, and the worst three estimators
are CL, FC, and CM for α3 and α4 or CL, FC, and MV for β3 and β4. For canonical correlations,
the best three estimators for the transformed canonical correlation φ(ρ1) are RK, MC, and RF,
respectively, and the worst three estimators are CL, RW, and FC, respectively. The best three
estimators for the transformed canonical correlation φ(ρ2) are RS, RP, and RK, respectively, and
the worst three estimators are CL, FC, and MV, respectively. The best three estimators for the
transformed canonical correlations φ(ρ2) and φ(ρ4) are RK, RP, and RS, respectively, and the
worst three estimators are CL, FC, and RW, respectively.

From Table 9, where the dimensions p = 4 and q = 4 and the data are from ACN, we can see
that the best three estimators for the canonical variates α1, α2, α3, α4, β1, β2, β3, and β4 and the
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708 A. Alkenani and K. Yu

canonical correlations are RM, RF, and RMV, respectively. The worst three estimators for α1 and
β1 are CL, RK, and FC, respectively; for α2 and β2, they are CL, RK, and RS, respectively; for
α3 and β3, they are CL, RK, and FC, respectively; and for α4 and β4, they are CL, FC, and RK,
respectively. For the canonical correlations, the worst three estimator for φ(ρ1) and φ(ρ3) are CL,
RK, and FC, respectively. The worst three estimators for φ(ρ2) are CL, RK, and RS, respectively,
and for φ(ρ4) , they are FC, CL, and RK, respectively.

4. Breakdown plots

A simulation was carried out to study the sensitivity of the proposed estimators to increasing
amounts of contamination. Each of the two groups of variables has three variables (p = q = 3),

Breakdown plot for aa1

Breakdown plot for a2

Breakdown plot for a3

Figure 5. Breakdown plot: MSE for canonical α vectors as a function of the percentage of contamination, ranging from
0% to 40%. The lines represent the different estimation methods.
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and the samples were generated from a normal distribution with zero mean and covariance matrix∑
, with

∑
XX = I3,

∑
YY = I3, and

∑
XY

=
⎡
⎣0.9 0 0

0 1/2 0
0 0 1/3

⎤
⎦

The values of ∈ were 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40, where ∈ is the percentage
of contamination. The contaminated observations were from the ACN distribution. We chose
n = 500, and the MSEs were computed over m = 500. The results are summarized in Figures 5–7.

Breakdown plot for bb1

Breakdown plot for b2

Breakdown plot for b3

Figure 6. Breakdown plot: MSE for canonical β vectors as a function of the percentage of contamination, ranging from
0% to 40%. The lines represent the different estimation methods.

D
ow

nl
oa

de
d 

by
 [

B
ru

ne
l U

ni
ve

rs
ity

] 
at

 0
7:

46
 0

7 
M

ay
 2

01
3 



710 A. Alkenani and K. Yu

Breakdown plot for ss1

Breakdown plot for s2

Breakdown plot for s3

Figure 7. Breakdown plot: MSE for canonical correlations as a function of the percentage of contamination, ranging
from 0% to 40%. The lines represent the different estimation methods.

In the figures, different lines correspond to different estimators. The breakdown plots indicate
how resistant an estimation procedure is under increasing percentages of contamination.

Figures 5 and 6 show the resistance of the MSE of the canonical vectors α1, α2, and α3 and
β1, β2 and β3 for the different methods. It is clearly visible that the MSE of the classical method
rapidly increases in the presence of contamination. The classical method is very sensitive with
respect to the outlying observations, and the results confirm this behaviour in Figures 1–4. We can
see that the robustness of the methods based on the RP, RW, RK, and RS estimators is less than
that of other robust methods, where the performance of these estimators worsens as the percentage
of contamination is increased beyond 0.05. Similarly, it can be noted that the performance of the
RM and MV estimators worsens as the percentage of contamination increases beyond 0.10.

The performance of the methods based on the MC, WM, and CM estimators becomes worst
when the percentage of contamination is 0.15 or more, while that of the methods based on the RF
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and RMV estimator is still the best for all the percentages of contamination. The performance of
the method based on the FC estimator is better when the percentage of contamination increases.

Figure 6 shows the breakdown plots for the canonical correlations. Clearly, the MSEs become
smaller, in general, for higher order canonical correlations. The classical method is very sensi-
tive with respect to the outlying observations and its performance is the worst for all canonical
correlations and at all percentages of contamination. For the first canonical correlations, the
performance of the method based on the RK estimator becomes worst when the percentage of
contamination is 0.05 or more. The performance of the methods based on the RP, RS, and MV
estimators becomes worst when the percentage of contamination is 0.10 or more. The perfor-
mance of the methods based on the RM and RW estimators becomes worst when the percentage
of contamination is 0.15 or more. The performance of the methods based on the MC, WM,
and CM estimators becomes worst when the percentage of contamination is 0.20 or more. The
performance of the methods based on the RF and RMV estimators is still the best for all the
percentages of contamination, while the performance of the method based on the FC estima-
tor becomes better when the percentage of contamination increases. For the second canonical
correlation, the performance of the method based on the RW estimator becomes worst when
the percentage of contamination is 0.10 or more. The performance of the methods based on
the RK, RP, RS, MV, RM, MC, WM, CM, RF, RMV, and FC estimators is still similar to their
performance in the case of the first canonical correlation. For the third canonical correlation,
the performance of the methods based on the RP and RK estimators becomes worst when the
percentage of contamination is 0.25 or more. The performance of the method based on the RM
estimator becomes worst when the percentage of contamination is 0.35 or more. The performance
of the methods based on the RF, RMV, RW and RS estimators is still good for all the percentages
of contamination. The performance of the methods based on the MV, MC, WM, and CM esti-
mators becomes worst when the percentage of contamination is 0.20 or more. The performance
of the method based on the FC estimator becomes better when the percentage of contamination
increases.

5. Tests of independence

Assuming that (X,Y) is multivariate normally distributed, the hypothesis of independent can be
formulated as

H0 :
∑
XY

= 0 against H1 :
∑
XY

= 0.

If H0 holds, then all the canonical correlations are equal to zero, thus H0 : ρ1 = · = ρp = 0.
A simulation study was implemented to study the effect of the outlier observations in tests of

independence.We assumed a situation where the two groups of variables are independent and com-
pute the frequency of rejecting H0 at the 0.05 significance level. We assumed that each of the two
groups of variables has two variables p = q = 2,

∑
XX = ∑

YY = I2 and
∑

XY = Diag(0.05, 0.01).
The generated data were from the sample distributions NOR, SCN, and ACN. The estima-
tion methods considered are the classical estimator (CL), percentage bend correlation (RP),

Table 10. The percentage of rejection of the null hypothesis in 1000 simulations.

CL RP RM RW RK RS

NOR 0.007 0.011 0.010 0.010 0.008 0.009
SCN 0.089 0.014 0.009 0.009 0.017 0.014
ACN 1 0.785 0.447 0.447 0.928 0.939
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Table 11. The estimated canonical vectors ρ̂1, ρ̂2, and ρ̂3 for the non-contaminated and contaminated data.

CL RM MCD RFCH RMVN

No 10% No 10% No 10% No 10% No 10%
contamination contamination |D| contamination contamination |D| contamination contamination |D| contamination contamination |D| contamination contamination |D|

ρ̂1 0.464 0.334 0.130 0.465 0.445 0.020 0.444 0.495 0.051 0.482 0.472 0.010 0.479 0.478 0.001
ρ̂2 0.168 0.110 0.085 0.168 0.164 0.004 0.187 0.379 0.192 0.184 0.179 0.005 0.187 0.174 0.013
ρ̂3 0.104 0.060 0.044 0.080 0.019 0.061 0.076 0.033 0.043 0.079 0.102 0.023 0.083 0.106 0.023
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Table 12. The estimated canonical vectors α̂1, α̂2, and α̂3 for the non-contaminated and contaminated data.

X1 X2 X3
∑ |D|

CL α̂1 No contamination −0.84 0.25 −0.43
10% contamination −0.08 −0.07 −0.98

|D| 0.76 0.32 0.55 1.63
α̂2 No contamination −0.42 −0.84 0.69

10% contamination 0.69 −0.77 −0.06
|D| 1.11 0.07 0.75 1.93

α̂3 No contamination −0.44 0.58 0.69
10% contamination 0.74 0.64 −0.25

|D| 1.18 0.06 0.94 2.18
RM α̂1 No contamination −0.84 0.28 −0.43

10% contamination −0.55 0.19 −0.75
|D| 0.29 0.09 0.32 0.7

α̂2 No contamination 0.50 0.71 −0.77
10% contamination 0.53 0.81 −0.49

|D| 0.03 0.10 0.28 0.41
α̂3 No contamination −0.37 0.71 0.59

10% contamination 0.69 −0.61 −0.54
|D| 1.06 1.32 1.13 3.51

MCD α̂1 No contamination −1.46 0.52 −1.30
10% contamination 0.52 −0.24 −1.69

|D| 1.98 0.76 0.39 3.13
α̂2 No contamination 0.58 1.39 −2.03

10% contamination −1.25 0.04 −0.43
|D| 1.83 1.35 1.60 4.78

α̂3 No contamination −0.68 0.94 2.23
10% contamination 0.09 −1.21 0.89

|D| 0.77 2.15 1.34 4.26
RFCH α̂1 No contamination −1.24 0.52 −1.36

10% contamination −1.23 0.47 −1.13
|D| 0.01 0.05 0.23 0.29

α̂2 No contamination 0.78 1.23 −2.06
10% contamination 0.57 1.33 −1.65

|D| 0.21 0.10 0.41 0.72
α̂3 No contamination −0.62 1.04 1.88

10% contamination −0.66 0.72 2.25
|D| 0.04 0.32 0.37 0.73

RMVN α̂1 No contamination −1.24 0.50 −1.39
10% contamination −1.28 0.42 −1.17

|D| 0.04 0.08 0.22 0.34
α̂2 No contamination 0.76 1.25 −2.04

10% contamination 0.55 1.43 −1.73
|D| 0.21 0.18 0.31 0.7

α̂3 No contamination −0.66 1.03 1.89
10% contamination −0.72 0.76 2.33

|D| 0.06 0.27 0.44 0.77

midcorrelation (RM), winsorized correlation (RW), Kendall tau’s correlation (RK), and Spear-
man’s rho correlation (RS). We used the functions pball, winall, and spear from Wilcox package
(http://www.unt.edu/rss/class/mike/Rallfun-v9_2.txt) to conduct the test for RP, RW, and RS in
Equations (10), (22), and (28), respectively. We used the functions bicorAndPvalue from the
package WGCNA, and Kendall from the package Kendall to test RM in Equation (17) and RK
in Equation (25), respectively. We calculated p values associated with the above functions for
m = 1000 replications.

In the case of NOR data, the test with the classical estimates (CL) gave good results. In the
case of SCN and ACN, the test with RM and RW gave the best results. The test with CL estimates
was rejected in all 1000 simulations in the case of ACN data.
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6. Real data

A researcher has collected data on three psychological variables, four academic variables
(standardized test scores), and gender for 600 college freshman (www.ats.ucla.edu/stat/R/dae/
canonical.htm). The psychological variables are X1, locus of control; X2, self-concept; and X3,
motivation. The academic variables are Y1, standardized tests in reading; Y2, writing; Y3, math; and
Y4, science. Additionally, Y5, the sex variable, is a zero–one indicator variable with one indicating
a female student.

The goal of the researcher is to determine how the set of psychological variables is related to
the academic variables and gender.

In the first case, we computed the canonical correlation methods based on the RM, FMCD,
RFCH, RMVN, and classical estimators with the above data. In the second case, we contaminated
the data with 10% data from multivariate t distribution with three degrees of freedom. Then, all
the previous methods were computed.

From Tables 10–13 and Figure 8, we can observe that the results of the methods based on
the RFCH, RMVN, and RM estimators are stable and less sensitive to the outliers. However, the
results of the method based on the FMCD estimator are changeable and unstable. The performance
of the method based on the RM estimator was low than the performance of the methods based on

The absolute differences for s

The absolute differences for a

The absolute differences for b

b1

b2

b3

a1

a2

a3

s1

s2

s3

Figure 8. The first picture: The absolute differences for the estimated canonical correlations ρ̂1, ρ̂2, and ρ̂3 for the
non-contaminated and contaminated data. The second picture: The absolute differences for the estimated canonical
vectors α̂1, α̂2, and α̂3 for the non-contaminated and contaminated data. The third picture: The absolute differences for
the estimated canonical vectors β̂1, β̂2, and β̂3 for the non-contaminated and contaminated data.

D
ow

nl
oa

de
d 

by
 [

B
ru

ne
l U

ni
ve

rs
ity

] 
at

 0
7:

46
 0

7 
M

ay
 2

01
3 

http://www.ats.ucla.edu/stat/R/dae/canonical.htm
http://www.ats.ucla.edu/stat/R/dae/canonical.htm


Journal of Statistical Computation and Simulation 715

Table 13. The estimated canonical vectors β̂1, β̂2, and β̂3 for the non-contaminated and contaminated data.

Y1 Y2 Y3 Y4 Y5
∑ |D|

CL β̂1 No contamination −0.45 −0.35 −0.22 −0.05 −0.32
10% contamination −0.38 −1.11 −0.03 0.47 0.41

|D| 0.07 0.76 0.19 0.52 0.73 2.27
β̂2 No contamination −0.05 0.41 0.04 −0.83 0.54

10% contamination 0.90 0.24 −0.82 −0.39 0.91
|D| 0.95 0.17 0.86 0.44 0.44 2.79

β̂3 No contamination 0.22 0.89 0.09 −1.07 −0.89
10% contamination 2.46 −1.67 −1.08 0.38 −0.05

|D| 2.24 2.56 1.17 1.45 0.84 8.26
RM β̂1 No contamination −0.44 −0.41 −0.15 −0.07 −0.29

10% contamination −0.39 −0.60 −0.13 0.11 −0.17
|D| 0.05 0.19 0.02 0.18 0.12 0.56

β̂2 No contamination −0.07 −0.48 −0.21 1.13 −0.34
10% contamination 0.17 −0.26 0.19 0.43 −0.82

|D| 0.24 0.22 0.40 0.70 0.48 2.04
β̂3 No contamination 0.41 0.42 0.34 −0.97 −0.92

10% contamination −0.44 −0.60 1.66 −0.61 0.21
|D| 0.85 1.02 1.32 0.36 1.13 4.68

MCD β̂1 No contamination −0.06 −0.02 −0.02 −0.005 −0.68
10% contamination −0.007 −0.037 0.006 0.001 −14.070

|D| 0.053 0.017 0.026 0.006 13.39 13.49
β̂2 No contamination −0.02 −0.04 −0.01 0.11 −0.89

10% contamination −0.041 0.004 −0.019 −0.018 19.240
|D| 0.021 0.044 0.009 0.128 20.13 20.33

β̂3 No contamination 0.11 0.009 −0.02 −0.10 −1.44
10% contamination −0.143 −0.00003 0.058 0.103 −2.569

|D| 0.253 0.00903 0.078 0.203 1.129 1.67
RFCH β̂1 No contamination −0.04 −0.04 −0.02 −0.004 −0.68

10% contamination −0.04 −0.04 −0.01 −0.01 −0.61
|D| 0.000 0.000 0.010 0.006 0.070 0.09

β̂2 No contamination −0.02 −0.03 −0.02 0.11 −0.83
10% contamination −0.01 −0.02 −0.004 0.08 −1.25

|D| 0.010 0.010 0.016 0.030 0.420 0.49
β̂3 No contamination 0.05 0.09 −0.05 −0.08 −1.79

10% contamination 0.04 0.11 −0.06 −0.09 −1.53
|D| 0.01 0.02 0.01 0.01 0.26 0.31

RMVN β̂1 No contamination −0.05 −0.04 −0.02 −0.002 −0.67
10% contamination −0.04 −0.04 −0.01 −0.01 −0.61

|D| 0.010 0.000 0.010 0.008 0.060 0.09
β̂2 No contamination −0.02 −0.03 −0.02 0.12 −0.80

10% contamination −0.01 −0.02 −0.01 0.08 −1.35
|D| 0.01 0.01 0.01 0.04 0.55 0.62

β̂3 No contamination 0.05 0.11 −0.08 −0.07 −1.67
10% contamination 0.05 0.12 −0.07 −0.09 −1.53

|D| 0.00 0.01 0.01 0.02 0.14 0.18

the RFCH and RMVN estimators and more stable than that of the method based on the FMCD
estimator. As expected, the results of the classical method were highly affected by the outliers. We
have used the absolute differences |D| between the estimated values ρ̂1, ρ̂2, ρ̂3, α̂1, α̂2, α̂3, β̂1, β̂2,
and β̂3 to measure the changes between the non-contaminated and contaminated data.

7. Conclusions

In this study, we have theoretically investigated and numerically compared a number of methods
for comparing canonical correlations. From our simulation study and real data, we can conclude
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Table 14. The MSEs of α1, α2, β1, β2, φ(ρ1), and φ(ρ2) multiplied by 1000 for the FMCD method using cov.mcd and
covMcd functions – NOR, SCN, T, and ACN – p = 2 and q = 2, and the computing time, measured in seconds, for
m = 500 samples with size n = 500.

NOR SCN T ACN

cov.mcd covMcd cov.mcd covMcd cov.mcd covMcd cov.mcd covMcd

α1 27.78 27.24 28.59 26.53 32.12 32.41 29.58 28.29
α2 54.07 54.32 55.61 52.26 61.98 65.97 55.49 53.25
β1 28.78 27.58 28.34 28.08 32.30 36.39 28.29 26.37
β2 53.02 56.70 54.68 55.94 64.74 69.76 53.65 52.55
φ(ρ1) 2.76 3.03 3.11 2.84 4.12 4.279 3.16 2.92
φ(ρ2) 3.32 3.17 3.03 2.96 4.38 4.50 2.89 3.23
Computing time 702 60 1011 368 703 60 703 60

Table 15. The MSEs of α1, α2, α3, α4, β1, β2, β3, β4, φ(ρ1), φ(ρ2), φ(ρ3), and φ(ρ4) multiplied by 1000 for the FMCD
method using cov.mcd and covMcd functions – NOR, SCN, T, and can – p = 4 and q = 4, and the computing time,
measured in seconds, for m = 500 samples with size n = 500.

NOR SCN T ACN

cov.mcd covMcd cov.mcd covMcd cov.mcd covMcd cov.mcd covMcd

α1 45.66 45.89 45.64 44.99 54.79 58.92 45.23 46.31
α2 212.69 215.43 224.39 218.43 267.12 284.09 211.48 217.86
α3 412.24 444.68 454.15 437.79 528.93 547.40 436.61 433.56
α4 388.61 412.85 422.36 409.68 493.06 513.04 410.57 409.35
β1 47.65 46.05 45.97 44.78 54.83 59.34 46.06 45.16
β2 213.21 214.77 218.40 218.35 271.66 282.99 210.11 213.12
β3 412.51 437.16 449.79 445.43 533.95 543.88 433.29 428.15
β4 387.79 412.50 417.72 412.08 493.19 502.59 409.14 404.48
φ(ρ1) 2.66 2.42 2.58 2.66 4.05 5.07 2.71 2.56
φ(ρ2) 2.91 2.77 2.65 2.78 4.33 5.00 2.71 2.95
φ(ρ3) 2.25 2.32 2.41 2.52 3.51 3.62 2.29 2.28
φ(ρ4) 2.50 2.44 2.48 2.15 3.78 4.09 2.43 2.47
Computing time 1808 124 2152 428 1808 123 1800 125

Table 16. The computing time, measured in seconds, for different estimation procedures for m = 500 samples with size
n = 500.

NOR 2 × 2 SCN 2 × 2 T 2 × 2 ACN 2 × 2 NOR 4 × 4 SCN 4 × 4 T 4 × 4 ACN 4 × 4

RP 25 325 26 27 110 437 111 112
RM 27 327 28 29 89 418 91 100
RW 30 329 31 30 70 401 71 86
RK 81 381 81 81 284 618 285 282
RS 9 311 8 8 10 347 10 10
MV 107 411 106 106 256 611 256 249
MC 60 368 60 60 124 428 123 125
WM 63 386 63 63 124 474 124 129
CM 78 396 78 78 132 448 132 138
FC 16 345 16 16 19 341 19 21
RF 16 348 16 16 19 348 19 22
RMV 16 343 16 16 20 349 20 22

that the canonical variates and correlations based on the RFCH and RMVN estimators perform
better than the canonical variates and correlations based on the FMCD estimator or the weighted
FMCD estimator. Furthermore, from studying the breakdown plots of different estimators, we
clearly observed that the performance of the methods based on the RFCH and RMVN estimators
to be unrivalled for all percentages of contamination.
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Moreover, in the case when the data were from ACN, the simulation study indicated that the
performance of the canonical variates and canonical correlation based on the RM estimator is
very promising; this fact is especially emphasised in the case when p = q = 4 than in that when
p = q = 2. Additionally, the breakdown plot indicated that the canonical variates and canonical
correlations based on the RM estimator are higher than those of other M-type correlations. We also
observed that although the breakdown plot showed that the FCH estimator had a high breakdown
point, this estimator was one of the worst estimators for all cases.

Later, we took into account the computation time besides robustness and efficiency of estima-
tion. Table 16 shows the computation time, measured in seconds, for different estimation methods
for m = 500 samples with size n = 500. From this table, we can see that the computing time for
the RS, FC, RF, and RMV methods is significantly lower than that for the other methods. Also, it
is obvious that the MV, CM, WM, and MC methods are time consuming.

From Tables 14 and 15, we can see that the covMcd estimator from the roustbase library is a
much faster implementation of FMCD than cov.mcd from the MASS library, but the MSEs for the
canonical coefficients and canonical correlations are larger in many cases. So, we can recommend
the use of the covMcd function from the roubustbase library to compute FMCD if we take the
computation time into account.

From examining the simulation results of the study, we make a number of practical recom-
mendations. First, in the presence of outliers, we advise the usage of CCA based on the RFCH
and RMVN estimators. Second, when the percentage of outliers is pre-determined to be less that
15%, we suggest the employment of CCA based on the RM estimators due to the fact that it has
performed very well and that the computing time remains very reasonable. Finally, in the case of
contamination above 20%, we do not recommend the usage of the FMCD estimator.
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