The initial Fuzzy Semi-Normed (Normed) Vector Space I

Noori Farhan AL-Mayahi and Salah Mahdi Ali Department of Mathematics, College of C. Sc. and Math., AL-Qadisiya University nafm2005@yahoo.com & salah_x9@yahoo.com ISSN -1817 -2695

Abstract

In this paper, we introduce the concepts of initial fuzzy vector topology, the initial fuzzy semi-normed (normed) vector space and we prove that the initial fuzzy vector topology has a base at zero.

2010 Mathematics Subject Classification : Primary 54A40, 46S40 Keywords: initial fuzzy topology, initial fuzzy semi-normed (normed) vector space.

1. Introduction

Fuzzy topological vector spaces were defined and studied by Katsaras [2, 3]. [2] contains a number of results leading to a characterization of the local base for the fuzzy vector topology. In [3] fuzzy semi-norms and fuzzy norms have been defined on fuzzy vector spaces. The initial fuzzy topology was defined and studied in [1]. The core of this paper is to find a local base for the initial fuzzy vector topology on vector spaces.

2. Preliminaries

Let X be a non-empty set. A fuzzy set in X is the element of the set I^X of all functions from X into the closed unit interval I = [0,1]. If $C_{\alpha} : X \to I$ is a function defined by $C_{\alpha}(x) = \alpha$ for all $x \in X$, $\alpha \in I$, then C_{α} is called a constant fuzzy set. Let f be a function from X into Y and $B \in I^Y$, then $f^{-1}(B)$ is a fuzzy set in X defined by $f^{-1}(B)(x) = (B \circ f)(x)$ for all $x \in X$. Also, for $A \in I^X$, $f(A) \in I^Y$ which is defined by $f(A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} A(x) & \text{,if } f^{-1}(y) \neq \phi \\ 0 & \text{,otherwise} \end{cases}$.

Let X be a vector space over a field F, where F is the field of either the real or the complex numbers. If $A_1, A_2, ..., A_n$ are fuzzy sets in X, then the sum $A_1 + A_2 + \cdots + A_n$ (see [2]) is the fuzzy set A in X defined by

 $A(x) = \sup_{x_1 + x_2 + \dots + x_n = x} \min\{A_1(x_1), A_2(x_2), \dots, A_n(x_n)\}.$ Also, if A is a fuzzy set in X and $\alpha \in F$,

then αA is a fuzzy defined by $\alpha A(x) = \begin{cases} A(x/\alpha) & \text{if } \alpha \neq 0 \text{ for all } x \in X \\ 0 & \text{if } \alpha = 0, x \neq 0 \\ \sup_{y \in X} A(y) & \text{if } \alpha = 0, x = 0 \end{cases}$.

If A is a fuzzy set in X and $x \in X$, then the fuzzy set x + A is defined by (x + A)(y) = A(y - x). A fuzzy set A in X is called :

(1) a convex fuzzy set if $\alpha A + (1-\alpha)A \subseteq A$ or $A(\alpha x + (1-\alpha)y) \ge \min\{A(x), A(y)\}$ for all $x, y \in X$ and all $\alpha \in [0,1]$.

- (2) A balanced fuzzy set if $\alpha A \subset A$ or $A(\alpha x) \ge A(x)$ for all α with $|\alpha| \le 1$.
- (3) An absorbing fuzzy set if $X = \bigcup_{\alpha>0} \alpha A$ or $\sup_{\alpha>0} A(\alpha x) = 1$. Clearly if A is an absorbing fuzzy set, then A(0) = 1.

For the definition of a fuzzy topology, we will use the one given by Lowen [1] that is a fuzzy topology on a set X we will mean a subset γ of I^X satisfying the following conditions

- (i) γ contains every constant fuzzy set in X;
- (ii) If $A_1, A_2 \in \gamma$, then $A_1 \cap A_2 \in \gamma$.
- (iii) If $A_i \in \gamma$ for all $i \in \Lambda$ (Λ any index), then $\bigcup_{i \in \Lambda} A_i \in \gamma$.

The pair (X, γ) is called a fuzzy topological space. Let $(X_j, \gamma_j)_{j \in \Lambda}$ be fuzzy topological spaces and $f_j : X \to (X_j, \gamma_j)$ are functions. If $f_j^{-1}(\gamma_j) = \{f_j^{-1}(A) : A \in \gamma_j\}$

, then the coarsest fuzzy topology on X making every f_j is fuzzy continuous is called the initial fuzzy topology on X with respect to $\{f_j\}_{j\in\Lambda}$ and denoted by $\langle \bigcup_{j\in\Lambda} f_j^{-1}(\gamma_j) \rangle_X$. If ρ is a (convex, balanced and absorbing) fuzzy set in a set X, then (see [3]) ρ is called a fuzzy semi-norm on X. If in addition $\inf_{\alpha>0} (\alpha\rho)(x) = 0$ for $x \neq 0$, then ρ is called a fuzzy norm.

3. Main Results

Theorem 3.1:[3]

Let Φ be a family of balanced fuzzy sets in a vector space X over F. Then Φ is a base at zero for a fuzzy vector topology if, and only if, Φ satisfies the following conditions : (1) A(0) > 0, for each $A \in \Phi$;

(2) for each non-zero constant fuzzy set C_{β} and any $\alpha \in (0, \beta)$ there exists $A \in \Phi$ with

 $A \subseteq C_{\beta}$ and $A(0) > \alpha$;

(3) If $A, B \in \Phi$ and $\alpha \in (0, \min\{A(0), B(0)\})$, then there exists $D \in \Phi$ with $D \subseteq A \cap B$ and $D(0) > \alpha$;

(4) If $A \in \Phi$ and *t* a non-zero scalar, then for each $\alpha \in (0, A(0))$ there exists $B \in \Phi$ with $B \subseteq tA$ and $B(0) > \alpha$;

(5) Let $A \in \Phi$ and $\alpha \in (0, A(0))$. Then, there exists $B \in \Phi$ such that

$$B(0) > \alpha$$
 and $B + B \subseteq A$;

(6) Let $A \in \Phi$ and $x_{\circ} \in X$. If $\alpha \in (0, A(0))$, then there exists a positive number *s* such that $A(tx_{\circ}) > \alpha$, for all scalar $t \in R$ with $|t| \le s$;

(7) For each $A \in \Phi$ there exists a fuzzy set *B* in *X* with $B \subseteq A$, B(0) = A(0) and such that for each $x \in X$ for which B(x) > 0 and each $n \in (0, B(x))$ there exists $D \in \Phi$ with $D \subseteq -x + B$ and D(0) > n.

Definition 3.2.

Let X be a vector space, $(X_j, \rho_j)_{j \in J}$ be fuzzy semi-norm (norm) vector spaces, let $f_j: X \to (X_j, \rho_j)$ be linear functions. Set $f_j^{-1}(\rho_j) = \{f_j^{-1}(A): A \in \delta_{\rho_j}\}$, where δ_{ρ_j} is a fuzzy topology generated by a fuzzy semi-norm (norm) ρ_j , $(j \in J)$.

(1) We define the initial fuzzy vector topology on X with respect to $\{f_j\}_{j\in J}$ (in symbol $\langle \bigcup_{j\in J} f_j^{-1}(\rho_j) \rangle_X$) is the coarsest fuzzy vector topology on X containing $\bigcup_{j\in J} f_j^{-1}(\rho_j)$. It is clear that $\langle \bigcup_{j\in J} f_j^{-1}(\rho_j) \rangle_X$ making all f_j 's are fuzzy continuous.

(2) The pair $(X, \langle \bigcup_{j \in J} f_j^{-1}(\rho_j) \rangle_X)$ is called the initial fuzzy semi-normed (normed) vector space

space.

Theorem 3.3.

The initial fuzzy vector topology on X has a base at zero. **Proof :**

Let
$$I\Phi = \{C_{\alpha_j} \cap (\frac{1}{t}\rho_j \circ f_j), j \in J : \alpha_j \in (0,1], 0 < t \in R\}$$

Note, $C_{\alpha_j} \cap (\frac{1}{t}\rho_j \circ f_j)$ is balanced fuzzy set for all $t > 0, \alpha_j \in (0,1], j \in J$. one needs only show that $I\Phi$ satisfies conditions (1)-(7) of (Theorem 3.1.). (1)

Let $A \in I\Phi$. Then $A = C_{\alpha_j} \cap (\frac{1}{t}\rho_j \circ f_j)$ for some $\alpha_j \in (0,1]$, $0 < t \in R$, $j \in J$. Now,

$$A(0) = (C_{\alpha_j} \cap (\frac{1}{t}\rho_j \circ f_j))(0) = \min\{C_{\alpha_j}(0), (\frac{1}{t}\rho_j \circ f_j)(0)\} = \min\{\alpha_j, 1\} = \alpha_j > 0.$$

$$\{(\frac{1}{t}\rho_j \circ f_j)(0) = 1 \text{ since } \rho \text{ is an absorbing fuzzy set }, f \text{ is linear function}\}.$$

(2) Let C_{β_j} be a non-zero constant fuzzy set in X and let $\alpha_j \in (0, \beta_j), j \in J$. Let $A = C_{\beta_j} \cap (\rho_j \circ f_j)$. Now, $A = C_{\beta_j} \cap (\rho_j \circ f_j) \subseteq C_{\beta_j}$ and $A(0) = (C_{\beta_j} \cap (\rho_j \circ f_j)(0) = \min\{C_{\beta_j}(0), (\rho_j \circ f_j)(0)\} = \min\{\beta_j, 1\} = \beta_j > \alpha_j$. (3)

Let
$$A, B \in I\Phi$$
 and let $\alpha_j \in (0, \min\{A(0), B(0)\}), j \in J$. Then $A = C_{m_j} \cap (\frac{1}{t}\rho_j \circ f_j)$ and
 $B = C_{n_j} \cap (\frac{1}{s}\rho_j \circ f_j)$ where $m_j, n_j \in (0,1]$ and $0 < t, s \in R$. Choose
 $q_j \in (\alpha_j, \min\{A(0), B(0)\})$. Choose r such that $r \ge s, t$. Now, let $D = C_{q_j} \cap (\frac{1}{r}\rho_j \circ f_j)$. We
have now that $|s/r| \le 1$ and because ρ_j is a balanced fuzzy set, for all $j \in J$ we have
 $(s/r)\rho_j \subseteq \rho_j$, it follows $\frac{1}{s}(s/r)\rho_j \subseteq \frac{1}{s}\rho_j$. Thus, $\frac{1}{r}\rho_j \circ f_j \subseteq \frac{1}{s}\rho_j \circ f_j$. Similarly
 $\frac{1}{r}\rho_j \circ f_j \subseteq \frac{1}{t}\rho_j \circ f_j$. So
 $D = C_{q_j} \cap (\frac{1}{r}\rho_j \circ f_j) \subseteq (C_{m_j} \cap C_{n_j}) \cap ((\frac{1}{t}\rho_j \circ f_j) \cap (\frac{1}{s}\rho_j \circ f_j))$
 $= (C_{m_j} \cap (\frac{1}{t}\rho_j \circ f_j)) \cap (C_{n_j} \cap (\frac{1}{s}\rho_j \circ f_j)) = A \cap B$.

Also,
$$D(0) = (C_{q_j} \cap (\frac{1}{r}\rho_j \circ f_j))(0) = \min\{q_j, 1\} = q_j > \alpha_j$$
.
(4)
Let $A \in I\Phi$ and $0 \neq t \in R$. For $j \in J$, choose $\alpha_j \in (0, A(0))$. We have that
 $A = C_{m_j} \cap (\frac{1}{s}\rho_j \circ f_j)$ for some $m_j \in (0,1]$, $0 < s \in R$,
(Note, $A(0) = (C_{m_j} \cap (\frac{1}{s}\rho_j \circ f_j))(0) = \min\{m_j, 1\} = m_j$)
Now, for $x \in X$
 $tA(x) = t(C_{m_j} \cap (\frac{1}{s}\rho_j \circ f_j))(x) = (C_{m_j} \cap (\frac{1}{s}\rho_j \circ f_j))(x/t)$
 $= \min\{C_{m_j}(x/t), (\frac{1}{s}\rho_j \circ f_j)(x)\}$
 $= (C_{m_j} \cap (\frac{t}{s}\rho_j \circ f_j))(x)$.

Thus, $B = tA = C_{m_j} \cap (\frac{t}{s}\rho_j \circ f_j) \in I\Phi$ and $B(0) = tA(0) = (C_{m_j} \cap (\frac{t}{s}\rho_j \circ f_j))(0) = \min\{m_j, 1\} = m_j > \alpha_j.$ (5)

Let $A \in I\Phi$. We have that $A = C_{m_j} \cap (\frac{1}{s}\rho_j \circ f_j)$ for some $m_j \in (0,1]$, $0 < s \in R$, $j \in J$. Let $\alpha_j \in (0, A(0))$.

Now, let t = 2s and let $B = C_{m_j} \cap (\frac{1}{t}\rho_j \circ f_j)$. Choose any $x \in X$. Then, we have : $(B+B)(x) = \sup_{x_1+x_2=x} \min\{B(x_1), B(x_2)\}$

$$= \sup_{x_1+x_2=x} \min\{(C_{m_j} \cap (\frac{1}{t}\rho_j \circ f_j))(x_1), (C_{m_j} \cap (\frac{1}{t}\rho_j \circ f_j))(x_2)\}\$$

$$= \sup_{y \in X} \min\{C_{m_j}, \min\{(\frac{1}{t}\rho_j \circ f_j)(y), (\frac{1}{t}\rho_j \circ f_j)(x-y)\}\}\$$

$$= \sup_{y \in X} \min\{C_{m_j}, \min\{(\frac{1}{2s}\rho_j \circ f_j)(y), (\frac{1}{2s}\rho_j \circ f_j)(x-y)\}\}\$$

$$= \sup_{y \in X} \min\{C_{m_j}, \min\{\rho_j(2sf_j(y)), \rho_j(2sf_j(x-y))\}\}\$$

$$= \sup_{y \in X} \min\{C_{m_j}, \min\{\rho_j(f_j(2sy)), \rho_j(f_j(2sx-2sy))\}\}\$$

$$\leq \sup_{y \in X} \min\{C_{m_j}, \rho_j[f_j((\frac{1}{2})(2sy)) + f_j((\frac{1}{2})(2sx-2sy))]\}\$$

$$= \sup_{y \in X} \min\{C_{m_j}, \rho_j(sf_j(y+x-y))\}\$$

$$= \sup_{y \in X} \min\{C_{m_j}, (\frac{1}{s}\rho_j \circ f_j)(x)\} = \min\{C_{m_j}, (\frac{1}{s}\rho_j \circ f_j)(x)\} = A(x).\$$

Also,
$$B(0) = (C_{m_j} \cap (\frac{1}{t}\rho_j \circ f_j)(0) = \min\{m_j, 1\} = m_j = A(0) > \alpha_j.$$
 (6)

Let $A \in I\Phi$. We have that $A = C_{m_j} \cap (\frac{1}{r}\rho_j \circ f_j)$ for some $m_j \in (0,1], 0 < r \in R, j \in J$. Let $x_o \in X$ and $\alpha_j \in (0, A(0))$. Since ρ_j is absorbing, then

 $\sup_{x \to 0} (\frac{1}{t}\rho_j \circ f_j)(x_\circ) = \sup_{x \to 0} \rho_j(t f_j(x_\circ)) = 1.$ We thus have that there exists $s \in R, s > 0$ such that $(\frac{1}{s}\rho_j \circ f_j)(x_{\circ}) = \rho_j(f_j(sx_{\circ})) > \alpha_j$. Choose $t \in R$ such that $|t| \le s$, then $\left|\frac{t}{s}\right| \le 1$. Since ρ_j is a balanced fuzzy set, we have for $x \in X$ $(\rho_j \circ f_j)(\frac{t}{s}x) \ge (\rho_j \circ f_j)(x)$. Thus, $(\frac{1}{t}\rho_j \circ f_j)(x) \ge (\frac{1}{s}\rho_j \circ f_j)(x) \ge \alpha_j$. Hence, $A(tx_{\circ}) = \min\{C_{m_j}(tx_{\circ}), (\frac{1}{n}\rho_j \circ f_j)(tx_{\circ})\} = \min\{m_j, (\frac{1}{n}\rho_j \circ f_j)(rx_{\circ})\} \ge \alpha_j$ (7) Let $A = C_{m_j} \cap (\frac{1}{2}\rho_j \circ f_j) \in I\Phi$, $m_j \in (0,1]$, $j \in J$ and $0 < t \in R$. For $x_j \in X_j$ define $\hat{\rho}_j: X_j \to I$ by $\hat{\rho}_j(x_j) = \sup \rho_j(vx_j)$. Then, $\hat{\rho}_j \circ f_j: X \to I$ is a fuzzy set defined by : $(\hat{\rho}_j \circ f_j)(x) = \hat{\rho}_j(f_j(x)) = \sup_{v>1} \rho_j(vf_j(x)) = \sup_{v>1} (\rho_j \circ f_j)(vx)$, for all $x \in X$. Moreover, for each $\alpha_j \in (0,1)$ we have $\alpha_j \rho_j \subseteq \hat{\rho}_j \subseteq \rho_j$. Take, $B = C_{m_j} \cap (\frac{1}{4}\hat{\rho}_j \circ f_j)$. Note, $B \subseteq A$ and $B(0) = m_i = A(0)$. Choose $x_0 \in X$ with $B(x_0) > 0$ and let $n, n_1 \in R$ such that $0 < n < n_1 < B(x_0)$. Since $(\hat{\rho}_j \circ f_j)(tx_\circ) = (\frac{1}{4}\hat{\rho}_j \circ f_j)(x_\circ) \ge \min\{m_j, (\frac{1}{4}\hat{\rho}_j \circ f_j)(x_\circ)\} = B(x_\circ) > n_1$, then there exists $s_{\circ} > 1$ such that $(\rho_i \circ f_i)(ts_{\circ}x_{\circ}) > n_1$. Choose $s \in R$ such that $1 < s < s_{\circ}$, then $(\hat{\rho}_i \circ f_i)(tsx_\circ) \ge (\rho_i \circ f_i)(ts_\circ x_\circ) > n_1$ and so $B(sx_\circ) > n_1$. Since B is a convex fuzzy set, taking $q = \frac{1}{s}$ we have $B(x + x_{o}) = B(q(sx_{o}) + (1 - q)\frac{x}{(1 - q)})$ $\geq \min\{B(sx_{\circ}), B(\frac{x}{1-a})\}$ $\geq \min\{n_1, m_j, (\hat{\rho}_j \circ f_j) (\frac{tx}{(1-a)})\}$ $\geq \min\{n_1, (\rho_j \circ f_j)(\alpha x)\} \text{ if } 0 < \alpha < \frac{t}{1-\alpha}. \text{ Therefore, } D = C_{n_1} \cap (\frac{1}{\alpha}\rho_j \circ f_j) \subseteq -x_\circ + B$

and $D(0) = n_1 > n$.

Thus, $I\Phi$ is a base at zero for the initial fuzzy vector topology on X.

References

[1] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Appl, 56 (1976) 621-633.
[2] A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977) 135-146.

[3] A. K. Katsaras, Fuzzy topological vector spaces I, Fuzzy Sets and Systems, 6 (1981) 85-95.