On paracompact in bitopological spaces.

Luay Abd AL-Haine AL-Swidi (*),

Ihsan Jabbar AL-Fatlawe (*)

SUMMARY.- We modify the concept of paracompactness for spaces with two topologies and obtain several results concerning paracompact in bitopological spaces.

1-Introduction

Bitopological space, initiated by Kelly [7], is by definition a set equipped with two non identical topologies, and it is denoted by (X, τ, μ) where τ and μ are two topologies defined on X.

A sub set F of a topological space (X , τ) is F_{σ} [11] if it is a countable union of τ -closed set . We will denote to such set by τ - F σ .

Let (X, τ) be a topological space. A cover (or covering) [3] of a space X is a collection $U = \{U_{\lambda} : \lambda \in \Delta\}$ of subset of X whose union is the whole X.

A sub cover of a cover U [3] is a sub collection v of u which is a cover .

An open cover of X [3] is a cover consisting of open sets , and other adjectives appling to subsets of X apply similarly to covers .

For an infinite cardinal number m, if the collection $U = \{U_{\lambda} : \lambda \in \Delta\}$ consists of at most m sub-sets, we say that it has cardinality $\leq m$ or simply card. $\leq m$. Some times this collection is denoted by $|U| \leq m(or)|\Delta| \leq m$.

If a sub set A of X is consisting of at most m elements we say that A has cardinality $\leq m$ (or with cardinality $\leq m$), and is denoted by $|A| \leq m$. A bitopological space (X, τ , μ) is called (m) (τ - μ) compact if for every τ -open cover of X, (with cardinality $\leq m$), it has μ -open sub-covers . The function $f:(X,\tau,\mu,\rho) \rightarrow (Y,\tau^{*},\mu^{*},\rho^{*})$ is said to be $(\tau-\tau^{*})-close[(\tau-\tau^{*})continuous]$ function if the image [inverse image of each τ -closed[τ^{*} -open] is τ^{*} -closed [τ open in X] in Y. .Let U={U_{λ} : $\lambda \in \Delta$ } and V={V_{γ} : $\gamma \in \Gamma$ } be two coverings of X, V is said to be refine (or to be a refinement of) U, if for each V_{γ} there exists some U_{λ} with V_{$\gamma \subset$} U_{λ}. If $W=\{W_{\delta} : \delta \in \Omega\}$ refine two covers U, V of X, then it is called common refinement [2]. A family U={ $U_{\lambda} : \lambda \in \Delta$ } of sets in a space (X,τ) is called locally finite, if each point of X has a **neighborhood** V such that $V \cap U_{\lambda} \neq \phi$ for at most finitely many indices λ . In other word $V \cap U_{\lambda} = \phi$ for all but a finite number of λ . A family U of set in a space (X,τ) is called σ -locally finite if

$$U = \bigcup_{n=1}^{\infty} U_n$$

where each U_n is a locally finite collection in X.

A bitopological space (X, τ, μ) is called pairwise Hausdorff if for every two distinict points x and y of X, there exist τ -open set U and a μ -open set V such that $x \in U, y \in V$ and $U \cap V = \phi$.

A bitopological space (X, τ, μ) is called $(m)(\tau, \mu, \mu)$ - regular if for every point x in X and every τ -closed set A with $|A| \le m$ such that for $x \in A$, there exist two μ - open sets U, V such that $x \in U$, $A \subseteq V$, and $U \cap V = \phi$.

Clearly every (τ, μ, μ) -regular space is $m(\tau, \mu, \mu)$ -regular space.

A bitopological space (X,τ,μ) is called $(m-)(\tau,\mu,\mu)$ –normal if for every pair disjoint τ -closed sets A,B of X,with $|A| \le m, |B| \le m$ there exist two μ open sets U,V such that $A \subset U, B \subset V$, and $U \cap V = \phi$.

Clearly every (τ, μ, μ) –normal space is $m(\tau, \mu, \mu)$ –normal.

A topological space (X, τ) is said to be :

- 1- m-paracompact [9], if every open cover of X with card .≤m has a locally finite open refinement.
- 2- paracompact[4], if every open cover of X has a locally finite open refinement.
- 3- (m-) semiparacompact, if every open cover of X (with card. $\leq m$) has a σ -locally finite open refinement .
- 4- (m-) a-paracompact[1] if every open cover of X with card. \leq m has a α -locally finite refinement not necessary either open or closed.

2-Main Results

2.1-Definition

A bitopological space (X, τ , μ) is called (m-) ($\tau - \mu$) paracompact w.r.t μ , if for every τ -open cover $U = \{U_{\lambda} : \lambda \in \Delta\}$ of X (with card. \leq m) has a μ -open refinement $V = \{V_{\gamma} : \gamma \in \Gamma\}$ which is locally finite w.r.t μ .

2.2 - Proposition

Every (τ - μ)paracompact w .r .t. μ bitopological space (X, τ , μ) is m (τ - μ)paracompact w .r .t μ .

2.3 - Definition

A bitopological space (X, τ , μ) is called (m-) ($\tau - \mu$) semiparacompact w.r.t μ , if every τ - open cover $U = \{U_{\lambda} : \lambda \in \Delta\}$ of X (with card. \leq m) has a μ -open refinement $V = \{V_{\gamma} | \gamma \in \Gamma\}$ which is σ -locally finite. w.r.t μ .

2.4 - Proposition

Every (τ - μ) semiparacompact w .r .t. μ bitopological space (X, τ , μ) is m(τ - μ) semiparacompact w .r .t μ .

2.5 - Theorem

Every $m(\tau \mathchar`-\mu$)paracompact w .r .t. μ bitopological space (X , $\tau,~\mu$) is $m(\tau \mathchar`-\mu$)semiparacompact w .r .t μ .

2.6 - Corollary

Every $(\tau - \mu)$ paracompact w .r .t. μ bitopological space (X, τ, μ) is $(\tau - \mu)$ semiparacompact w .r .t. μ .

2.7 - Corollary

Every (τ - μ)paracompact w .r .t. μ bitopological space (X , τ , μ) is $m(\tau$ - μ) semiparacompact w .r .t μ .

2.8 - Definition

A bitopological space (X, τ, μ) is called (m-) $(\tau - \mu)$ -a-paracompact w.r.t μ , if for every τ - open cover $U = \{U_{\lambda} : \lambda \in \Delta\}$ of X (with card. \leq m) has a refinement $V = \{V_{\gamma} : \gamma \in \Gamma\}$ of U not necessarily either μ -open or μ -closed which is locally finite. w.r.t. μ .

2.9 - Proposition

Every (τ - μ)-a-paracompact w .r .t. μ bitopological space (X, τ , μ) is m (τ - μ) -a-paracompact w .r .t μ .

2.10 - Theorem

Every $m(\tau - \mu)$ semiparacompact w .r .t. μ bitopological space (X, τ, μ) is $m(\tau - \mu)$ -a-paracompact w .r .t. μ .

Proof

Suppose that (X, τ, μ) be m $(\tau - \mu)$ semiparacompact w .r .t. μ space. Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ -open cover of X with card \leq m ,then U has μ -open refinement V of U which is σ -locally finite w .r .t. μ , such that

$$V = \bigcup_{n=1}^{\infty} V_n$$

where each V_n is μ -open collection which is locally finite w.r.t. μ ,say $V_n = \{V_{n\beta} : \beta \in B\}$. For each n, let

$$W_n = \bigcup_{\beta} V_{n\beta}$$

then W_n is μ - open set. Since

$$\mathbf{X} = \bigcup_{\beta} \left(\bigcup_{n=1}^{\infty} V_{n\beta} \right) = \bigcup_{n=1}^{\infty} \left(\bigcup_{\beta} V_{n\beta} \right) = \bigcup_{n=1}^{\infty} W_n$$

Then the collection $W = \{W_n | n \in IN\}$ is μ -open cover of X.

Define

$$A_i = W_i / \bigcup_{j \le i} W_j$$
 where i=1,2,...

then $A = \{A_n : n \in IN\}$ is a collection of sets that are not necessarily either μ -open or μ -closed.then A is cover of X, a refinement of Wand locally finite

w .r .t. μ . Hence (X, τ ,µ) is m($\tau\text{-}\mu$)-a- paracompact w.r.t μ

In the same way we can prove the following corollaries.

2.11 - Corollary

Every $(\tau - \mu)$ semiparacompact w .r .t. μ bitopological space (X, τ, μ) is $(\tau - \mu)$ -a-paracompact w.r.t μ .

2.12 - Corollary

Every (τ - μ) semiparacompact w .r .t. μ bitopological space (X, τ , μ) is m (τ - μ) -a-paracompact w .r .t μ .

2.13 - Corollary

Every m (τ - μ)paracompact w .r .t. μ bitopological space (X, τ , μ) is m (τ - μ)- a-paracompact w .r .t. μ .

2.14 - Corollary

Every (τ - μ)paracompact w.r.t. μ bitopological space (X, τ , μ) is

(τ - μ)- a-paracompact w.r.t. μ .

2.15 - Corollary

Every (τ - μ) paracompact w .r .t . μ bitopological space (X, τ , μ) is m(τ - μ) -a-paracompact w .r .t . μ .

The following diagram show the relation a among the spaces which have been studied above

2.16 - Theorem

Let (X, τ, μ) be an $m(\tau - \mu)$ paracompact w .r .t μ . and pairwise Hausdroff space such that every τ - closed set in (X, τ, μ) has card. $\leq m$, then (X, τ, μ) is $m(\tau, \mu, \mu)$ -regular space.

Proof

Suppose that. (X, τ , μ) be an m(τ - μ) paracompact w .r .t μ space, A a τ - closed set in (X, τ , μ) having card. \leq m, and x \in X / A.

Since (X, τ, μ) is pairwise Hausdorff, then for each y $\in A$, we can find a τ -open set V_y and a μ -open set U_y , such that $x \in U_y$, and $U_y \cap V_y = \phi$ the col-

lection $\Pi = \{V_y : y \in A\} \bigcup \{X \mid A\}$ form a τ – open cover of X having card. $\leq m$. and

Π has a μ-open refinement $W = \{W_{\gamma} : \gamma \varepsilon \ \Gamma\}$ which is locally finite-w.r.t. μ.

Set

$$V = \bigcup_{\mathbf{y} \in \Gamma} \{ W_{\mathbf{y}} : W_{\mathbf{y}} \cap \mathbf{A} \neq \phi \}$$

then V is μ -open set containing A.

Since the μ - open cover W is locally finite. w.r.t. μ , then x has a μ -neighborhood U* which meet only a finite number of W $\gamma_1,...,W\gamma_n$. If some W γ_i , i=1,2,...n meets A i.e. $W_{\gamma} \cap A \neq \phi$, then $W_{\gamma} \subset X/A$ is impossible thus there exists $W_{\gamma i}$ such that $W_{\gamma} \subset V_{\gamma i}$.

Set

$$U = U * \bigcap \left(\bigcap_{i=1}^{n} W_{\gamma i} \right)$$

then x \in U and U is a μ - open set then $U \cap V = \phi$. Therefore the bitopological space (X,τ,μ) is $m(\tau,\mu,\mu)$ - regular

2.17 - Corollary

If (X, τ , μ) be a ($\tau\text{-}\mu$) paracompact w .r .t. μ ,and pairwise Hausdorff then (X, τ , μ) is (τ , μ , μ) –regular.

2.18 - Theorem

If (X, τ,μ) is an m ($\tau -\mu$)paracompact w .r .t μ , and pairwise Hausdorff space, such that every τ -closed set in (X, τ,μ) has card. $\leq m$, then (X, τ,μ) is m(τ,μ,μ)-normal.

```
proof
```

Suppose that (X, τ, μ) be an $m(\tau - \mu)$ paracompact w.r.t μ . Let A, and B be disjoint τ - closed sets in (X, τ, μ) such that they has card. $\leq m$. Since (X, τ, μ) is pairwise Hausdorff, then for each $x \in A, y \in B$ we can find a τ -open set U_x and a μ -open set V_x , such that $x \in U_x, y \in V_x$, and $U_x \cap V_x = \phi$. Then $\Pi = \{U_x : x \in A\} \cup \{X/A\}$ form a τ -open cover of X having card. $\leq m$. Then

Set

$$U = \bigcup_{\gamma \in \Gamma} \{ W_{\gamma}, W_{\gamma} \cap \mathbf{A} \neq \phi \} \,.$$

Then U is μ -open set contains A.

For each $y \in B$, we can find μ -open nhd H_Y wich meets only a finite number of W_{γ} , say $W_{\gamma 1(y)}, \ldots, W_{\gamma n(y)}$ (the value of n also depending on y). Each $W_{\gamma i(y)}$ meeting A i.e $W_{\gamma i} \cap A \neq \phi$, then $W_{\gamma i} \subset X/A$ is impossible. Thus there exists $U_{x i}$ such that $W_{\gamma i(y)} \subset U_{x i}$ for $x_i \in A$.

Set
$$G_y = H_y \cap \left(\bigcap_{i=1}^n V_{Xi} \right)$$

then G_y is a μ -open set which contains y but does not meet U

Let
$$V = \bigcup_{y \in B} G_y$$
.

Then V is a μ -open set, and $B \subset V$ and $U \cap V = \phi$. Therfore (X, τ, μ) is $m(\tau, \mu, \mu)$ -normal.

2.19 - Corollary

If (X, τ,μ) be a (τ - μ) paracompact w .r .t. μ ,and pairwise Hausdorff space then it is (τ, μ, μ) –normal .

2.20 - Theorem

Let (X, τ , μ) be a bitopological space and let (Y, τ_Y , μ_Y) be a τ - closed subspace of (X, τ , μ). If (X, τ , μ) is m(τ - μ) paracompact w.r.t. μ , then (Y, τ_Y , μ_Y) is m(τ_Y - μ_Y) paracompact w.r.t. μ_Y .

Proof

Suppose that (Y,τ_Y,μ_Y) be a τ - closed subspace of $m(\tau-\mu)$ paracompact w .r .t. μ space (X,τ,μ) . Show that (Y,τ_Y,μ_Y) is $m(\tau_Y-\mu_Y)$ paracompact w .r .t μ_Y .

Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ - open cover of Y with card. $\leq m$.

Since U_{λ} is τ_{Y} -open subset of Y, there is τ - open subset V_{λ} of X such that each $U_{\lambda} = V_{\lambda} \cap Y$. The collection. $\prod = \{V_{\lambda} : \lambda \in \Delta\} \cup \{X/Y\}$ form a τ -open cover of X with card. \leq m. By hypothesis \prod has μ -open refinement $W = \{W_{\gamma} : \gamma \in \Gamma\}$ which is locally finite w.r.t. μ .

Now, let $A = \{W_{\gamma} \cap Y | \gamma \in \Gamma\}$, then A is a collection of μ_{Y} -open subset of Y, hence A is a cover Y and refine U locally finite w.r.t. μ . Therefore (X, τ_{Y}, μ_{Y}) is $m(\tau_{Y} - \mu_{Y})$ paracompact w.r.t. μ_{Y} . 2.21 - Corollary Let (X, τ, μ) be a bitopological space and let (Y, τ_Y, μ_Y) be a τ - closed subspace of (X, τ, μ) . If (X, τ, μ) is $(\tau - \mu)$ paracompact w .r .t μ , then (Y, τ_Y, μ_Y) is $(\tau_Y - \mu_Y)$ paracompact w .r .t μ_Y .

2.22 - Theorem

Let (X, τ, μ) be a bitopological space and let $\chi = \{X_i : X_i \in \tau \cap \mu : i \in I\}$ be a partion of X. the space (X, τ, μ) is $m(\tau - \mu)$ paracompact w.r.t. μ iff (X_i, τ_i, μ_i) is $m(\tau_i - \mu_i)$ paracompact w.r.t. μ_i . for every i. *Proof*

The "only if "part. Since $Xi = X/\bigcup_{j \neq i} X_j$ is τ - closed, then the subspace

 (X_i, τ_i, μ_i) is $m(\tau_i - \mu_i)$ paracompact w.r.t μ_i for every i

The "if" part . Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ - open cover of X with card. $\leq m$. The collection $\prod = \{U_{\lambda} \cap X_{i} : \lambda \in \Delta\}$ is a τ_{i} -open cover of X_i with card. $\leq m$ for every i. Since (Xi, τ_{i} , μ_{i}) is $m(\tau_{i} - \mu_{i})$ paracompact w .r .t μ_{i} . $\forall i$, there exist a μ_{i} -open refinement $A_{i} = \{A_{i\lambda} : \lambda \in \Delta\}$ of \prod which is locally finite. w.r.t. μ_{i} .

Let
$$W = \{ \bigcup_{i \in I} A_{i\lambda} | \lambda \in \Delta \}.$$

Then W is μ - open cover of X refining U, and locally finite w.r.t. μ . Hence(X, τ , μ)is m(τ - μ)paracompact w.r.t. μ .

2.23 - Corollary

Let (X, τ, μ) be a bitopological space, $\chi = \{X_i : X_i \in \tau \cap \mu i \in I\}$ be a partition of X. The space (X, τ, μ) is $(\tau - \mu)$ paracompact w.r.t. μ iff the space (X_i, τ_i, μ_i) is $(\tau_i - \mu_i)$ paracompact w.r.t. μ_i for every i.

2.24 - Theorem

Let (X, τ, μ) be a m $(\tau - \mu)$ paracompact w.r.t. μ bitopological space and let (Y, τ_Y, μ_Y) be a subspace of (X, τ, μ) . If Y is F_{σ} -set relative to τ then (Y, τ_Y, μ_Y) is m $(\tau_Y - \mu_Y)$ semiparacompact w.r.t. μ_Y .

Proof

Suppose Y is F_{σ} -set relative to τ . Then $Y = \bigcup Y_n$ where each Y_n , is τ - closed Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ_Y -open cover of Y with card. \leq m.Since each U_{λ} is τ_Y - open

subset of Y, we have $U_{\lambda} = V_{\lambda} \cap Y$, where V_{λ} is τ -open subset of X for each $\lambda \in \Delta$. For each fixed n, $E_n = \{V_{\lambda} : \lambda \in \Delta\} \cup \{X / Y\}$ form a τ -open cover of X with card. $\leq m$.By hypothesis E_n has a μ -open refinement $W = \{W_{\lambda n} : (\lambda, n) \in \Delta \times IN\}$ which is locally finite .w.r.t. μ .For each n, let $B_n = \{W_{\lambda n} \cap Y : W_{\lambda n} \cap Y_n \neq \phi\}$.Let $B = \bigcup B_n$.then B is collection of μ_Y -open set, covers Y refines U and σ - locally finite w.r.t. μ_Y There for (X, τ, μ) is $(\tau_Y - \mu_Y)$ semiparacompact w.r.t. μ_Y .

2.25 - Corollary

Let (X, τ, μ) be a (τ, μ) paracompact w.r.t. μ biological space and let (Y,τ_Y,μ_Y) be a subspace of (X, τ, μ) . If Y is Fo-set relative to τ then (Y,τ_Y,μ_Y) is (τ_Y,μ_Y) semiparacompact w.r.t. μ_Y .

2.26 - Corollary

Let (X, τ, μ) be a m $(\tau - \mu)$ paracompact w.r.t. μ biological space and let (Y, τ_Y, μ_Y) be a subspace of (X, τ, μ) If Y is Fo-set relative to τ then (Y, τ_Y, μ_Y) is ($\tau_Y - \mu_Y$)-a-paracompact w.r.t. μ_Y .

2.27 - Corollary

Let (X, τ, μ) be a $(\tau-\mu)$ paracompact w.r.t. μ bitopological space and let (Y,τ_Y,μ_Y) be a subspace of (X, τ, μ) . If Y is F_{σ} -set relative to τ , then (Y,τ_Y,μ_Y) is $(\tau_Y-\mu_Y)$ semiparacompact w.r.t. μ_Y

2.28 - Theorem

let (X, τ , μ) be a bitopological space and let (Y, τ_Y , μ_Y) be a τ - closed subspace of (X, τ , μ). If (X, τ , μ) is m(τ - μ)-a- paracompact w.r.t. μ , then (Y, τ_Y , μ_Y) is m(τ_Y , μ_Y)-a- paracompact w.r.t. μ_Y .

Proof

Suppose that. (Y, τ_Y , μ_Y) be a τ - closed subspace of m(τ - μ)-a- paracompact w.r.t. μ space (X, τ , μ). To show that (Y, τ_Y , μ_Y) is m(τ_Y - μ_Y)-a- paracompact w.r.t. $\mu_{Y_{-}}$.

Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ_{Y} - open cover of Y with card. $\leq m$. Since each U_{λ} is a τ_{Y} -open subset of Y, there is a τ - open subset V_{λ} of X such that each the collection $\Pi = \{V_{\lambda} : \lambda \in A\} \bigcup \{X/Y\} \text{ form a } \tau \text{ -open cover of } X \text{ with card. } \leq m. By hypothesis } \Pi \text{ has refinement } W = \{W_{\gamma} : \gamma \in \Gamma\} \text{ (not necessarily either } \mu \text{ -open or } \mu \text{ -closed) which } \text{ is locally finite.w.r.t } \mu.$

Now, let $A = \{W_{\gamma} \cap Y, \gamma \in \Gamma\}$, then A is a collection of subsets of Y(not necessarily either μ_{Y} -open or μ_{Y} -closed). Then A is a cover Y refines U and is locally finite . w.r.t . μ_{Y} . Therefore (X, τ_{Y} , μ_{Y}) is m(τ_{Y} - μ_{Y})-a- paracompact w.r.t. μ_{Y} .

2.29 - Corollary

Let (X, τ, μ) be a bitopological space and let (Y, τ_Y, μ_Y) be a τ - closed subspace of (X, τ, μ) . If (X, τ, μ) is $(\tau - \mu)$ -a- paracompact w.r.t. μ , then (Y, τ_Y, μ_Y) is $(\tau_Y - \mu_Y)$ -a- paracompact w.r.t. μ_Y .

2.30 - Theorem

Let (X,τ,μ) be a bitopological space and let $\chi = \{ X_i : X_i \in \tau \cap \mu : i \in I \}$ be a partition of X. The space (X, τ, μ) is $m(\tau - \mu)$ -a- paracompact w.r.t. μ , iff (X_i, τ_i, μ_i) is $m(\tau_i - \mu_i)$ -a- paracompact w.r.t. μ_i for every i.

Proof

The "only if "part. Since

$$Xi = X / \bigcup_{j \neq i} X_j$$

is $\tau\text{-}$ closed , then the subspace (X_i,τ_i,μ_i) is $m(\tau_i\text{-}\mu_i)\text{-}a\text{-}paracompact}~w$.r .t. $\mu~$ for every i

The "if" part.

Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ -open cover of X with card. $\leq m$.The collection $\prod = \{U_{\lambda} \cap X_{i} : \lambda \in \Delta\}$ is a τ_{i} - open cover of Xi with card. $\leq m$ for every i. $(X_{i}, \tau_{i}, \mu_{i})$ is $m(\tau_{i} - \mu_{i})$ -a- paracompact w .r .t. $\mu_{i} \forall i$, there exist a refinement $Ai = \{A_{i\lambda} : \lambda \in \Delta\}$ of \prod (not necessarily either μ_{i} -open or μ_{i} -closed) which is locally finite. w.r.t μ_{i} .

Let
$$W = \{ \bigcup_{i \in I} A_{i\lambda} | \lambda \in \Delta \}.$$

Then W is a cover of X(not necessarily either μ -open or μ -closed), refine U and is locally finite w.r.t. μ . hence W locally finite w.r.t μ . Hence (X,τ,μ) is a m(τ - μ) –a- paracompact w.r.t μ .

2.31 - Corollary

Let (X,τ,μ) be a bitopological space and let $\chi = \{X_i : X_i \in \tau \cap \mu \in I\}$ be a partition of X. The space (X, τ, μ) is $\tau - \mu$)-a- paracompact w.r.t. μ iff the space (X_i,τ_i,μ_i) is $(\tau_i - \mu_i)$ –a-paracompact w.r.t. μ for every i.

2.32 - Theorem

If each τ -open set in an $m(\tau-\mu)$ paracompact w .r .t μ bitopological space (X,τ,μ) is $m(\tau-\mu)$ paracompact w .r .t. μ , then every subspace

 (Y, τ_Y, μ_Y) is $m(\tau_Y - \mu_Y)$ paracompact w .r .t . μ_Y .

Proof

Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ is a τ_{Y} -open cover of Y with card. $\leq m$. Since each U_{λ} is τ_{Y} -open inY, we have $U_{\lambda} = V_{\lambda} \cap Y$ where V_{λ} is a τ -open subset of X, for every $\lambda \in \Delta$. Then $G = \bigcup_{\lambda \in \Delta} V_{\lambda}$ is a τ_{Y} -open set . Let $V = \{V_{\lambda}, \lambda \in \Delta\}$ be a τ_{Y} -open cover of G with card. $\leq m$. By hypothesis G is $m(\tau - \mu)$ paracompact w.r.t. μ . Thus V has a μ -open refinement $A = \{A_{\gamma}, \gamma \in \Gamma\}$ which is locally finite w.r.t. μ .

Set

$$B = \{B_{\gamma}, \gamma \in \Gamma\},$$
 where $B_{\gamma} = A_{\gamma} \cap Y.$

then B is μ_{Y} -open cover of Y, refine U,and locally finite w .r .t μ_{Y} .

Therefore (Y, τ_Y, μ_Y) is $m(\tau_Y - \mu_Y)$ paracompact w.r.t. μ_Y .

2.33 - Corollary

If each τ -open set in $(\tau - \mu)$ paracompact w .r .t μ . the bitopological space is $(\tau - \mu)$ paracompact w .r .t μ . Then every subspace (Y, τ_Y, μ_Y) is $(\tau_Y-\mu_Y)$ paracompact w .r .t. μ_Y .

2.34 - Theorem

If *f* is $(\mu - \tau^{*})$ closed, $(\mu - \mu^{*})$ continuous mapping of a bitopological space (X, τ, μ) onto $m(\tau^{*}-\mu^{*})$ paracompact w.r.t. μ^{*} bitopological space (Y, τ^{*}, μ^{*}) such that $Z = f^{-1}(y): y \in Y$ is $m(\tau - \mu)$ compact, then (X, τ, μ) is $m(\tau - \mu)$ paracompact w. r. t. μ . Proof

Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ -open cover of X with card. $\leq m$. Then U cover of Z .Since Z is $m(\tau - \mu)$ compact, there exists a finite subset γ of Δ such that $Z \subset \bigcup_{\lambda \in \gamma} U_{\lambda}$, where U_{λ} is a μ -open set for every $\lambda \in \gamma$.

Let Γ be the family of all finite sub set γ of Δ , then $|\Gamma| \leq m$.

Set
$$V_{\gamma} = Y / f \left[X / \bigcup_{\lambda \in \gamma} U_{\lambda} \right].$$

Since $\bigcup_{\lambda \in \gamma} U_{\lambda}$ is a μ -open set, the set $X / \bigcup_{\lambda \in \gamma} U_{\lambda}$ is μ -closed, and since f is $(\mu - \tau)$ closed, then $f \left[X / \bigcup_{\lambda \in \gamma} U_{\lambda} \right]$ is τ -closed in (Y, τ, μ) , hence V_{γ} is a τ -open. Moreover $y \in V_{\gamma}$ and $f^{-1} \left[V_{\gamma} \right] \subset \bigcup_{\lambda \in \gamma} U_{\lambda}$. Therefore $V = \{ V_{\gamma} : \gamma \in \Gamma \}$ is a τ -open cover of Y with card. $\leq m$. Since (Y, τ, μ) is $m(\tau - \mu)$ paracompact w. r. t. μ , then V has a μ - open refinement $W = \{ W_{\delta} : \delta \in \Omega \}$ which is locally finite w. r. t. μ . $\Pi = \{ f^{-1} [W_{\delta}] \cap U_{\lambda} : (\delta, \lambda) \in \Omega \times \gamma_{\delta} \}$. then Π is a μ -open cover of X, refines U, and locally finite w. r. t. μ . Therefore (X, τ, μ) is $m(\tau - \mu)$ paracompact w. r. t. μ .

2.35 - Corollary

If f is $(\mu - \tau)$ closed, $(\mu - \mu)$ continuous mapping of a bitopological space (X,τ,μ) onto $(\tau - \mu)$ paracompact w.r.t. μ bitopological space (Y,τ,μ) such that $Z = f^{-1}(y) : y \in Y$ is $(\tau - \mu)$ compact, then (X,τ,μ) is

 $(\tau-\mu)$ paracompact w. r. t. μ .

2.36 - Theorem

If f is $(\mu - \tau)$ closed, $(\mu - \mu)$ continuous mapping of a bitopological space (X, τ, μ) onto $m(\tau - \mu)$ semiparacompact w.r.t. μ bitopological space (Y, τ, μ) such that $Z = f^{-1}(y)$: $y \in Y$ is $m(\tau - \mu)$ compact, then (X, τ, μ) is $m(\tau - \mu)$ semiparacompact w.r.t. μ .

Proof

Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ -open cover of X with card. $\leq m$. Then U is a cover of Z. Since Z is m $(\tau - \mu)$ compact, there exists a finite subset γ of Δ such

That $Z \subset \bigcup_{\lambda \in \gamma} U_{\lambda}$, where U_{λ} is a μ -open set for every $\lambda \in \gamma$. Let Γ be the family of all finite subset γ of Δ , then $|\Gamma| \leq m$.

Set

$$V_{\gamma} = Y / f \left[X / \bigcup_{\lambda \in \gamma} U_{\lambda} \right].$$

Since $\bigcup_{\lambda \in \gamma} U_{\lambda}$ is μ -open set, the set $X / \bigcup_{\lambda \in \gamma} U_{\lambda}$ is μ -closed and since f is $(\mu - \tau)$ closed, then $f \left[X / \bigcup_{\lambda \in \gamma} U_{\lambda} \right]$ is τ -closed in (Y, τ, μ) , hence V_{γ} is τ -open and $y \in V_{\gamma}$ and $f^{-1} \left[V_{\gamma} \right] \subset \bigcup_{\lambda \in \gamma} U_{\lambda}$. Therefore $V = \{ V_{\gamma} : \gamma \in \Gamma \}$ is a τ -open cover of Y with card. $\leq m$. Since (Y, τ, μ) is m $(\tau - \mu)$ semiparacompact w. r. t μ , then V has a μ -open refinement $W = \bigcup_{n} W_{n}$ where every W_{n} is locally finite w. r. t μ .

Set

$$W_n = \{W_{n\delta} : \delta \in \Omega\}.$$
 Thus $W = \bigcup_n \{W_{n\delta} : \delta \in \Omega\}.$

Set
$$C = \bigcup_{n} C_{n}$$
, where $C_{n} = \left\{ f^{-1} [W_{n\delta}] \cap U_{\lambda} : (\delta, \lambda) \in \Omega \times \gamma_{\delta} \right\}$. We claime that C_{n} is

(i) collection of μ -open sets;

(ii) locally finite w. r. t. μ ;

Proof of (i)

Since $W_{n\delta}$ is a μ `-open $\forall \delta \in \Delta$ and f is $(\mu - \mu)$ continuous, the set $f[W_{n\delta}]$ is a μ -open $\forall \delta \in \Delta$, and since U_{λ} is a μ -open $\forall \lambda \in \gamma_{\delta}$, then $f[W_{\delta}] \cap U_{\lambda}$ is a μ -open $\forall (\delta, \lambda) \in \Delta \times \gamma_{\delta}$.

Proof of (ii)

Let $x \in X \Rightarrow \exists y \in Y \Rightarrow y = f(x)$. Since W_n is locally finite w. r. t. $\mu \Rightarrow \exists \mu_Y - nhd$ N of x such that $N \cap W_{n\delta} = \phi$ for all but finite number of $\delta \Rightarrow f^{-1}[N] \cap \left(f^{-1}[W_{n\delta}] \cap U_{\lambda} \right) = \phi$ for all but finite number of (δ, λ) since f is

 $(\mu-\mu^{*})$ continuous ,then $f^{-1}[N]$ is a μ -nhd of x .Hence C_n is locally finite w. r. t μ . Its remains to show that C is:

ANNO LXII, 2007

- (i*) cover X ,and
- (ii*) refine U
- proof of (i*)

Let $x \in X \Rightarrow \exists U_{\lambda} \ni x \in U_{\lambda}$ and $\exists y \in Y \ni y = f(x) \Rightarrow \exists W_{n\delta} \ni y \in W_{n\delta}$ for some

 $n,\delta \Rightarrow x \in f^{-1}[W_{n\delta}]$ for some $n,\delta \Rightarrow x \in f^{-1}[W_{n\delta}] \cap U_{\lambda}$ for some (δ,λ) . Proof of (ii*)

Since
$$f^{-1}[W_{n\delta}] \cap U_{\lambda} \subset U_{\lambda}, \forall_{n,\delta} \Rightarrow \bigcup_{n=1}^{\infty} \left(f^{-1}[W_{n\delta}] \cap U_{\lambda} \right) \subset U_{\lambda}$$

i.e Π refine U_{λ}. Therefore (X, τ , μ) is m(τ - μ) semiparacompact w. r. t μ .

2.37 - Corollary

If f is $(\mu - \tau)$ closed, $(\mu - \mu)$ continuous mapping of a bitopological space (X, τ, μ) onto $(\tau - \mu)$ semiparacompact w.r.t. μ bitopological space (Y, τ, μ) such that $Z = f^{-1}(y)$: $y \in Y$ is $(\tau - \mu)$ compact, then (X, τ, μ) is

 $(\tau-\mu)$ semiparacompact w. r. t. μ .

References

[1] A. Csaszar, "General Topology", Adam Hilger Ltd. Bristol, 1978.

- [2] J.C.Kelly. "Bitopological Spaces", Proc. London Math. Soc. 13(1963), 71-89.
- [3] J. Dugundji, "Topology" Allyn and Bacon Inc., Boston, Mass, 1978.

[4] J.R.Munkres, "Topology", Prentice Hall, upper saddle River 2000.

[5] L. A. Al-Swidi "Tritopological Spaces"Introduced toBabylonUniversity Journal (2003) .

- [6] M.C. Gemignani"Elemantary Topology, Addison-Wesley Pub. Co. Inc. 1972.
- [7] M.M Kovar "Anote One Raghavan Reilly`s Pairwise Paracompactness" Internat.J. Math. & Math. Sci.24(1999).No.2,139-143.
- [9] S.Hanai,"Inverse Images of Closed Mappings", Proc-Japan. Acad 37(1961).298-301.
- [10] S.T. Hu,"Elements of General Topology", Holden-Day, Inc. 1964.
- [11] S.Willard, "General Topology", Addison-Westy pub.Co., Inc. 1970.