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Abstract 

 

In this paper we define expansive maps in general topological space (not necessarily metrizable space) and generalize 

this definition to G-spaces and give some propertie of such maps. Also we study some properties of new type of chaotic 

maps which we called G-expansive chaotic maps. 
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1. Introduction 

One of the important dynamical properties studied for dynamical systems is expansive which was introduced by Utz 

[18] in 1950 for homeomorphisms on metric spaces. Expansive homeomorphisms have lots of applications in 

Topological Dynamic, Ergodic Theory, Continuum Theory, Symbolic Dynamics etc. With the intention of studying 

various dynamical properties of maps under the continuous action of a topological group, the notation of expansiveness 

termed as   expansive homeomorphism was defined for a self-homeomorphism on a metric   space [4]. It is 

observed that the notion of expansiveness and the notation of   expansive under a non trivial action of   are 

independent of each other. Conditions under which an expansive homeomorphism on a metric   space is 

  expansive and vice-versa are also obtained. The same paper also contains a characterization of   expansive 

homeomorphism and condition under which it can be extended from a subspace to the whole space. In the process of 

above study a useful notion of pseudo equivariant map is defined. Recently Choi and Kim in [3] have used this concept 

to generalize topological decomposition theorem proved in [1] due to Aoki and Hiraide for compact metric   spaces. 

Further, in [5] the notation of generators in   spaces termed as   generator is defined and a characterization of 

  expansive homeomorphism is obtained using   generator. Some interesting consequences have been obtained for 

example it is shown that an arc cannot admit a pseudo equivariant   expansive homeomorphism. It is well known that 

an arc does not admit an expansive homeomorphism .R.Das and T.K.Das in [10] studied the extension of   expansive 

homeomorphism. R.Das and T. Das in [9] studied some properties of   expansive homeomorphism. It is worth noting 

here that other dynamical properties like shadowing and transitivity of maps on   space are also studied [6], [17]. 

Throughout      denote the collection of all self-homeomorphisms of a topological space,  denotes the set of all real 

numbers,   denotes the set of integers and   denotes the set of positive integers. By a   space (or transformation 

group) [2], [12], [13] we mean a triple       , where   is a topological space,   is a topological group and       
   is a continuous action of   on  . For   , the set                   ,is called the   orbit of   in  . Note that 

  orbits      and      of points       are either disjoint or equal. A subset   of   is called   invariant if    
    . Let                and          be the natural quotient map taking  to     , then     endowed with 

the quotient topology is called the orbit space of   (with respect to  ). The map    is also a closed map. An action of   

on   is called transitive if       . If     are   spaces, then a continuous map       is called equivariant if 

                    for each   in   and each  in. We call   pseudoequivariant if                 for each  in. 

An equivariant map is clearly pseudoequivariant but converse is not true [4]. 

By a metric   space, we mean a metric space on which a topological group   acts.  

Recall that if   is a metric space with metric   and        then   is called expansive[18], if there exists a     such 

that whenever           then there exists an integer   satisfying                 ;   is then called an 
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expansive constant for  . A topological space   is said to be Urysohn space (  )[19]if for every pair of distinct points 

      there exist pair of disjoint open sets   and   such that         and        (respectively      ). 

Every Urysohn space is    but the converse need not be true. A topological space   is said to be   [19] if for every pair 

of distinct points       there exist pair of open sets   and   such that        .Thus   is    iff every singleton set 

in   is closed [19]. A topological space   is said to be normal [19]if for every pair of disjoint closed sets         

there exist pair of open sets   and   such that           and      . A topological space   is normal [19]iff 

for every pair of disjoint closed sets         there exist pair of open sets   and   such that           and 

       . A topological space   is said to be compact if every open cover of   admits a finite subcover. A compact    

space is normal [19]. A topological group   is said to be compact [19] if it is compact as a topological space.  

In Section 2 we state the definition of    periodic point and prove sum properties of such points. In Section 3, we state 

the definition of   orbit of maps and give some new properties of the   orbits of maps. In Section 4, we introduce 

the concept of expansive maps in   space and obtain the necessarly condition auder which the map becomes 

expansive. Further we study some important properties required in Section 5. In Section 5, we introduce a new type of 

chaotic maps called   expansive chaotic map and show that there are no redundant hypotheses in our definition of 

chaos. Also we study some properties of these maps. In Section 6, we give some examples of maps that are 

  expansive chaotic or not   expansive chaotic. 

 

Definition1.1: [12] The pair of maps                         is said to be homeomorphism between the two 

transformation groups          and           if  
i)          is topological group homomorphism, 

ii)       is continuous map and 

iii)                          . 

 

Definition 1.2: [12] the homeomorphism       between two transformations groups           and           is said 

to be isomorphism if   is topological group isomorphism and   is homeomorphism. If there exists such map between 

          and           we say that they are isomorphic and we write                        . 

Note that in this case                 . 
 

Definition 1.3: Let           and           be two transformation groups. Two maps       and       are said 

to be equivariant topologically conjugate if there exists an isomorphism                           such that   is 

topological conjugate, i.e.,     . In this case we say that       and       are equivariant topologically 

conjugate via  

                         . 
Example 1.4: Let           with the usual topology, and let    act on   by         and          ,   . 

Let        be the logistic map defined by               and let       be the Tent map defined by     
        . Then   and    are equivariant topologically conjugate via                     , where       be 

the identity map and the map       defined by          
 

 
    . 

2.    periodic points 

In this section we state the definition of periodic and   periodic points. Also we give some properties related with the 

  periodic points. 

 

Definition 2.1: [11] Let   be a topological space and       be a map. A point     is said to be periodic point of   if 
there exist    such that       . The smallest positive integer   satisfy the equation        is called periodic of 

 . 
 

Definition 2.2: [7] Let   be a   space and       be a map. A point     is said to be   periodic point of   if there 

exist     and     such that            . The smallest positive integer   satisfy the equation             is 
called periodic of . 
 

Remark 2.3: Under trivial action of  on , notation of periodic point and   periodic point coincide. Under non-trivial 

action of  on , if     is periodic point of      , then it is   periodic point. But the converse need not be true as 

we see in the following example. 

Example 2.4.Let         under the usual topology,          under the discrete topology. Define         by 

           and        ,    . Then   is a continuous action of  on . Let       be the tent map. Then 

   

 
 is   peridic point but not periodic point. 
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Theorem 2.5: Let           be    space and           be     space. Let       and       be equivariant 

maps. Then     is    periodic point of   and     is    periodic point of   if and only if           is 

      periodic point of   . 

 

Proof: See the proof of Theorem 3.2 in [7]. 

Corollary 2.6. Let           be    space and           be     space. Let       and       be equivariant 

maps. If     is    periodic point of   of period   and     is    periodic point of   of period    then         
  is       periodic point of     with period             . 
 

Theorem 2.7: Let           be    space and           be     space. Let       and       be equivariant 

maps. If the set    periodic point of   is dense in   and the set of    periodic point of   is dense in   then the set of 

      periodic point of     is dense in    . 

 

Proof: See the proof of Theorem 3.2 in [7]. 

 

Theorem 2.8: Let           ,           be two transformation groups and the two maps       ,       are to 

be equivariant topologically conjugate via                          . If      is a    periodic point of  , then 

      is a    periodic point of  . 

 

Proof: Suppose that   and   are equvalent topologically conjugate via      . If     is a    periodic point of , 

then there exists     and       such that                 . Thus                       , for some      

and      . Since  equavaliant, then  

                          , for every      , and    . 

Thus                            , for some      . 

Hence                           . Now, since   is topological conjugacy, then        . Therefore 

                      , where             . That is       is a    periodic ponit of   and this complete the 

proof. 

Notation. We denote     the set of all compact subset in   ,i.e,                                 . 
 

Theorem 2.9: Let           ,           be two transformation groups and       ,       be equivariant 

topologically conjugate via                          . Let       . If                        , then                              
    . 
 

Proof: First note that if       , then          . Suppose, if possible, that                                  . Then there is an 

open set   in      such that                . Let              , then        such that               

for some     and      . Since   is    periodic points of  , then          is    periodic point of   by 

Theorem 2.8. Now, we have 

                           
               , for some     and       

                         , for some     and       

                   , for some     and       

                    , for some     and       

           
        

       , for some     and       

                 
       , for some     and               

         , which is a contradiction. 

3.      orbit of maps 

In this section we state the definitions of orbits and   orbits of maps and give new properties of   orbits. 

 

Definition 3.1: [11] Let   be a space and       be a map. We define the orbit of   at a point     as follows 

                  . 
 

Definition 3.2: [6] Let   be a   space and       be a map. We define the    orbit of   at a point     as follows 

                            . 

 

Remark 3.3: Under the trivial action of   on   the notions of orbit and    orbit are coincided. In the following 

example we see that                under a non trivial action of  . 
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Example 3.4: Let                      and          under the discrete topology with the action         

defined by                      ,    . Define       by                (the identity map). Then   is 

continuouson  . Then 

             ,          . 
             ,          . 
 

Theorem 3.5: Let    be a    space,          ,         and          be a map. If there exists       such that 

                           , for every           then                     , where      
 
   ,      

 
   ,      

 
    and 

              . 
 

Proof: First we need to show that                     . If there exists       such that                              , for every   
       , then it is easy to see that  

                                          . 

Hence,                                                                                                   .  
Consequently                     . Now to proof the converse inclusion.Let    , then               , where      , 

for           . Also each    is such that                           , for some      . So there exists a sequence in            
which converges to   , for          . i.e., there exists a subsequence of for          

          
  which converges to 

  . So given a neighborhood    of   , there exists      such that        ,         
          . Let   

                 . If   is a neighborhood of  , then      ,        .So         converges to  . So   
                   and consequently                     . Thus we have                      and this completed the proof. 

 

Theorem 3.6: Let   be a    space ,  be    space and       ,       be equivariant topologically conjugate 

via                          . Let        . If there exists      such that                        , then 

                                  . 
 

Proof: First, note that           . Suppose, if possible, that  

                                  . 

Then there exists an open   set in          such that            
                       

Then        
         ,for every     and      . Since   and  are equivariant topologically conjugate via 

     , then  

         
       ,for every     and      . 

Since the pair       is isomorphism, then  

             
              ,for every     and      . 

     
        

            ,for every     and      . 

then        
             , for every     and              , 

Which contradicts the fact that                        . This complete the proof. 

4.   expansive maps 

In this section we introduce the concept of expansive maps in   space and obtain the necessarily condition under 

which the map becomes expansive. Further we study some important properties required in Section 5. The following 

definition is the generalization of the definition of expansive map defined in a metric   space[4]. Here we introduce 

the definition of expansive map in general topological space ( not necessarily metrizable. Also we show that the two 

definitions are coincides in a metrizable topological space.  

 

Definition 4.1: [18]If   is a metric   space with metric   and        then   is called expansive if there exists a 

    such that whenever           then there exists an integer   satisfying                 . 

Definition 4.2.[4]If   is a metric   space with metric   and        then   is called  expansiveif there exists a 

    such that whenever                 then there exists an integer   satisfying                 , for all 

       and       . 
 

Definition 4.3: If   is a topological space and        then   is called expansive, if for every      , with     , 

then there exist an open set   in  , an integer  such that        and         . 

Definition 4.4.If   is a   space and        then   is called   expansive, if for every        with      
    , then there exist an open set  in  ,an integer  such that        and         , for all        and         
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Remark 4.5: Under the trivial action of   on   the notions of expansive and    expansive are coincided. It is 

observed that the notion of expansiveness and the notation of   expansive under a non-trivial action of   are 

independent of each other. 

In the following we shall show that Definition 4.1 and 4.3 are coincides in a metrizable topological space. To this end 

we state and prove the following lemma. 

 

Lemma 4.6: Let       be a metric space and let      with    , then the following statement are equivalent. 

 

i)  (i)There exists     such that         . 

ii)  (ii)There exists an open set   in   such that    and     . 

Proof: "(i) (ii)". Suppose (i). Let         be an open ball with center   and radius  . Then    and     . For, if 

    , then          and this contradicts (i). 

"(ii) (i)". Suppose (ii). Without loss the generality let  be an open ball in   with center    and radius    , i.e., 

         with     and     . We have two cases: If     , then we can take    . Since     , then 

         . Consequently         .  

If     , then we take          . Thus  

                        .  
Since     , then          . Consequently,           
 

Corollary 4.7: Let       be a metric space and let     be two non-empty disjoint subsets of  , then the following 

statement are equivalent for every     and    . 

i)  There exists     such that         . 

ii)  There exists an open set   in   such that    and     . 

 

Theorem 4.8: If  is a metrizable topological space, then Definition 4.1 and 4.3 are equivalent. 

 

Proof: Without loss of generality we consider   as a metric space. First, note that if       with    and       , 
then             and the result follows from Lemma 4.6. 

 

Theorem 4.9: If   is a metrizable topological space, then Definition 4.2 and 4.4 are equivalent. 

 

Proof: The result follows from Corollary 4.5. 

 

Theorem 4.10: Let   be a compact     space with a compact group  and       . If    not constant for some 

   , then   is   expansive on  . 

 

Proof:  Suppose that    not constant for some    . Let      with          . Since   is equivariant and one-

to-one, then                . Since   is    and   is compact then           are closed sets in  . But        

so         and consequently         ,          are disjoint closed sets in  . Since   is compact and    then it is 

normal, thus there exist two disjoint open sets   and  containing        ,          respectively such that       
 . Thus we have         and         .Let       and       . Then there exist       such that   
               . Thus we have         and          for every        and      .This means that   is 

  expansive.This complete the proof. 

 

Theorem 4.11: Let   be a Urysohn space and       . If    not constant for some    , then   is expansive on  . 

 

Proof: Let      , with    . Since    not constant for some    , then            . Since   be a Urysohn 

space, then there exist two open sets     such that                and        . Then          and 

consequently   is expansive on  . 

 

Lemma4.12: If                         , then                  . 

 

Proof: We have                       . Then  

                             . 
Since                          , then  

                                 
                              . 
Then the proof is complete. 
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Theorem4.13: Let   be a    space ,  be    space and          ,         be equivariant topologically 

conjugate via  

                         . 
If    is    expansive, then    is    expansive. 

 

Proof: Suppose that    is     expansive. Let         , with              . Since   is bijective then there exists 

        such that                   and this implies that                      . Since   is equivariant, 

then so is     and consequently     is pseudoequivariant. Therefore by Lemma 4.4 we have 

                
              .  

Similarly                 
              . Since              and   is bijective, then              . 

By hypothesis there exist open set    in      , such that   
         and  

         , for all           and 

          .Hence     
             and     

             , for all           and          . This implies 

that   
              and   

               , for all           and          .Set         . Since   is 

homeomorphism then    is open and                         . Let                    ,then 

                    and                    
Thus  

            
                 

           
              . 

Consequently,   
                and   

                .i.e.,   
        and   

         .This mean that    

is    expansive. 

 

Corollary 4.14: Let     be two topological spaces and          ,         be topologically conjugate via 

     . If    is expansive, then so is   . 

 

Theorem 4.15: Let   be a    space ,  be    space and          ,        . If either   is    expansive or  

   is    expansive, then              is       expansive. 

 

Proof: First, note the product of two homeomorphism maps is also homeomorphism, thus the statement       
       is true. Suppose that   is    expansive. Let           ,               , with          . That 

is                          or                            . Then either              or        
      . Suppose that              . Since   is    expansive, then there exist an open set    and an integer   such 

that   
         and  

         , for all           and          .Set        , then   is an open set in    . 

Now  

       
       

    
        

        
             and 

       
       

    
        

        
               . 

This means that             is       expansive. 

Corollary 4.16. Let   be two topological spaces and         ,        . If either    or     is expansive, then so is 

             . 

5.     expansive chaotic maps 

This section is the main section in this paper. Here we introduce a new definition of chaotic maps called   expansive 

chaotic maps. Also we give some new properties of such maps. Through this section we shall show that our definition 

has no redundant. 

 

Definition 5.1: Let   be a   space and   be a compact subset of  . A continuous map       is said to be 

  expansive chaotic on   if  

i)                      , for some    , 

ii)                   ,and 

iii)    is   expansive on  . 

 

Notation 5.2: 

i)                                              . 
ii)                           . 
 

Definition5.3: A  space   is said to be expansive  chaos space if          . In this case the elements of 

        are called expansive   chaotic sets. 

In the following examples we shall show that the statements (i),(ii) and (iii) in Definition 6.1 are independent and not 

two of them imply the other. That is there are not redundant hypothesis in our definition of chaos. 



International Journal of Applied Mathematical Research 231 

 

 

 

 

Example 5.4: In this example we shall show that (i) and (ii)  (iii). Let                      and          
under the discrete topology with the action         defined by                      ,    . Define 

      by                (the identity map). Then   is continuous on  . It is easy to see that  

a.                     ,  

b.                        , but 

c.   is not   expansive on  . 

 

Example 5.5: In this example we shall show that (ii) and (iii) (i). Let          under the usual topology and 

         under the discrete topology with the action         defined by                      , 

   . Define       by        (the identity map). Then   is continuous on  . It is easy to see that  

a.                     , for all    . 

b.                        . 

c.   is   expansive on  . 

 

Example 5.6: In this example we shall show that(i) and(iii) (ii) Let            under the usual topology and 

         under the discrete topology with the action         defined by                      , 

   . Define       by 

      
 

 
            

 

 
                  

 . 

Then   is homeomorphism on  . It is easy to see that  

a.                     , for all    . 

b.                        . 

c.   is   expansive on  . 

 

Example 5.7: In this example we shall show that (iii) (ii) and (i) Let          under the usual topology and   
       under the discrete topology with the action         defined by                      ,    . 

Define      by         . Then   is homeomorphism on  . It is easy to see that  

a.                     , for all    . 

b.                        . 

c.   is   expansive on  . 

 

Theorem 5.7: Let                          . If   is expansive    chaos space , then   is expansive    chaos 

space. 

 

Proof: This follows from Theorems 2.9, 3.6 and 4.13. 

 

Theorem 5.8: Let   be a    space,   be a    space and         ,          be equivariant maps. If    is 

expansive   chaotic on          and    is expansive   chaotic        , then         is expansive   
   chaotic on                 . 
 

Proof: This follows from Theorems 2.7, 3.5 and 4.15. 

Corollary 5.9 Let    be a    space,          and         , be paire wise equivariant maps. If    is expansive 

   chaotic on         ,            ,then   is expansive   chaotic on        wherer      
 
   , ,   

   
 
   ,      

 
   ,and      

 
   .  

 

6. Examples of expansive chaotic maps 

In this final section we give some examples of maps that are   expansive chaotic or not   expansive chaotic. 

 

Example 6.1: Let       with theusual topology and let    act on   by          and           ,    .  

 

Consider       defined by  
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Clearly   is    expansive chaotic. 

 

Example 6.2: Let        with theusual topology and let    act on   by          and            ,    . 

Consider the usual tent map       defined by  

      
       

 

 

       
 

 
    

  

Since there are points     such that                     

For some      then  is not    expansive map. Thus it is not    expan-sive chaotic. 

 

Example 6.3: From Examples 1.4 and 6.2 we conclude that the logistic map    is not    expansive map and hence it 

is not     expansive chaotic. 
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