On Semiparacompactness and z-paracompactness in Bitopological Spaces

Luay Abd Al-Haine Al-Swidi

College of Education, Dept. Math., University of Babylon, Babylon, Iraq

Ihsan Jabbar Al-Fatlawe

College of Sciences, Dept. Math., AL-Qadisiyah University, Qadisiyah, Iraq

Summary

We find some properties of semi paracompactness and z-paracompactness in bitopological spaces and give the relation between these concepts. Throughout the present paper m will denote infinite cardinal numbers.

Keywords: Paracompact, z-paracompact and bitopological spaces

1. Introduction

The concept of Paracompactness is due to Dieudonne [6]. The concept of paracompact with respect to three topologies is due to Martin [5]. The term space (X, τ,μ) is referred to as a set X with two generally nonidentical topologies τ and μ .

A cover (or covering) of a space (X , τ) is a collection of subsets of X whose union is all of X . A τ -open cover of X is a cover consisting of τ -open sets , and other adjectives applying to subsets of X apply similarly to covers . If \coprod and \prod are covers of X , we say \prod refines \coprod if each members of \prod is contained in some member of \coprod . Then, we say \prod refines (or is a refinement of) \coprod . A collection \prod of subsets of X is called locally finite if each x in X has a neighborhood meeting only finitely many member of \prod , and is called σ -locally finite if it is a countable union of locally finite collection in X . Note that , every locally finite collection of sets is σ -locally finite . A subset of a topological space (X , τ) is an F σ if it is a countable union of τ - closed sets , and written by τ - F σ .

1.1. Lemma [6]

Let U be a cover of a topological space X , and let V be a refinement of U . If W refines V , then W refines U .

1.2. Lemma [6]

Let (Y, τ_{γ}) be a subspace of (X, τ) . If a collection $V = \{V_{\gamma} : \gamma \in \Gamma\}$ of sets is a (σ) -locally finite with respect to τ , then so is $\{V_{\gamma} \cap Y : \gamma \in \Gamma\}$ with respect to τ_{γ} .

On Semiparacompactness and z-paracompactness in Bitopological Spaces

1.3. Lemma [6]

- 1. If $U = \{U_{\lambda} : \lambda \in \Delta\}$ is locally finite collection of sets in (X , τ) . Then any subcollection of U is locally finite .
- 2. If $U = \{U_{\lambda} : \lambda \in \Delta\}$ is locally finite collection of sets in (X, τ) , then so is $\{cl_{\tau}(U_{\lambda}) : \lambda \in \Delta\}$ and $\bigcup_{\lambda \in \Delta} cl_{\tau}(U_{\lambda}) = cl_{\tau}(\bigcup_{\lambda \in \Delta} U_{\lambda})$.
- 3. The union of a finite number of locally finites collections of sets is locally finite.

1.4. Definition [3]

A bitopological space (X, τ, μ) is called pairwise Hausdorff, if for every two distinct points x and y of X, there exists τ -open set U and μ -open set V such that $x \in U, y \in V$ and $U \cap V = \phi$.

1.5. Definition [3]

A bitopological space (X, τ, μ) is (τ, τ, μ) -regular, if every point x of X and every τ -open set U containing x there exists a τ -open set V containing x such that $cl_{\mu}(V) \subset U$.

2. Main Results

2.1. Definition

A bitopological space (X, τ, μ) is called $(m-)(\tau-\mu)$ semiparacompact with respect to μ [5], if each τ -open cover of X (with cardinality $\leq m$) has a μ -open refinement which is σ -locally finite with respect to μ .

2.2. Definition

A bitopological space (X, τ, μ) is called $(m-)(\tau - \mu)$ -a-paracompact with respect to μ , if each τ open cover of X (with cardinality $\leq m$) has a refinement which is locally finite with respect to μ .

2.3. Theorem

If (X,τ,μ) is $(m-)(\tau-\mu)$ semiparacompact with respect to μ , then the τ -closed subspace (Y, τ_Y, μ_Y) is $(m)(\tau_Y - \mu_Y)$ semiparacompact with respect to μ_Y .

Proof.

Suppose that (Y, τ_Y, μ_Y) be a τ -closed subspace of (X, τ, μ) . Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ_Y open cover of Y with cardinality $\leq m$. Since each U_{λ} is a τ_{γ} -open subset of Y, there is a τ -open subset V_{λ} of X such that $U_{\lambda} = V_{\lambda} \cap Y$. Let $\prod = \{V_{\lambda} : \lambda \in \Delta\} \cup \{X/Y\}$. Then \prod is τ -open cover of X ,(with cardinality $\leq m$). By hypothesis \prod has a μ -open refinement W which is σ -locally finite with respect to μ , hence $W = \bigcup_{n=1}^{\infty} W_n$ where each $W_n = \{W_{n\gamma} : \gamma \in \Gamma\}$ is locally finite with respect to μ . Let $A = \bigcup_{n=1}^{\infty} A_n$, where $A_n = \{W_{n\gamma} \cap Y : \gamma \in \Gamma\}$. We claim that A is

- - 1. μ_{y} open cover of Y
 - 2. refine U
 - 3. σ -locally finite with respect to μ_v .

Proof of (1). Since every $W_{n\gamma}$ is $\mu - open$, then $W_{n\gamma} \cap Y$ is $\mu_{\gamma} - open$. Let $y \in Y \implies y \in X \implies y \in W_{n\gamma}$ for some n, γ , then $y \in W_{n\gamma} \cap Y$ for some n, γ . Hence A is a $\mu_{\gamma} - open$ cover of Y.

Proof of (2). Let $\bigcup_{n=1}^{\infty} (W_{n\gamma} \cap Y) \in A$ where $W_{n\gamma} \cap Y = \neq \phi$ since W refines \prod , then for every $\bigcup_{n=1}^{\infty} W_{n\gamma} \in W$, there is V_{λ} of \prod such that $\bigcup_{n=1}^{\infty} W_{n\gamma} \subset V_{\lambda}$, so we get that $\bigcup_{n=1}^{\infty} W_{n\gamma} \cap Y \subset V_{\lambda} \cap Y = U_{\lambda}$, hence $\bigcup_{n=1}^{\infty} (W_{n\gamma} \cap Y) \subset U_{\lambda}$. Therefore A refines U.

Proof of (3). By Lemma 1.2, A is σ -locally finite with respect to μ_Y . Therefore the subspace (Y, τ_Y, μ_Y) is a $(m)(\tau_Y - \mu_Y)$ semiparacompact with respect to μ_Y .

2.4. Theorem

Let (X, τ, μ) be a bitopological space, and let $X = \{X_i : X_i \in \tau \cap \mu, i \in I\}$ be a patition of X. The space (X, τ, μ) is $(m-)(\tau - \mu)$ semiparacompact with respect to μ if and only if the space (X_i, τ_i, μ_i) is $(m-)(\tau_i - \mu_i)$ semiparacompact with respect to μ_i for every i.

Proof.

The "only if " part, since $X_i = X / \bigcup_{j \neq i} X_j$ is τ -closed then the subspace (X, τ_i, μ_i) is

 $(m-)(\tau_i - \mu_i)$ semiparacompact with respect to μ_i , for every I, by theorem 2.3.

The "if part". Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ -open cover of X with cardinality $\leq m$. The collection $\prod = \{U_{\lambda} \cap X_i : \lambda \in \Delta\}$ be a τ_i -open cover of X_i with cardinal $\leq m$ for every i.

Since (X_i, τ_i, μ_i) is $(m-)(\tau_i - \mu_i)$ semiparacompact with respect to μ_i , for every i, there is a $\mu_i - open$ refinement A_i which is $\sigma - locally$ finite with respect to μ_i so $A_i = \bigcup_{n=1}^{\infty} A_{i_n}$, where each $A_{i_n} = \{A_{i_n\gamma} : \gamma \in \Gamma\}$ is locally finite with respect to μ_i .

Let
$$W = \bigcup_{n=1}^{\infty} W_n$$
 where $W_n = \{\bigcup A_{i_{n\gamma}} : \gamma \in \Gamma \}$. We claim that W is

- 1. μ -open cover of X.
- 2. refine U.
- 3. σ -locally finite with respect to μ .

Proof of (1). Since $A_{n\gamma}$ is $\mu_i - open$, and $X_i \in \mu$, then $A_{n\gamma}$ is $\mu - open$. Since

$$X = \bigcup_{i \in I} X_i = \bigcup_{i \in I} (\bigcup_{i \in I} A_i) = \bigcup (\bigcup_{i \in I} A_i) = \bigcup (\bigcup_{i \in I} (\bigcup_{n=1}^{\infty} A_{i_{n\gamma}})) = \bigcup (\bigcup_{n=1}^{\infty} (\bigcup_{i \in I} A_{i_{n\gamma}})) = \bigcup (\bigcup_{n=1}^{\infty} W_n) = \bigcup W \operatorname{Proof}$$
of (2)

Let $\bigcup_{n=1}^{\infty} (\bigcup A_{i_{n\gamma}}) \in W$. Since A refine \prod , then there is a member G of \prod such that $\bigcup_{n=1}^{\infty} A_{i_{n\gamma}} \subset G$, then there is $U_{\lambda} \in U$ such that $G = U_{\lambda} \cap X_{i}$, hence $\bigcup_{n=1}^{\infty} A_{i_{n\gamma}} \subset U_{\lambda} \cap X_{i}$, so $\bigcup_{i \in I} (\bigcup_{n=1}^{\infty} A_{i_{n\gamma}}) \subset U_{\lambda} \cap (\bigcup_{i \in I} X_{i})$, therefore $\bigcup_{n=1}^{\infty} (\bigcup_{i \in I} A_{i_{n\gamma}}) \subset U_{\lambda} \cap X = U_{\lambda}$. Hence W refine U. Proof of (3). Let $x \in X$, if $x \in X_i$, then x has a $\mu_i - open$ neighborhood V such that $V \bigcap (\bigcup_{i \in I} A_{i_{ny}}) = \phi$ for all but finitely many γ . Since V is $\mu - open$ neighborhood of x, then W_n is locally finite with respect to μ and consequentely W is σ -locally finite with respect to μ . Therefore (X, τ, μ) is $(m-)(\tau - \mu)$ semiparacompact with respect to μ .

2.5. Theorem

If (X, τ, μ) is $(m-)(\tau - \mu)$ semiparacompact with respect to μ , then the subspace (Y, τ_Y, μ_Y) is $(m-)(\tau_Y - \mu_Y)$ semiparacompact with respect to μ_Y , where Y is $\tau - F_{\sigma} - set$.

Proof.

Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ_{γ} - open cover of Y (with cardinality $\leq m$). Since each U_{λ} is τ_{γ} - open subset of Y then there exists a τ - open set V_{λ} such that $U_{\lambda} = V_{\lambda} \cap Y$.

For each fixed n , $\prod_n = \{V_\lambda : \lambda \in \Delta\} \cup \{X/Y_n\}$ form a τ - open cover of X (with cardinality $\leq m$). By hypothesis \prod_n has a μ -open refinement W which is σ -locally finite with respect to μ . Then $W = \bigcup_{n=1}^{\infty} W_n$ where each $W_n = \{W_{n\gamma} : \gamma \in \Gamma\}$ is locally finite with respect to μ .

For each n, let $B = \bigcup_{n=1}^{\infty} B_n$, where $B_n = \{W_{n\gamma} \cap Y : W_n \cap Y \neq \phi\}$ we claim that B is

- 1. μ_{y} open cover of X
- 2. refines U
- 3. σ -locally finite with respect to μ_{γ} .

Proof of (1). Since each $W_{n\gamma}$ is $\mu - open$ set, then $W_{n\gamma} \cap Y$ is a $\mu_{\gamma} - open$ set, hence B_n is a collection of $\mu_{\gamma} - open$ sets. To show that B covers Y. Let $y \in Y$, then $y \in Y_n$ for some n, then $y \in W_{n\gamma}$ for some γ , then $y \in W_{n\gamma} \cap Y$ for some γ , hence B covers Y.

Proof of (2). Let $\mathfrak{I} \in B$ so there exists $W_{n\gamma} \in W$ such that $\mathfrak{I} = \bigcup_{n=1}^{\infty} W_{n\gamma} \cap Y$. Here $W_{n\gamma} \subset X - Y_n$ is impossible, so that $W_{n\gamma} \subset V_{\lambda}$ for some λ , then $\bigcup_{n=1}^{\infty} W_{n\gamma} \subset V_{\lambda}$ which implays that $\bigcup_{n=1}^{\infty} W_{n\gamma} \cap Y \subset V_{\lambda} \cap Y$

, so we get that $B \subset U_{\lambda}$. Therefore B refines U.

Proof of (3). By Lemma (1.2) B is σ -locally finite with respect to μ_{γ} . Therefore the subspace $(Y, \tau_{\gamma}, \mu_{\gamma})$ is $(m-)(\tau_{\gamma} - \mu_{\gamma})$ semiparacompact with respect to μ_{γ} .

2.6. Theorem

Every $(m-)(\tau - \mu)$ semiparacompact with respect to μ bitopological space (X, τ, μ) is $(m-)(\tau - \mu)$ -a-paracompact.

2.7. Definition [1]

A bitopological space (X, τ, μ) is called $(m-)(\tau - \mu)$ compact if for every $\tau - open$ cover $U = \{U_{\lambda} : \lambda \in \Delta\}$ of X (with cardinality $\leq m$) has a $\mu - open$ finite subcover.

2.8. Theorem [1]

If f is a $(\mu - \tau')$ closed and $(\mu - \mu')$ continuous mapping of a bitopological space (X, τ, μ) onto a $(m_{-})(\tau' - \mu')$ semiparacompact with respect to μ' bitopological space (Y, τ', μ') such that $z = f^{-1}(y)$, for all $y \in Y$ is $(m_{-})(\tau - \mu)$ compact, then (X, τ, μ) is a $(m_{-})(\tau - \mu)$ semiparacompact with respect to μ .

2.9. Definition

A bitopolgical space (X, τ, μ) is called $(m-)(\tau - \mu)$ semiparacompact with respect to μ , if every τ -open cover of X (with cardinality $\leq m$) has a μ -closed refinement which is locally finite with respect to μ .

2.10. Definition

A bitopological space (X, τ, μ) is called (m-)-z- semiparacompact, if every τ -open cover of X (with cardinality $\leq m$) has a μ -closed refinement which is σ -locally finite with respect to μ .

2.11. Theorem

If a bitopolgical space (X, τ, μ) is a $(m-)(\tau - \mu)$ -z-paracompact with respect to μ , then the τ -closed subspace $(Y, \tau_{\gamma}, \mu_{\gamma})$ be an $(m)(\tau_{\gamma} - \mu_{\gamma})$ -z-paracompact with respect to μ_{γ} .

Proof. Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ -open cover of X with cardinality $\leq m$, then there is a τ -open subset V_{λ} of X such that $U_{\lambda} = V_{\lambda} \cap Y$ for every λ .

The collection $\prod = \{V_{\lambda} : \lambda \in \Delta\} \cup \{X/Y\}$

form a τ -open cover of X with cardinality $\leq m$. Since (X, τ, μ) is a $(m-)(\tau - \mu)$ -z-paracompact with respect to μ , then \prod has μ -closed refinement $W = \{ W_{\gamma} : \gamma \in \Gamma \}$ which is locally finite with respect to μ .

The collection $\wp = \{ W_{\gamma} \cap Y : \gamma \in \Gamma \}$ is a μ -closed refinement of U which is locally finite with respect to μ . Therefore $(Y, \tau_{\gamma}, \mu_{\gamma})$ is a $(m)(\tau_{\gamma} - \mu_{\gamma})$ -z-paracompact with respect to μ_{γ} .

2.12. Corollary

If a bitopolgical space (X, τ, μ) is a $(\tau - \mu)$ -z-paracompact with respect to μ , then the τ -closed subspace (Y, τ_{Y}, μ_{Y}) is a $(\tau_{Y} - \mu_{Y})$ -z-paracompact with respect to μ_{Y} .

2.13. Theorem

Let (X, τ, μ) be a bitopolyical space and let $X = \{X_i : X_i \in \tau \cap \mu, i \in I\}$ be a partition of X.

The bitopolgical space (X, τ, μ) is a (m) $(\tau - \mu)$ -z-paracompact with respect to μ if and only if the space (X, τ_i, μ_i) is a (m) $(\tau_i - \mu_i)$ -z-paracompact with respect to μ_i for every i.

Proof. The "only if " part. Since $X = X / \bigcup_{j \neq i} X_j$ is a τ -closed then the subspace (X, τ_i, μ_i)

is an m $(\tau_i - \mu_i)$ -z-paracompact with respect to μ_i for every i by Theorem (2.11).

The "if" pat. Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ -open cover of X with cardinality $\leq m$. The collection $\prod = \{U_{\lambda} \cap X_i : \lambda \in \Delta\}$, is a τ_i -open cover of X_i with cardinality $\leq m$ for every I. Since (X, τ_i, μ_i) is an $m(\tau_i - \mu_i)$ -z-paracompact with respect to μ_i for every i, there exists a μ_i -closed

refinement $\Re_i = \{A_{i_{\lambda}} : \lambda \in \Delta\}$ of \prod which is locally finite with respect to μ_i for every i. Set $W = \{\bigcup_{i_{\lambda}} A_{i_{\lambda}} : \lambda \in \Delta\}.$

Then W is μ -closed refinement of U which is locally finite with respect to μ . Therefore (X, τ, μ) is an $(m)(\tau - \mu)$ -z-paracompact with respect to μ .

2.14. Theorem

If each τ -open in an m $(\tau - \mu)$ -z-paracompact with respect to μ bitopological space (X, τ, μ) is an m $(\tau - \mu)$ -z-paracompact with respect to μ , then very subspace (Y, τ_Y, μ_Y) is an m $(\tau_Y - \mu_Y)$ -z-paracompact with respect to μ_Y .

Proof. Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a $\tau_{Y} - open$ cover of Y with cardinality $\leq m$. Since each U_{λ} is $\tau_{Y} - open$ in Y, we have $U_{\lambda} = V_{\lambda} \cap Y$ where V_{λ} is a $\tau - open$ subset of X for every $\lambda \in \Delta$. Then $G = \bigcup V_{\lambda}$ is a $\tau - open$ set.

Let $V = \{V_{\lambda} : \lambda \in \Delta\}$ be a τ -open cover of G with cardinality $\leq m$. Then G is an $m(\tau - \mu)$ -z-paracompact with respect to μ . Thus V has a μ -closed refinement $\Re = \{A_{\gamma} : \gamma \in \Gamma\}$ which is locally finite with respect to μ . Set $\Im = \{B_{\gamma} : \gamma \in \Gamma\}$, where $B_{\gamma} = A_{\gamma} \cap Y$.

The collection \Im is μ_Y -closed refinement of U, which is locally finite with respect to μ_Y . Therefore (Y, τ_Y, μ_Y) is an m $(\tau_Y - \mu_Y)$ -z-paracompact with respect to μ_Y .

2.15. Corollary

If each τ -open set in a $(\tau - \mu)$ -z-paracompact with respect to μ bitopological space (X, τ, μ) is a $(\tau - \mu)$ -z-paracompact with respect to μ , then every subspace (Y, τ_Y, μ_Y) is a $(\tau_Y - \mu_Y)$ -z-paracompact with respect to μ_Y .

2.16. Theorem

If (X, τ, μ) be an $m(\tau - \mu)$ -z-paracompact with respect to μ , then the F_{σ} -subspace (Y, τ_Y, μ_Y) is an $m(\tau_Y - \mu_Y)$ semi-z-paracompact with respect to μ_Y .

Proof. Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a $\tau_{Y} - open$ cover of Y with cardinality $\leq m$. Since U_{λ} is a $\tau_{Y} - open$ subset of Y for every $\lambda \in \Delta$, we have $U_{\lambda} = V_{\lambda} \cap Y$ for every $\lambda \in \Delta$. For each fixed n, $E_{n} = \{V_{\lambda} : \lambda \in \Delta\} \cup \{X/Y_{n}\}$ form a $\tau - open$ cover of X with cardinality $\leq m$, since X is an m $(\tau - \mu)$ -z-paracompact with respect to μ , then E_{n} has a μ -closed refinement $W = \{W_{\lambda_{n}} : (\lambda, n) \in \Delta \times \mathbb{N}\}$ which is locally finite with respect to μ .

For each n, let $B_n = \{ W_{\lambda_n} \cap Y : W_{\lambda_n} \cap Y \neq \phi \}$. Then $B = \bigcup B_n$ is μ -closed refinement of U which is σ -locally finite with respect to μ , therefore (Y, τ_Y, μ_Y) is an $m(\tau_Y - \mu_Y)$ semi-z-paracompact with respect to μ_Y .

2.17. Corollary

If (X,τ,μ) be a $(\tau-\mu)$ -z-paracompact with respect to μ , then the F_{σ} -subspace (Y,τ_Y,μ_Y) is a $(\tau_Y - \mu_Y)$ semi-z-paracompact with respect to μ_Y .

2.18. Theorem

Let (X, τ, μ) be a (τ, τ, μ) – *regular* bitopological space.

If (X, τ, μ) is $(\tau - \mu)$ -a-paracompact with respect to μ , then it is $(\tau - \mu)$ -z-paracompact with respect to μ .

Proof. Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a τ -open cover of X. With each $x \in X$, associates a τ -open set U_x containing it and since (X, τ, μ) is (τ, τ, μ) -regular, fined a τ -open set V_x with $x \in V_x \subset cl_{\mu}(V_x) \subset U_x$. The collection $\prod = \{V_x : x \in X\}$ is a τ -open covering since (X, τ, μ) is $(\tau - \mu)$ -a-paracompact with respect to μ , then \prod has a refinement $A = \{A_x : x \in X\}$ which is locally finite with respect to μ . The collection $\prod = \{cl_{\mu}(A_x) : x \in X\}$ is a μ -closed refinement of U which is locally finite with respect to μ by Lemma (1.3)(2). Therefore (X, τ, μ) is a $(\tau - \mu)$ -z-paracompact with respect to μ .

2.19. Theorem

Let (X, τ, μ) be a (τ, τ, μ) – *regular* bitopological space .If (X, τ, μ) is $(\tau - \mu)$ semiparacompact with respect to μ , then it is $(\tau - \mu)$ -z-paracompact with respect to μ .

Proof . Thus follows from Thorem (2.6) and Theorem (2.18) .

2.20. Definition [2]

A collection of sets $U = \{U_{\lambda} : \lambda \in \Delta\}$ is said to be conservative ina topological space (X, τ) if $\Gamma \subset \Delta$ implies that $cl_{\tau}(\bigcup_{\lambda \in \Gamma} U_{\lambda}) = \bigcup_{\lambda \in \Gamma} CL_{\tau}(U_{\lambda})$.

2.21. Proposition [2]

The following statements are equivalent to any collection of sets $U = \{U_{\lambda} : \lambda \in \Delta\}$

- 1. U is conservative ;
- 2. If $\Gamma \subset \Delta$, then $\bigcup_{\lambda \in \Gamma} cl (U_{\lambda})$ is τ -closed;
- 3. The collection $\{cl_{\tau}(U_{\lambda}): \lambda \in \Delta\}$ is conservative.

2.22. Proposition [2]

Every locally finite collection of sets is conservative.

2.23. Theorem

If (X, τ, μ) is m $(\tau - \mu)$ -z-paracompact with respect to μ , then every τ -open cover of X with cardinality $\leq m$ has a refinement which is a conservative μ -closed cover.

Proof. Let U be a τ -open cover of X. Since (X,τ,μ) is a m $(\tau - \mu)$ -z-paracompact with respect to μ , then U has a μ -closed refinement V which is locally finite with respect to μ . Then by Proposition (2.22) V is conservative. Thus the result.

2.24. Corollary

If (X,τ,μ) is $(\tau-\mu)$ -z-paracompact with respect to μ , then every τ -open cover of X has a refinement which is a conservative μ -closed cover.

2.25. Proposition [2]

Let (X,τ) and (Y,μ) be topological spaces .If $f: X \to Y$ a closed map and $U = \{U_{\lambda} : \lambda \in \Delta\}$ is a conservative collection consisting of closed sets in (X,τ) , then $\prod = \{f(U_{\lambda}) : \lambda \in \Delta\}$ is a collection in (Y,μ) having the same property.

2.26. Theorem

Let f be a $(\tau_1 - \tau_2)$ continuous and $(\mu_1 - \mu_2)$ closed mapping of a bitopological space (X, τ_1, μ_1) to a bitopological space (Y, τ_2, τ_2) . If X is a m $(\tau_1 - \mu_1)$ -z-paracompact with respect to μ_1 , then Y is an m $(\tau_2 - \mu_2)$ -a-paracompact with respect to μ_2 .

Proof . Let $U = \{U_{\lambda} : \lambda \in \Delta\}$ be a $\tau_2 - open$ cover of Y with cardinality $\leq m$. Since f is $(\tau_1 - \tau_2)$ continuous then $\prod = \{f^{-1}(U_{\lambda}) : \lambda \in \Delta\}$ will be $\tau_1 - open$ cover of X with cardinality $\leq m$. By Theorem (2.23), U has a refinement $V = \{V_{\gamma} : \gamma \in \Gamma\}$ which is a conservative $\mu_1 - closed$ cover. By Proposition (2.23), the collection $\prod^* = \{f(V_{\gamma}) : \gamma \in \Gamma\}$ is a conservative $\mu_2 - closed$ cover of Y, and is evidently a refinement of U; hence (Y, τ_2, τ_2) is an $m(\tau_2 - \mu_2)$ -a-paracompact with respect to μ_2 .

2.27. Corollary

Let f be a $(\tau_1 - \tau_2)$ continuous and $(\mu_1 - \mu_2)$ closed mapping of a bitopological space (X, τ_1, μ_1) to a bitopological space (Y, τ_2, τ_2) . If X is a $(\tau_1 - \mu_1)$ -z-paracompact with respect to μ_1 , then Y is a $(\tau_2 - \mu_2)$ -a-paracompact with respect to μ_2 .

References

- [1] AL-Fatlawee J.K. "On paracompactness in bitopological spaces and tritopological spaces ", Msc.Thsis ,University of Babylon (2006) .
- [2] A. Csaszar, "General topology ", Adam Hilger Ltd. Bristol 1978 .
- [3] J. C. Kelly. "Bitopological spaces", proc. London math. soc 13 (1963), 71-89.
- [4] M. M. Kovar " Anote one raghavan Reilly's Pairwise Paracompactness " Internet J. Math . & Math – Sci- 24 (1999) . No . 2, 139-143.
- [5] M.C. Gemmignani " On 3- Topological Version of regularity" Internet J. Math. Sci-23(1998) . NO. 6,, 393-398.
- [6] S. Willard , " General Topology" Addison Wesry Pub- Co., Inc. 1970.