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Abstract 

The present paper addresses the topical issue of collective modesin ultracold quantum gases. At 
first, we discuss the effects of the modulation interaction for a positive s-wave scattering length 
in order to study the resonance curve which has been observed in the experiment. Furthermore, 
we use a variational Gaussian ansatz for a spherical-symmetric trap and obtain the corresponding 
equation of motion for the condensate width in order to revisit the problem of the modulation 
interaction and prominent nonlinear effects, including resonance in the collective mode 
frequency. 
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 الخلاصة

یتم  أذ.غازات الكم شدیدة البرودةمن المواضیع المھمة ل یعدالذي  اینشتاین-یتناول البحث دراسة الترددات المتھیجة لمكثف بوز
الذي من خلالھ یمكن دراسة منحني sلطول موجة الاستطارة الموجب )تعدیل( تاثیر تضمین من خلالدراسة الترددات المتھیجة 

أذ من خلال متناظر  استخدمت وانيطعلاوة على ذلك نظریة كاوس للمتغیرات لفرق جھد اس. شوھد في التجربةالرنین الذي 
ر في الشكل یمعادلات الحركة لعرض المكثف التي من خلالھا یمكن اعادة النظر لمشكلة التضمین او تغی ھذه الطریقة وجدت

 .لتي من ضمنھا الرنین في الترددات المتھیجةخطیة االغیر و دراسة الظواھر  الھندسي لفرق جھد المكثف

  .الظواھر غیر الخطیة, بیتافیسكي- معادلة كروس, اینشتاین-مكثف بوز: الكلمات المفتاحیة
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I. Introduction 

Einstein predicted in 1925 that a gas of 
massive bosonic particles will undergo a 
phasetransition into a Bose-Einstein 
condensate (BEC) if it is cooled below a 
critical temperature[1]. It is now possible to 
create such a BEC in laboratory by 
combining laser cooling andevaporative 
cooling [2, 3]. The first cooling technique 
relies on trapping the atoms due to aZeeman 
shift [2] in a magneto-optical trap and 
cooling them to about10 �K. 
Afterwards,they are bombarded by photons 
of counter-propagating laser beams in all 
three spatialdirections. The second cooling 
technique is performed by removing the 
high-energy tail ofthe thermal distribution 
from the trap, thus lowering the temperature 
below1 �K[3]. Theabove mentioned cooling 
techniques have paved the way for 
numerous experimental andtheoretical 
works to study and understand ultracold 
quantum gases which can be regardedas a 
new state of matter. Many experiments 
focused on investigating collective 
excitations ofharmonically trapped BECs as 
they can be measured very accurately and, 
therefore, allow forextracting the respective 
system parameters [4]. They are described 
by the time-dependentGross-Piteavskii 
equation for a macroscopic wave function of 
a BEC at zero temperature [5].Either the 
Gross-Piteavskii equation is solved 
numerically [6] or it is solved variationally 
by assuming a Gaussian ansatz for the wave 
function [5]. In a recent experiment led by 
V. S. Bagnato and R. G. Hulet a quadrupole 
mode of a 7Li condensate was excited by 
modulating [7] the scattering length through 
a broad Feschbach resonance [8]. The 
experiment was done in the following way: 
A BEC of 7Li was produced by Zeeman 
decelerating the atoms and confining them 
in optical trap. Coaxial to the trap laser there 
were coils which allow to manipulate the s-
wave scattering length. In the first step the 

scattering length had to be large in order to 
accelerate the thermalisation of the atoms 
and enhancing the evaporation process. 
After obtaining a condensate of about 
105atoms the magnetic field was lowered 
slowly to the desired value. The modulation 
of the scattering length was now realized by 
adding a small AC component to the bias 
field of the trap. 
II. Method 

Many experiments focused on investigating 
collective excitations of harmonically 
trapped BECs as they can be measured very 
accurately and, therefore, allow for 
extracting the respective system parameters 
[5]. They are described by the time-
dependent Gross-Piteavskii equation for a 
macroscopic wave function of a BEC at zero 
temperature [6]: 

�
�

��
�(�, �) = �

�

2�
∇� + �(�)� �(�, �) 

+�(�)�|�(�, �)|��(�, �) … … (1) 
Where �(�, �) denotes a condensate wave 
function normalized to unity, and � is the 
total number of atoms in the condensate. On 
the right-hand side of the above equation we 
have a kinetic energy term, an external 
spherical-symmetric harmonic trap potential 

�(�) =
�

�
���

���, with the interaction 

strength of two-body interaction�(�) which 
is proportional to the s-wave scattering 

length �(�), and is given byg(�) =
� � ��(�) 

�
, 

where�denotes the mass of the 
correspondingatomic species.Either the 
Gross-Pitaevskii (GP) equation is solved 
numerically [7] or it is solved variationally 
by assuming a Gaussian ansatz for the wave 
function [9, 10]. In the latter case the 
equation of motion for the condensate width 
in spherical-symmetric harmonic trap�(�) 
read in dimensionless form as follow 

�(�) + �(�)
1

��(�)

�(�)

��(�)
= 0 … … (2) 
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Here �(�) = ��
2�

��(�)

�
 denotes the 

dimensionless interaction strength with the 
particle number �, �(�) is the time 
dependent s-wave scattering length, and the 

oscillator length� = � ���
� . Aquadrupole 

mode of a 7Li condensate was excited by 
modulating[1]the scattering length through a 
broad Feshbach resonance [8] according to  

�(�) = �� + �� sinΩ� … … (3). 
This finding is surprising as one would 
expect, according to the general theory of 
parametric resonance, an inverted peak 
structure of the experimental result of Ref. 
[7]: the peak at the twice quadrupole mode 
frequency should be larger than the peak at 
the quadrupole mode frequency as well as 
particularly if one would excite one mode 
the other modes will be excited eventually. 
Therefore, we develop an analytical method 
to study and describe the dynamics of the 
system which will be discussed in the next 
section.  
III. Bogoliubov and Mitropolsky 

Method in the Theory of Nonlinear 

Oscillation 

To this end, we assume that the reason for 
this typical result is due to the anisotropy of 
theharmonic trap. In order to check this 
working hypothesis we have examine a 
parametricmodel system with one degree of 
freedom for an isotropic spherical trapusing 
Bogoliubov and Mitropolskytheory, where 
the equationof motion for the condensate 
�(�) width reads [11] 

�(�) + �(�)
1

��(�)

��

��(�)
 

��

��(�)
sinΩ� = 0, … … (4) 

With ��is the dimensionless of two-body 
interaction, �� is driving amplitude, and Ω is 
driving frequency. The ansatz to solve Eq. 
(4) is  

�(�) = �� + ���(�), … … (5) 
where��(�) is a deviation from the 
equilibrium position ��, which is 
determined by 

��
� = �� ��, … … (6) 

yielding the equation of motion  
��(�) + ��

���(�) = ��(��, Ω�), … … (7) 
where 

�� = �
��

� + 3 �� 4��

��
� , … … (8) 

The right-hand side of Eq. (7) is given by 

��(��, Ω�) =
1
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4 ��

��
� ��(�) … … (9) 

The solution of Eq. (7) is given as a 
perturbation in the smallness parameter �: 
��(�) = � cos(Ω t+ θ) + εu�(Ω t+ θ) 

+ε�u�(Ω t+ θ) + … (10) 
Furthermore, � and � are functions of time 
and can be determined perturbatively 
following a systematic procedure developed 
in Ref. [12]. Here � and � are defined as 
solutions of differential equation in the form 
��

��
= ���(�, �) + ����(�, �) … , … … (11) 

��

��
= ���(�, �) + ����(�, �) … , … … (12) 

where the functions on the right-hand side 
are periodic functions in the angular variable 
�. Up to first order in � we have 
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� ����� � � �����(�, �, �)�� ����(�
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�) cos� … … (14) 

Here � and � are integers,Δ = �
�

�
�, and 

the function �(�, �, �) is defined by 
�(�, �, �) = �(�, �, �)

+ �(�, �, �) sin�, … … (15) 
With the functions  
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… … (17) 

In the case of the main resonance, when we 
have � = � = 1, the functions ��(�, �) and 
��(�, �) turn out to be determined by  

��(�, �) =
�� cos�
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2��
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� … … (19) 

For stationary state we have to demand
��

��
=

��

��
= 0. From Eq. (18) we determine� =

±
�

�
. Inserting this into Eq. (19) yields the 

following two branches for the resonance 
curves: 
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2���
�

2��

���
�

= 0 … … (20) 

Figure 1: Comparison of our results Eq. 

(20) for � =
�

�
 and � =

��

�
 (blue curves) with 

the finding of Ref. [11] (red curves). 

Note that for small driving amplitude � the 
resonance curve Eq. (20) reproduces the 
result in Ref. [12] up to the first order: 

3��� ± 3��� ± 4� + 8ΩΔ� = 0 … … (21) 

Here the respective abbreviations read 

� =
10

��
� +

20 ��

��
� ,       � =

10 ��

��
� ,   

� =
��

��
� ,         Δ = �� Ω … … (22) 

 



 

 

Obviously, Fig. 1 does not yet explain the 
experimental resonances curve of Ref. 
The reason is that the method of Ref. 
takes in Eq. (10) only an oscillation with 
frequency Ω into account. Therefore, we 
have to extend this procedure in view of the 
real time dependence of Ref. [7]by allowing
in addition, an oscillation with frequency

IV. Numerical Simulations 
Numerical solution for the time 
interval(0, �) is then analyzed using the 
discrete Fouriertransform. We take 
numerical values obtained with the time step 

� and preform the discrete transformation 
from time to frequency domain. Maximal 
�accessible this way is give
by�������� = �/�. The resolution of the 
obtained spectrum is determined 
by �= 2�/�.  
We start by analyzing complete Fourier 
spectrafor Ω = 2.08usingT = 8000
0.1,yielding � = 0.0008. In further 
calculations, we set �� = 1and 
Time-independent solution of the 
previousequation is given by
1.222098 .From the linear response 
analysis, we determine the breathing 
modefrequency �� = 2.11220. As initial 
conditions for solving the differential 
equation (4) we use��(0) = 0and 
0. Examples ofthe time-dependent solution 
are shown in Figure 1. Clearly, large 
amplitude oscillations are present for
2.08and Ω = 4.08, anexample close to a 
resonance. 

Figure 3 shows the amplitude ratios for 

driving 
���

��
 (green curve) and breathing 

(red curve) modes obtained numerically by 
solving Eq. (4). Its solution 
possessesprecisely two modes,
�� and� = Ω.We denote these modes as 
basic modes. Main resonance is located 
at�� = Ω. 
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Figure 2: Real time dynamics, 
� for �� = 1 and for different driving 
frequency: (a)Ω = 2 (green
2.08 (red curve) and (b)Ω =
Ω = 4.09 (red curve). 

 
To this end, Fig. 4 shows positions of all the 
prominent peaks in the vicinity of 
different driving frequency 
peaks appear to be equidistant and by fitting 
linear function which is obtained from 
numerical data. 
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green curve), Ω =
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To this end, Fig. 4 shows positions of all the 
prominent peaks in the vicinity of �� for 
different driving frequency Ω values . These 
peaks appear to be equidistant and by fitting 
linear function which is obtained from 
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Figure 3:Amplitude ratios for the 

driving
���

��
 (green curve) and breathing 

�Ω

��
 

(red curve) modes, obtained using the low-
resolution Fourier transformation,� = 200, 
Δ� = 0.1, and Δ� = 0.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4:Positions of prominent peaks in the 
Fourier spectrum of the condensate width in 
the vicinity of��fordifferent values of  
Ωclose to��:,� = 8000, Δ� = 0.1. 

V. Conclusions 

We have studied in detail Bogoliubov and 
Mitropolskytheory in the radially symmetric 

BEC assuming that time dependence of the 
condensate width Eq. (4) is captured by an 
ordinary differential equation.We have 
studied the dynamics and collective 
excitations of a BEC for modulating the 
interaction strength at zero temperature. All 
results are obtained using Mathematica and 
C++ programs. 
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