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Abstract

The present paper addresses the topical issue of collective modesin ultracold quantum gases. At
first, we discuss the effects of the modulation interaction for a positive s-wave scattering length
in order to study the resonance curve which has been observed in the experiment. Furthermore,
we use a variational Gaussian ansatz for a spherical-symmetric trap and obtain the corresponding
equation of motion for the condensate width in order to revisit the problem of the modulation
interaction and prominent nonlinear effects, including resonance in the collective mode
frequency.
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I. Introduction

Einstein predicted in 1925 that a gas of
massive bosonic particles will undergo a
phasetransition into a  Bose-Einstein
condensate (BEC) if it is cooled below a
critical temperature[1]. It is now possible to
create such a BEC in laboratory by
combining laser cooling andevaporative
cooling [2, 3]. The first cooling technique
relies on trapping the atoms due to aZeeman
shift [2] in a magneto-optical trap and
cooling them to about10 uK.
Afterwards,they are bombarded by photons
of counter-propagating laser beams in all
three spatialdirections. The second cooling
technique is performed by removing the
high-energy tail ofthe thermal distribution
from the trap, thus lowering the temperature
below1 uK[3]. Theabove mentioned cooling
techniques have paved the way for
numerous  experimental  andtheoretical
works to study and understand ultracold
quantum gases which can be regardedas a
new state of matter. Many experiments
focused on  investigating  collective
excitations otharmonically trapped BECs as
they can be measured very accurately and,
therefore, allow forextracting the respective
system parameters [4]. They are described
by the time-dependentGross-Piteavskii
equation for a macroscopic wave function of
a BEC at zero temperature [S5].Either the
Gross-Piteavskii ~ equation is  solved
numerically [6] or it is solved variationally
by assuming a Gaussian ansatz for the wave
function [5]. In a recent experiment led by
V. S. Bagnato and R. G. Hulet a quadrupole
mode of a 'Li condensate was excited by
modulating [7] the scattering length through
a broad Feschbach resonance |[8]. The
experiment was done in the following way:
A BEC of 'Li was produced by Zeeman
decelerating the atoms and confining them
in optical trap. Coaxial to the trap laser there
were coils which allow to manipulate the s-
wave scattering length. In the first step the

scattering length had to be large in order to
accelerate the thermalisation of the atoms
and enhancing the evaporation process.
After obtaining a condensate of about
10°atoms the magnetic field was lowered
slowly to the desired value. The modulation
of the scattering length was now realized by
adding a small AC component to the bias
field of the trap.

II. Method
Many experiments focused on investigating
collective excitations of harmonically
trapped BECs as they can be measured very
accurately and, therefore, allow for
extracting the respective system parameters
[S]. They are described by the time-
dependent Gross-Piteavskii equation for a
macroscopic wave function of a BEC at zero

temperature [6]:
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Where Y (r,t) denotes a condensate wave
function normalized to unity, and N is the
total number of atoms in the condensate. On
the right-hand side of the above equation we
have a kinetic energy term, an external
spherical-symmetric harmonic trap potential
V(r) = %ngrz,with the
strength of two-body interactiong(t) which
is proportional to the s-wave scattering
4m 2a(t)

M b
whereMdenotes the mass of the
correspondingatomic  species.Either  the
Gross-Pitaevskii (GP) equation is solved
numerically [7] or it is solved variationally
by assuming a Gaussian ansatz for the wave
function [9, 10]. In the latter case the
equation of motion for the condensate width
in spherical-symmetric harmonic trapw(t)
read in dimensionless form as follow
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Here P(t) = /”/ZNaT(t) denotes  the

dimensionless interaction strength with the
particle number N, a(t) is the time
dependent s-wave scattering length, and the

oscillator lengthl = / /Mw.- Aquadrupole
()

mode of a 'Li condensate was excited by
modulating[1]the scattering length through a
broad Feshbach resonance [8] according to
P(t) =Py + P;sifdt..... (3).
This finding is surprising as one would
expect, according to the general theory of
parametric resonance, an inverted peak
structure of the experimental result of Ref.
[7]: the peak at the twice quadrupole mode
frequency should be larger than the peak at
the quadrupole mode frequency as well as
particularly if one would excite one mode
the other modes will be excited eventually.
Therefore, we develop an analytical method
to study and describe the dynamics of the
system which will be discussed in the next
section.
III.  Bogoliubov and Mitropolsky

Method in the Theory of Nonlinear
Oscillation

To this end, we assume that the reason for
this typical result is due to the anisotropy of
theharmonic trap. In order to check this
working hypothesis we have examine a
parametricmodel system with one degree of
freedom for an isotropic spherical trapusing
Bogoliubov and Mitropolskytheory, where
the equationof motion for the condensate
w(t) width reads [11]
Py
w(t) + w(t) O Wi
P
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With Pyis the dimensionless of two-body
interaction, P; is driving amplitude, and Q is
driving frequency. The ansatz to solve Eq.
(4)is

w(t) = wgy + 6wy (t), ...... (5)
wherew, (t) is a deviation from the
equilibrium  position wg, which s
determined by

Wg =Wy Po, ...... (6)
yielding the equation of motion
wy (1) + wdw, (t) = e f(wy, Qb), ... ... (7)
where
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The right-hand side of Eq. (7) is given by
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The solution of Eq. (7) is given as a
perturbation in the smallness parameter &:
wi(t) =acodQt+0)+eul(Qt+0)
+&2u?(Qt+0)+ ..(10)

Furthermore, a and @ are functions of time
and can be determined perturbatively
following a systematic procedure developed
in Ref. [12]. Here a and 6 are defined as
solutions of differential equation in the form

da
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do
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where the functions on the right-hand side
are periodic functions in the angular variable
6. Up to first order in € we have
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Here p and q are integers,A = w Sv, and
the function F(a, 8, vy) is defined by
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With the functions
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In the case of the main resonance, when we
have p = q = 1, the functions A4;(a, ) and
B;(a, 8) turn out to be determined by
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For stationary state we have to demand% =
da
==
ig. Inserting this into Eq. (19) yields the
following two branches for the resonance
curves:
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Figure 1: Comparison of our results Eq.
(20) for 6 = Zand 6 = == (blue curves) with
the finding of Ref. [11] (red curves).

Note that for small driving amplitude a the
resonance curve Eq. (20) reproduces the
result in Ref. [12] up to the first order:

3Ba® + 3Ea? + 4C +8QAa = 0 ... ... (21)

Here the respective abbreviations read
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Obviously, Fig. 1 does not yet explain the
experimental resonances curve of Ref. [7].
The reason is that the method of Ref. [12]
takes in Eq. (10) only an oscillation with
frequency Q into account. Therefore, we
have to extend this procedure in view of the
real time dependence of Ref. [7]by allowing,
in addition, an oscillation with frequencywy.

IV.  Numerical Simulations
Numerical  solution  for the time
interval(0,T) is then analyzed using the
discrete  Fouriertransform. = We  take
numerical values obtained with the time step
t and preform the discrete transformation
from time to frequency domain. Maximal
waccessible this way is given
byWmax®@max = T/t. The resolution of the
obtained spectrum is determined
by w=2m/T.
We start by analyzing complete Fourier
spectrafor Q = 2.08usingT = 8000and ¢t =
0.1,yielding w = 0.0008. In further
calculations, we set Py, = land P; = 0.1.
Time-independent solution of  the

previousequation is  given  byw, =
1.222098 .From the linear response
analysis, we determine the breathing

modefrequency wy = 2.11220. As initial
conditions for solving the differential
equation (4) we usewy(0) = 0and w,(0) =
0. Examples ofthe time-dependent solution
are shown in Figure 1. Clearly, large
amplitude oscillations are present forQ =
2.08and Q = 4.08, anexample close to a
resonance.

Figure 3 shows the amplitude ratios for the
driving % (green curve) and breathing %
0 0

(red curve) modes obtained numerically by
solving Eq. (4). Its solution
possessesprecisely two modes,w =
wpandw = Q.We denote these modes as
basic modes. Main resonance is located
atwy = Q.
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To this end, Fig. 4 shows positions of all the
prominent peaks in the vicinity of w, for
different driving frequency Q values . These
peaks appear to be equidistant and by fitting
linear function which is obtained from
numerical data.
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Figure 3:Amplitude ratios for the
driving% (green curve) and breathing %

0 0
(red curve) modes, obtained using the low-

resolution Fourier transformation,T = 200,
At = 0.1, and Aw = 0.3.
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Figure 4:Positions of prominent peaks in the
Fourier spectrum of the condensate width in
the vicinity ofwgfordifferent values of
Qclose towq:, T = 8000, At = 0.1.

V. Conclusions

We have studied in detail Bogoliubov and
Mitropolskytheory in the radially symmetric

BEC assuming that time dependence of the
condensate width Eq. (4) is captured by an
ordinary differential equation.We have
studied the dynamics and collective
excitations of a BEC for modulating the
interaction strength at zero temperature. All
results are obtained using Mathematica and
C"" programs.
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