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Abstract

The aim of this paper is to study the effect of electron correlation for the uncorrelated
Hartree-Fock (HF) and correlated Configuration-Interaction (CI) wave functions for N and o'
ions. To this end, the address discuss the physical properties of the one-particle radial

distribution function D'(r;) as well as the expectation value of the one-particle distribution
function{ry*). We conclude that the one-particle radial distribution function and the expectation

values for n=1, 2 increase as increase the atomic number Z. Indeed, the effect of electron

correlation increase with increase the atomic number Z.
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I. Introduction

The Hartree-Fock (HF) approximation is a much useful method to study the electronic structure

of atoms and molecules [1, 2]. The N-electron wave function of the HF approximation can be



written as the antisymmetrised product of N one-electron functions or orbitals [2], where the
one-electron function is a computationally and conceptually attractive simplification in the
description of the N-electron system. In the HF orbitals calculation the instantaneous interaction
between the electrons is replaced (approximated) by the interaction of an electron with the
average field generated by the other N-1 electrons. Indeed, the correlation of the electronic
repulsion (Coulomb correlation) is neglected in the HF approximation [3, 4]. This is the Hartree
Fock error or correlation error. Coulomb correlation can be included in the calculation, for
instance, through configuration interaction (CI) but, compared to the HF, this is computationally

much more complex and time-consuming [5, 6].

Several research have instigated a broad interest in the Hartree-Fock and configuration
interaction wave functions, and paved the way for extensive studies of a wide range of both
experimental and theoretical topics. In Ref. [7] was generalized the self-consistent field (SCF)
formalism. Ref. [8] was obtained an accurate wave function for the ground state of atomic
systems. The successful approaches of many-particle quantum mechanics for the ground and
excited states of Helium, Lithium and Beryllium atoms using a configuration interaction
approximation was done by Ref. [9]. In particular, Ref. [10] was analyzed and compared five

wave functions for Hydrogen ion, and discussed the two-particle density.

To this end, this paper deals with the effect of electron correlation due to the coulomb repulsion
between electrons. Therefore, we start with the uncorrelated HF and correlated CI wave
functions, respectively, in Sec. II. In Sec. III. I discuss the atomic properties of the two-particle
density for HF and CI wave functions, respectively, as well as one-particle radial distribution
function D(r,), and the expectation value for the one-particle radial distribution function{ry").
Finally, I mention and summarize the result in Sec. IV.

II. Wave Functions

A. Hartree-Fock Wave Function

The total wave function of the independent practical model is given by Slater determinant:
Warlxpx,,.. x,) = @ (x )@, () .. P20 ... (1)

With the single electron wave function €, (x,) and x;denotes spin-orbital components



@, (x;) = o, (r)a(d)....... (2)

7, denotes the radial and angular co-ordinate, while a(9) is the spin wave function. The spatial

part &, () can be written as an expansion in some set of analytic basis functions [11]:

o (7) = Z; Citlgeronn 3)

Where C! is a coefficient taken to minimize the energy. The basis set of one-electron function

(basis function) consist to be normalized Slater-type orbital defined by:
K (7,8,9) =R, YL (8,0)....... 4)

Where R,, and ¥!(8,9) represent the radial and angular parts, respectively. The radial part is

given by:

R, (r) = ':2?; I LA (5)

Win !

n,l, and mare quantum numbers, with exponential parameter (. For the HF ground state

calculations of N"and O™ ions I used data (C, ¢, and n) introduced in Ref. [12]. Furthermore, the

ground state data for the correlated wave function of N"and O"¢ ions have taken in Ref. [13].
B. Configuration-Interaction Wave Function

Configuration interaction (CI) is one of the most general ways to improve upon Hartree—Fock
theory by adding a description electron correlation in term of correlation energy. Simply put, a
CI wave function is a linear combination of Slater determinants (or spin-adapted configuration
state functions), with the linear coefficients being determined variationally via diagonalization of
the Hamiltonian in the given subspace of determinants [14]. The correlation description of the
ground state of N"and O ions have taken from Weiss [13, 15]. Partitioning technique is used

to describe the correlation effects.

Yo =26 @i (6)



Where each of ¢, s (configurations) is antisymmetrized product of one-electron functions (spin
orbital), and the coefficients ¢; are taken from minimizing the total energy. Applying the

variation theorem and solving an infinite set of secular equations may in principle, obtain the
exact wave function. In this work we have used the Wiess method of configuration interaction
(CI) [6]. The specific form of the configuration system studied to be linear combination of single

Slater determinant using fifteen configuration of s symmetry.
1
(Ak) = EZ|1[1]H}€EZ]£| ........ (7)

The basis set of one-electron function consist to be normalized Slater-type orbital defined in

Refs. [7-9].

III.  Atomic properties for N and 0" Tons

A- One-particle distribution Function and Electron correlation AD(r, )

The one-particle radial distribution function for the correlated CI and uncorrelated HF wave

functions has the form [15]
Dyr (ﬂj = _r: Yur (T"l, ng ’rf ’rf d’rz ...... (8)
Dyr(ry) = .r,]m Yer(rom) rf v dry. . 9)

where yoys(r1,m) and y.,(r.7) are the two particle density for uncorrelated and correlated

wave. To calculate the electron correlation for the one-particle distribution function, we have to

take the difference between the correlated and uncorrelated wave function which has the form
AD(ry) = Dgy(r) — Dyp(ry) ... (8)
B- The one-particle expectation value {r7})
The one-particle expectation value has the form (r;") [11, 16]
(r')y = _r: D, (n)rldr...... (11)

IV. Results and Discussions



The results of this paper achieve by using of Mathmatica Program version (2010).
Furthermore, A. Sarsa, F.J. Galvez, and E. Buendia have used for Hartree-Fock [12] wave

function and Wiess for Configuration-Interaction wave function [13].

A. The One-Particle Radial Distribution Function.

The one-particle density distribution function D(r;)} represents the probability of finding

the test electron at distance r; from the nucleus (where the nucleus is fixed at origin point of

axis).
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Figure 1: The One-particle radial distribution function D(r,) in unit of (a. u.) for

N*(blue curves) and O'® (red curves) ions using uncorrelated HF (solid lines) and

correlated CI (dotted lines) wave functions.

To this end, Figure 1 shows the one-particle radial distribution function D () versus .
Solid curves correspond to the uncorrelated (HF) wave function and dotted curves represent to
the correlated (CI) wave function of N** (blue curves) and O (red curves). Indeed, Fig. 1 shows
that the probability increases with the increase the distance r;, then decrease after (r; = .015)
and (r; = .013) for N™ and O™ | respectively, until reaches zero which means that the
probability to fining the electron occurs at a distance (r; = .015) and (r; = .013) for N* and °*°,
respectively. This happens due to the anti-parallel spin component, therefore, two electrons will

be close to each other. We see a difference between solid and dotted curves due to the correlation

effect which considered in the configuration interaction wave function.
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The interesting phenomena is the correlation effect on D(r;) in Fig. 2 which represents the
difference AD(r;), between the correlated wave function (CI) and the uncorrelated wave
function (HF) as a function of r;. The difference shows an increase in D (r; ) and then a decrease
in D(ry), this change caused by the correlation effect. The correlation effects come from the

separation of two electrons of this shell, where we put each one in virtual state (configuration)
for instance ((1s2s), (2s2s)...). Figure 2 shows that the correlation increase as increase the atomic

number Z.
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Figure 2: Electron correlation of one-particle radial distribution function AD(r,) in
unit of (a. u.) as a function of r, (A) and Z r,(B), respectively, for N (blue curves) and (O

(red curves) ions using uncorrelated HF and correlated CI wave functions.
B. The One-Particle Expectation Value

Table I shows the one-particle expectation value {ry*} as a function of the exponent
parameter n = —2..2. In addition Fig. 3 shows the one-particle expectation value {ry*) as a
function of exponent parameter n = —2..2 of the uncorrelated HF (solid curves) and correlated

CI (dotted points) wave functions for N™ (blue curves) and O™ (red curves) ions. We can see in

Fig. 3 that the expectation value of one-particle decrease with increase =. In this paper the value
of m is important parameter because we can understand some physical properties of N™ (blue

curves) and O'° (red curves) ions that mention in table 1 and Fig. 3. To this end, n = —2 shows
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the force between the electron and nucleus, n = —1 gives the electron-nuclear attraction energy.
In particular, n = 0 refers to the normalization constant of the wave functions and finally n = 2

is important to measure the diamagnetic susceptibility. We note the uncorrelated HF wave
function for n = —2,—1,0 is smaller the correlated CI wave function as well as for n = 1,2
shows that uncorrelated HF wave function is larger the correlated CI wave function due to
electron correlation where the correlated CI wave function takes into account the regulation

forces between the electrons.

Table I: the one-particle expectation value in unit of (a. u.) for N*and O*° using

uncorrelated HF and correlated CI wave functions.

Atom or Wave (rfla u.
Ions functions n=-2 n=- n=0 n=1 n=
's HF 90.572 6.687 1.0001 0.226 0.068
N CI 94.386 6.653 1.0001 0.237 0.078
HF 119.488 7.654 1.0001 0.196 0.051
o* Cl 123.647 7.687 1.0001 0.205 0.058
Ref [6] 119.487 7.687 1.0001 0.196 0.051
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Figure 3: The one-particle expectation value {r?) in unit of (a. u.) versus the power n

for N*° (blue curves) and 0" (red curves) ions. Solid curves represent the uncorrelated HF

wave function and dotted points show the correlated CI wave function, respectively.

C. Conclusions

We have studied in detail how the effect of the electron correlation changes the one-
particle radial as well as the expectation value of the radial distribution function. The effect of

electron correlation increase with increase the atomic number Z.
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