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INTRODUCTION  
 

          The notion of fuzzy norm on a linear space was introduced by Katsaras [7]      in 1984. Later on many other 

Mathematicians like Felbin [5] in 1992 ,Cheng and Mordeson  [4] in 1994  , Bag and Samanta  [2] in 2003  etc , 

have given different definitions of  fuzzy normed spaces . In this paper we have been able to establish    some 

important results involving compactness of finite dimensional fuzzy normed linear spaces including Riesz Lemma . 

 

2.Preliminaries 

Definition (2.1) : [6] A binary operation  ∗: [0,1] × [0,1]→[0,1] is a t-norm if ∗ is  

satisfies the following conditions : 

      (i) ∗ is commutative and associative ; 

      (ii) 𝑎 ∗ 1= 𝑎 for all 𝑎 ∈  0,1  ; 
     (iii) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑whenever𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for all ( 𝑎, 𝑏, 𝑐, 𝑑 ∈  0,1  ).                 If  ∗ is continuous then it is 

called continuous t-norm. 

Definition (2.2) :[11] Let 𝑋 be a non-empty set, ∗ be a continuous t-norm on  

I=[0,1]. A function 𝑁 ∶ 𝑋 ×  0,1 ⟶  0,1  is called a fuzzy norm function on 𝑋 if  

satisfies the following axioms for all 𝑥, 𝑦 ∈ 𝑋, 𝑡, 𝑠 > 0: 
      (N1) 𝑁 𝑥, 𝑡 > 0; 
      (N2) 𝑁 𝑥, 𝑡 = 1 ⟺  𝑥 = 0; 

      (N3) 𝑁 𝛼𝑥, 𝑡 = 𝑁  𝑥,
𝑡

 𝛼 
 ; 

      (N4) 𝑁 𝑥, 𝑡 ∗ 𝑁 𝑦, 𝑠 ≤ 𝑁 𝑥 + 𝑦, 𝑡 + 𝑠 ; 
      (N5) 𝑁 𝑥, .  :  0,∞ →  0,1  is continuous; 

      (N6) 𝐿𝑖𝑚𝑡→∞𝑁 𝑥, 𝑡 = 1. 
 𝑋, 𝑁,∗  is said to be a fuzzy normed space. 

http://www.journalijar.com/
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Definition (2.3) : [2] Let  𝑋, 𝑁,∗  be a fuzzy normed linear space .Let  𝑥𝑛   be           

a sequence in 𝑋 .Then {𝑥𝑛} is said to be convergent if 𝑥 ∈ 𝑋 such that  

lim𝑛→∞ 𝑁 𝑥𝑛 − 𝑥 , 𝑡 = 1 ∀𝑡 > 0. In this case 𝑥 is called the limit of the sequence  

{𝑥𝑛 } and is denoted by 𝑙𝑖𝑚𝑥𝑛 . 
Definition (2.4) : [2] Let (𝑋, 𝑁,∗) be a fuzzy normed linear space . A subset B of 𝑋  

is said to be closed if for any sequence {𝑥𝑛} in B converges to 𝑥 

i.e.lim𝑛→∞ 𝑁 𝑥𝑛 − 𝑥 , 𝑡 = 1 ∀𝑡 > 0  implies that 𝑥 ∈ B. 

Definition(2.5) : [9] Let (𝑋,𝑁,∗) and (𝑌,𝑁,∗) be two fuzzy normed spaces. Then  

the function 𝑓 ∶ 𝑋 → 𝑌 is said to be continuous at 𝑥° ∈ 𝑋 if for all 휀 ∈ (0,1) and all  

𝑡 > 0  there is exist 𝛿 ∈ (0,1) and 𝑠 > 0  such that for all 𝑥 ∈ 𝑋  

𝑁 𝑥 − 𝑥° , 𝑠  > 1 − 𝛿 implies 𝑁 𝑓 𝑥 − 𝑓 𝑥°  , 𝑡  > 1 − 휀 . 

The function 𝑓 is called continuous function if it continuous at every point of 𝑋. 

Definition (2.6) : [3] Let (𝑋, 𝑁,∗) be a fuzzy normed linear space. We define a set  

 𝐵 𝑥,𝛼, 𝑡  𝑎𝑠 𝐵 𝑥, 𝛼, 𝑡 =   𝑦 ∶ 𝑁 𝑥 − 𝑦 , 𝑡 > 1 − 𝛼  . 
Definition (2.7) : [10] Let (𝑋, 𝑁,∗) be a fuzzy normed linear space and 𝐵 ⊂ 𝑋. 𝐵 is  

said to be fuzzy bounded if for each 𝑟 , 0 < 𝑟 < 1 , ∃ 𝑡 > 0 such that 

 𝑁 𝑥, 𝑡 > 1 − 𝑟   ∀ 𝑥 ∈ 𝐵. 
Theorem (2.8) : [1] Let 𝑓 be linear functional of fuzzy normed linear space 𝑋 in to  

another fuzzy normed linear space 𝑌. Then the following statements are equivalent : 

1- 𝑓 is continuous . 

2- 𝑓 is continuous at origin . 

3- 𝑓 is bounded. 

Theorem (2.9) : [8] Let 𝑋 be linear space over a field 𝐹. 
(1) If 𝑥𝜖𝑋 , and a function 𝑇𝑥  : 𝑋ˊ ⟶ 𝐹 defined by   𝑇𝑥 (𝑓) ₌  𝑓(𝑥) for all 𝑓𝜖𝑋ˊ , then 𝑇𝑥   

is linear function , i.e. 𝑇𝑥  ϵ 𝑋ˊˊ,   and it is called Evaluation Functional Induced by 𝑥. 

(2) If the function 𝜓: 𝛸 ⟶ 𝑋ˊˊ
 defined by 𝜓(𝑥) = 𝑇𝑥   for all 𝑥𝜖X ,                             

then 𝜓  injection linear function and 𝜓 is called Canonical Function.   

Definition (2.10) : Let 𝑋 be a fuzzy normed linear space over a field 𝐹. We            

define  𝑋∗∗ as :    

 𝑋∗∗=  (𝑋  ∗)∗ ={ 𝑓:𝑋∗ → 𝐹 , 𝑓 is bounded (continuous) linear functional} 

𝑋∗∗  is called the second dual space. 

Definition (2.11) : Let  𝑋, 𝑁,∗  𝑎𝑛𝑑  𝑌, 𝑁,∗  be fuzzy normed spaces over  

𝐹 𝑎𝑛𝑑 𝑓:𝑋 → 𝑌 be linear function . We define  

 𝑁 𝑓, 𝑡 = inf    𝑁 𝑓 𝑥 , 𝑡 :𝑥 ∈ 𝑋   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 𝑜 . 
Theorem (2.12) : Let  𝑋, 𝑁,∗  𝑎𝑛𝑑 (𝑌,𝑁,∗) be fuzzy normed spaces . Then 𝑁(𝑓, 𝑡)  

is defined in Definition (2.11) is a norm. 

Proof : We check the items in Definition (2.2) .It is easy to see that  𝑁1  ,  
 𝑁2 ,  𝑁3 ,  𝑁5  𝑎𝑛𝑑  𝑁6  are true. We consider  𝑁4  :                                       
𝑁 𝑓, 𝑡 ∗ 𝑁 𝑔, 𝑡 = {inf  𝑁 𝑓 𝑥 , 𝑡 :𝑥 ∈ 𝑋 ∗ {inf{𝑁 𝑔 𝑥 ,𝑠 : 𝑥 ∈ 𝑋}  

                             = inf   𝑁 𝑓 𝑥 , 𝑡 ∗ 𝑁 𝑔 𝑥 , 𝑠 ∶ 𝑥 ∈ 𝑋   

                             ≤ inf  𝑁  𝑓 + 𝑔  𝑥  , 𝑡 + 𝑠  ∶ 𝑥 ∈ 𝑋   

                             = 𝑁  𝑓 + 𝑔 , 𝑡 + 𝑠   . 
 

3. Main results 

Theorem (3.1) : Let  𝑋, 𝑁,∗  be a fuzzy normed space over a field 𝐹.  

(1) 𝐼𝑓 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑇𝑥 :𝑋∗ → 𝐹 defined as 𝑇𝑥 𝑓 = 𝑓 𝑥   for all 𝑓 ∈ 𝑋∗ ,  then             

  𝑇𝑥  ∈ 𝑋∗∗ 𝑎𝑛𝑑  𝑁 𝑇𝑥 , 𝑡 = 𝑁 𝑓, 𝑡 .  
(2) 𝐼𝑓 𝜓 ∶ 𝑋 →  𝑋ʹʹ defined as  𝜓 𝑥 = 𝑇𝑥   for all 𝑥 ∈ 𝑋 ,  then  𝜓 is one-to-one     

linear function. 

Proof : (1)  𝑇𝑥  is linear (see theorem (2.9) ). 

 To prove 𝑇𝑥  is continuous . 

  𝑋∗ = { 𝑓: 𝑋 → 𝐹 , 𝑓 is bounded (continuous) linear function }. 

 Since 𝑓 is continuous at every point of 𝑋, hence 𝑓 is continuous at  𝑥0 ∈ 𝑋. Then for  
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all 휀 ∈  0,1   for all 𝑡 > 0 there exist 𝛿 ∈ (0,1) and  𝑠 > 0  such that for all 𝑥 ∈ 𝑋      

   𝑁 𝑥 − 𝑥 0, 𝑠  > 1 − 𝛿  ⟹ 𝑁 𝑓  𝑥  − 𝑓  𝑥 0 , 𝑡  > 1 − 휀           

                                        ⟹ 𝑁 𝑇 𝑥 − 𝑇 𝑥 ∘ , 𝑡 ) > 1 − 휀 .      
 Therefore  𝑇 𝑥  is a continuous at 𝑥 0 . Since 𝑥 0 is an arbitrary point  

 Then 𝑇 𝑥  is a continuous function , hence 𝑇 𝑥 ∈ 𝑋 ∗∗.      
           𝑁 𝑇 𝑥 , 𝑡  = inf  𝑁 𝑇 𝑥  𝑓  , 𝑡  ∶ 𝑥 ∈ 𝑋    
                         = inf    𝑁 𝑓  𝑥  , 𝑡  ∶ 𝑥 ∈ 𝑋         
                         = 𝑁 𝑓 , 𝑡  . 
        (2) see theorem (2.9).  

Theorem (3.2) : Let  𝑥 1,𝑥 2,… , 𝑥 𝑛   be a linear independent set of vectors in a fuzzy  

normed linear space (𝑋 ,𝑁,∗) with ∗  is t-norm at (1,1). Then there is 𝑐 > 0 and  

𝛿 ∈ (0,1) such that for any set of scalars   𝜆 1,𝜆 2,… , 𝜆 𝑛    ;  

𝑁   𝜆 𝑖 𝑥 𝑖  , 𝑐   𝜆 𝑖  

𝑛

𝑖 =1

𝑛

𝑖 =1

 < 1 − 𝛿 …………… (1) 

Proof : Let 𝑠 =  𝜆 1  ,  𝜆 2  ,… ,  𝜆 𝑛   . If  𝑠 = 0 then 𝜆 𝑖 = 0  ∀𝑖 = 1,2, … ,𝑛  

and the relation (1) holds for any 𝑐 > 0 and 𝛿 ∈  0,1 . 
Next we suppose that 𝑠 > 0. Then (1) is equivalent to  

 𝑁 𝛼 1𝑥 1 + 𝛼 2𝑥 2 + ⋯ + 𝛼 𝑛 𝑥 𝑛  , 𝑐   < 1 − 𝛿 …………… (2) 

For some 𝑐 > 0 and 𝛿 ∈  0,1 , and for all scalars 𝛼 ʼ𝑠  with   |𝛼 𝑖 |𝑛
𝑖 =1 = 1. 

If possible suppose that (2) does not hold. Thus for each 𝑐 > 0 and  

𝛿 ∈  0,1  ,∃ a set of scalars   𝛼 1,𝛼 2,… , 𝛼 𝑛    with    𝛼 𝑖  = 1𝑛
𝑖 =1  for  

which  𝛼 1𝑥 1,𝛼 2𝑥 2,… , 𝛼 𝑛 𝑥 𝑛  , 𝑐   ≥ 1 − 𝛿  . 

Then for 𝑐 = 𝛿 =
1

𝑚
 , 𝑚 = 1,2, …   ,∃ a set of scalars  

 𝛼 1

 𝑚 
,𝛼 2

 𝑚 
,… ,𝛼 𝑛

 𝑚 
   with    𝛼 𝑖

 𝑚 
 = 1𝑛

𝑖 =1  such that 

𝑁  𝑦 𝑚 ,
1

𝑚
 ≥ 1 −

1

𝑚 
  where   𝑦 𝑚 =  𝛼 1

 𝑚 𝑥 1 + 𝛼 2

 𝑚 𝑥 2 + ⋯ + 𝛼 𝑛
 𝑚 𝑥 𝑛 .  

Since    𝛼 𝑖
 𝑚  = 1𝑛

𝑖 =1  , we have   0 ≤ |𝛼 𝑖
(𝑚)

| ≤ 1  for  𝑖 = 1,2,… , 𝑛 . 

So for each fixed 𝑗  the sequence {𝛼 𝑖
 𝑚 

} is bounded and hence {𝛼 1

 𝑚 
} has   

convergent subsequence . Let 𝛼 1 denote the limit of the subsequence and  

let { 𝑦 1,𝑚 } denote the corresponding subsequence of {𝑦 𝑚}. By the same  

argument {𝑦 1,𝑚} has a subsequence {𝑦 2,𝑚} for which the corresponding 

subsequence  of  scalars {𝛼 2

 𝑚 
} converges to 𝛼 2.continuing in this way ,  

after𝑛  steps we obtain a subsequence {𝑦 𝑛 , 𝑚} where  

𝑦 𝑛 ,𝑚 =  𝛾 𝑖
(𝑚)

𝑥  𝑖    
𝑛
𝑖 =1 with   𝛾 𝑖

(𝑚)
|𝑛

𝑖 =1 |  =1  and  𝛾 𝑖
(𝑚)

 →  𝛾 𝑖   as  𝑚 → ∞. 

Let 𝑦 = 𝛼 1𝑥 1 + 𝛼 2𝑥 2 + ⋯ + 𝛼 𝑛 𝑥 𝑛 . Thus we have  

 lim𝑚→∞ 𝑁(𝑦 𝑛  ,  𝑚− 𝑦  , 𝑡 ) = 1     ∀𝑡 > 0…………… (3) 

Now for  𝑘 > 0 , choose 𝑚 such that  
1

𝑚
< 𝑘 . 

We have  1 −
1

𝑚
 ∗ 𝑁  0,𝑘 −

1

𝑚
 ≤ 𝑁  𝑦 𝑛 ,𝑚 ,

1

𝑚
 ∗ 𝑁  0,𝑘 −

1

𝑚
    ≤                           

𝑁  𝑦 𝑛 ,𝑚 + 0 ,
1

𝑚
+ 𝑘 −

1

𝑚
    = 𝑁 𝑦 𝑛 ,𝑚 ,𝑘  . 

i.e.   1 −
1

𝑚
 ∗ 𝑁  0 , 𝑘 −

1

𝑚
 ≤ 𝑁 𝑦 𝑛 ,𝑚 , 𝑘   

i.e.  lim𝑚→∞ 𝑁 𝑦 𝑛 ,𝑚 ,𝑘  ≤1 

i.e.  lim𝑚→∞ 𝑁 𝑦 𝑛 ,𝑚 ,𝑘  = 1 …………… (4) 

Now   𝑁 𝑦 − 𝑦 𝑛 ,𝑚 , 𝑘  ∗ 𝑁 𝑦 𝑛 ,𝑚 𝑘  ≤ 𝑁 𝑦 − 𝑦 𝑛 ,𝑚 + 𝑦 𝑛 ,𝑚 ,𝑘 + 𝑘  = 𝑁(𝑦 , 2𝑘 ) 

 ⟹ lim𝑚⟶∞ 𝑁 𝑦 − 𝑦 𝑛 ,𝑚 , 𝑘  ∗ lim𝑚→∞ 𝑁 𝑦 𝑛 ,𝑚 𝑘  ≤ 𝑁(𝑦 ≤ ,2𝑘 ) 

(by continuity of  t-norm at (1,1) )   ⟹   1 ∗ 1 ≤ 𝑁 𝑦 , 2𝑘      𝑏𝑦   3 & 4  

                                                                ⟹ 1 = 1 ∗ 1 = 𝑁 𝑦 , 2𝑘  . 
Since 𝑘 > 0 is arbitrary , by (N2) it follows that 𝑦 = 0. 

Again since   𝛼 𝑖
 𝑚 

 = 1  𝑛
𝑖 =1 and  { 𝑥 1,𝑥 2,… , 𝑥 𝑛  }  are linear independent  

set of vectors , so 𝑦 = 𝛼 1𝑥 1 + 𝛼 2𝑥 2 + ⋯ + 𝛼 𝑛 𝑥 𝑛 = 0. 
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Thus we arrive at a contradiction and the lemma is proved. 

Theorem (3.3) : ( Riesz Lemma ) Let 𝑀 be  closed proper subspace of a fuzzy  

normed  linear space (𝑋 ,𝑁,∗)  and let 𝜆  be a real number such that 0 < 𝜆 < 1.Then  

there exists a vector 𝑥 𝜆 ∈ 𝑋  such that  𝑁 𝑥 𝜆  , 1 > 0 and  𝑁 𝑥 𝜆  − 𝑥  , 𝜆  = 0 for all  

 𝑥 ∈ 𝑀 . 
Proof :Since 𝑀 is proper subspace of 𝑋  , ∃ 𝜐 ∈ 𝑋 − 𝑀 . 
Denote  𝑑 =  ˄𝑥 ∈𝑀   𝑡 > 0 ∶ 𝑁 𝜐 − 𝑥  , 𝑡   > 0  . 
We claim that 𝑑 > 0, i.e. ˄𝑥 ∈𝑀˄  𝑡 > 0 ∶ 𝑁 𝜐 −  𝑥  , 𝑡   > 0  = 0 ⟹ 

 for a given 휀 > 0 ,∃ 𝑥  휀  ∈ 𝑌  such that  ˄  𝑡 > 0 ∶ 𝑁 𝜐 −  𝑥  , 𝑡   > 𝑜   < 휀  

 ⟹ 𝑁 𝜐 − 𝑥  , 휀  > 0 . 
Choose 𝛼 ∈  0,1  such that 𝑁 𝜐 − 𝑥  , 휀  > 1 − 𝛼 . i.e. 𝑦 ∈ 𝐵 𝜐  ,1 − 𝛼  , 휀  . 
Since 휀 > 0 is arbitrary , it follows that 𝜐  is in the closure of  𝑀 . 

Since 𝑀 is closed  , it implies that 𝜐 ∈ 𝑀 which is a contradiction . Thus 𝑑 > 0 . 

We now take  𝜆 ∈  0,1 . So  
𝑑

𝜆
> 𝑑 . Thus for some  𝑥 ° ∈ 𝑀 , 

we have 𝑑 ≤ ˄  𝑡 > 0 ∶ 𝑁 𝜐 − 𝑥 ° , 𝑡  > 0 < 𝐾 ʹ <
𝑑

𝜆
……..(1) 

Let 𝑥 𝜆 =
𝜐 −𝑥 °

𝑘 ʹ
 . Now  𝑥 𝜆  , 1 = 𝑁( 

𝜐 −𝑥 °

𝑘 ʹ
 , 1) . 

i.e. 𝑁 𝑥 𝜆  ,1 = 𝑁 𝜐 − 𝑥 ° ,𝑘 ʹ ………(2) 

Now   ˄  𝑡 > 0 ∶ 𝑁  𝜐 − 𝑥 ° , 𝑡   > 0  < 𝑘 ʹ ⟹ 𝑁 𝜐 − 𝑥 ° ,𝑘 ʹ > 0. 
From (2) we have 𝑁 𝑥 𝜆  , 1 > 0. 
Now  for   𝑥 ∈ 𝑀 , ˄  𝑡 > 0 ∶ 𝑁 𝑥 𝜆 − 𝑥  , 𝑡  > 0 = 

 ˄ 𝑡 > 0:𝑁 𝜐 − 𝑥 ° − 𝑘 ʹ𝑥  ,𝑘 ʹ𝑡  > 0  = 

 
1

𝑘 ʹ
˄ 𝑠 > 0:𝑁 𝜐 − 𝑥 ° − 𝑘 ʹ𝑥  , 𝑠   > 0  . 

i.e. ˄ 𝑡 > 0 ∶ 𝑁 𝑥 𝜆   − 𝑥  , 𝑡   > 0   ≥  
𝑑

𝑘 ʹ
  𝑠𝑖𝑛𝑐𝑒   𝑥 ° + 𝑘 ʹ𝑥  ∈ 𝑀   

 ⟹  ˄  𝑡 > 0 ∶ 𝑁 𝑥 𝜆  – 𝑥  , 𝑡  > 0  > 𝜆      by (1) 

i.e. 𝑁 𝑥 𝜆  – 𝑥  , 𝜆  ≤ 0 ⟹ 𝑁 𝑥 𝜆  – 𝑥  ,𝜆  = 0    ∀ 𝑥 ∈ 𝑀. 
Definition (3.4) : [2] Let (𝑋 ,𝑁,∗) be a fuzzy normed linear space . A subset 𝐵  of 𝑋   

is said to be compact if any sequence {𝑥 𝑛 } in  𝐵  has a subsequence converging to an  

element of 𝐵  . 
Theorem (3.5) : Let (𝑋 ,𝑁,∗) be a fuzzy normed linear space and 𝑥 ≠ 0. If suppose  

that 𝐴 =   𝑥 ∈ 𝑋 ∶ 𝑁 𝑥 , 1 > 0  is compact , then 𝑋  is finite dimensional.  

Proof : If possible suppose that dim 𝑋 = ∞. Take 𝑥 1 ∈ 𝑋  such that  

𝑁 𝑥 1, 1 > 0. Suppose 𝑋 1 is the subspace of 𝑋  generated by 𝑥 1 . Since  

dim 𝑋 1 = 1 , it is aclosed and proper subset of 𝑋  .Thus by the Lemma (3.3)  

∃ 𝑥 2 ∈ 𝑋  𝑠𝑢𝑐  𝑡 𝑎𝑡  𝑁 𝑥 2 , 1 > 0  𝑎𝑛𝑑    𝑁(𝑥 2 − 𝑥 1  ,
1

2
 ) = 0 . 

The elements 𝑥 1,𝑥 2 generate a two dimensional proper closed subspace of 𝑋 .  
 By the Lemma (3.3) , ∃ 𝑥 3 ∈ 𝑋   with  𝑁 𝑥 3, 1 > 0  such that  

 𝑁  𝑥 3 − 𝑥 1 ,
1

2
 = 0  ,   𝑁  𝑥 3 − 𝑥 2 ,

1

2
 = 0 . 

Proceeding in the same way , we obtain a sequence {𝑥 𝑛 } of elements 𝑥 𝑛 ∈ 𝐴   such that  

𝑁 𝑥 𝑛  , 1  > 0  𝑎𝑛𝑑    𝑁  𝑥 𝑛 − 𝑥 𝑚 ,
1

2
 = 0   𝑚≠ 𝑛    .  It follows that  neither the  

sequence  {𝑥 𝑛 } nor its any subsequence converges. This contradicts the compactness  

of 𝐴  . Hence dim 𝑋  is finite . 
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