Gen. Math. Notes, Vol. 26, No. 2, February 2015, pp. 104-118
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

On $\alpha-\eta-\varphi$-Contraction in Fuzzy Metric Space and its Application

Noori F. AL-Mayahi ${ }^{1}$ and Sarim H. Hadi ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, University of AL-Qadissiya
College of Computer Science and Mathematics
'E-mail: afm2005@yahoo.com
${ }^{2}$ E-mail: sarim.h2014@yahoo.com

(Received: 11-8-14 / Accepted: 3-11-14)

Abstract

The aim of this paper is to introduce new concepts of $\alpha-\eta$-complete fuzzy metric space and $\alpha-\eta$-continuous function and establish fixed point results for α η - φ-contraction function in α - η-complete fuzzy metric space. As an application, we derive some Suzuki type fixed point theorems, fixed point in orbitally f complete. Moreover, we introduce concept $\alpha-\psi$ - ϕ-contraction function and application on $\alpha-\eta-\varphi$-contraction.

Keywords: $\alpha-\eta$-complete, $\quad \alpha-\eta$-continuous, $\alpha-\eta$ - φ-contraction, orbitally f complete, Suzuki Type Fixed Point Result, $\alpha-\psi$ - ϕ-Contraction Function, Application on $\alpha-\eta-\varphi$-Contraction.

1 Introduction

The study of fixed points of functions in a fuzzy metric space satisfying certain contractive conditions has been at the center of vigorous research activity. In 1965, the concept of fuzzy sets was introduced by Zadeh [10]. With the concept of fuzzy sets, the fuzzy metric space was introduced by I. Kramosil and J. Michalek
[5] in 1975. Helpern [3] in 1981first proved a fixed point theorem for fuzzy functions. Also M.Grabiec [2] in 1988 proved the contraction principle in the setting of the fuzzy metric spaces. Moreover, A. George and P. Veeramani [1] in1994 modified the notion of fuzzy metric spaces with the help of t-norm.

This paper we introduce new concepts of $\alpha-\eta$-complete fuzzy metric space and $\alpha-\eta$-continuous function and establish fixed point results for $\alpha-\eta-\varphi$-contraction function in $\alpha-\eta$-complete fuzzy metric space. As an application, we derive some Suzuki type fixed point theorems, fixed point in orbitally f-complete. Moreover, we introduce concept $\alpha-\psi$ - ϕ-contraction function and application on $\alpha-\eta-\varphi$ contraction.

2 Preliminaries

Definition 2.1 [4]: Let $f: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0, \infty)$ be two function, f is said to be α-admissible function if

$$
\alpha(x, y) \geq 1 \Rightarrow \alpha(f(x), f(y)) \geq 1 \text { for all } x, y \in X
$$

Definition 2.2 [6]: Let $f: X \rightarrow X$ and $\alpha, \beta: X \times X \rightarrow[0, \infty)$ be two function, f is said to be (α, β)-admissible function if

$$
\left\{\begin{array} { l }
{ \alpha (x , y) \geq 1 } \\
{ \beta (x , y) \geq 1 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
\alpha(f(x), f(y)) \geq 1 \\
\beta(f(x), f(y)) \geq 1
\end{array} \text { for all } x, y \in X\right.\right.
$$

Definition 2.3 [4]: Let $f: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ be two function, f is said to be α-admissible function with respect η if

$$
\alpha(x, y) \geq \eta(x, y) \quad \Rightarrow \alpha(f(x), f(y)) \geq \eta(f(x), f(y)), \text { for all } x, y \in X
$$

Not that if we take $\eta(x, y)=1$, then this definition reduces to definition (2.1).
Definition 2.4: Let $(X, M, *)$ be a fuzzy metric space and
$\alpha, \eta: X \times X \rightarrow[0, \infty), X$ is said to be $\alpha-\eta$-complete iff every Cauchy sequence $\left\{x_{n}\right\}$ with $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ converge in X

Note: X is said to be α-complete if $\eta(x, y)=1$ for all $x, y \in X$.
Example 2.5: Let $X=[0,1]$ and $M(x, y, t)=\frac{t}{t+|x-y|}$, if $t>0$ with $a * b=$ $\min \{a, b\}$ for every $a, b \in[0,1]$, define $\alpha, \eta: X \times X \rightarrow[0, \infty)$

By $\quad \alpha(x, y)= \begin{cases}(x+y)^{2} & \text { if } x, y \in X \\ 0 & \text { if o.w }\end{cases}$

$$
\eta(x, y)=2 x y
$$

Then $(X, M, *)$ is $\alpha-\eta$-complete fuzzy metric space.
Definition 2.6: Let $(X, M, *)$ be a fuzzy metric space and let $\alpha, \eta: X \times X \rightarrow[0, \infty)$ and $f: X \rightarrow X, f$ is said to be $\alpha-\eta$-continuous function on X if for $x \in X$ and $\left\{x_{n}\right\}$ be a sequence in X with $x_{n} \rightarrow x$ as $n \rightarrow \infty, \alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n} x_{n+1}\right)$ for all $n \in \mathbb{N}$ implies $f\left(x_{n}\right) \rightarrow f(x)$.

Definition 2.7 [9]:

(1) Let f be a function of a fuzzy metric space ($X, M, *$) into itself. $(X, M, *)$ is said to be f-orbitally complete if and only if every Cauchy sequence which is contained in $\left\{x, f(x), f^{2}(x), f^{3}(x), \cdots\right\}$ for some $x \in X$ converges in X.

A f-orbitally complete fuzzy metric space may not be complete.
(2) A function $f: X \rightarrow X$ is called orbitally continuous at $x \in X$ if $\lim _{n \rightarrow \infty} f^{n}(x)=$ x implies $\lim _{n \rightarrow \infty} f f^{n}(x)=f(x)$

The function f is orbitally continuous on X if f is orbitally continuous for all $x \in X$.

Remark 2.8:

(1) Let $(X, M, *)$ be a fuzzy metric space and $f: X \rightarrow X$ be a function and let X be an orbitally f-complete. Define $\alpha, \eta: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{cc}
3 & \text { if } x, y \in O(w) \\
1 & o . w
\end{array}, \quad \eta(x, y)=1\right.
$$

Where $O(w)$ is an orbit of a point $w \in X .(X, M, *)$ is an $\alpha-\eta$-complete.
If $\left\{x_{n}\right\}$ be a Cauchy sequence with $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ then $\left\{x_{n}\right\} \in O(w)$

Now, since X is an orbitally f-complete fuzzy metric space, then $\left\{x_{n}\right\}$ converge in X. We can say that X is $\alpha-\eta$-complete.
(2) Let $(X, M, *)$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ is in (1), let $f: X \rightarrow X$ be an orbitally continuous function on ($X, M *$). Then f is $\alpha-\eta$-continuous function. Indeed if $x_{n} \rightarrow x$ as $n \rightarrow \infty$ and $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n} x_{n+1}\right)$ for all $n \in \mathbb{N}$, so $x_{n} \in O(w)$ for all $n \in \mathbb{N}$, then there exist sequence $\left(k_{i}\right)_{i \in \mathbb{N}}$ of positive integer such that $x_{n} \rightarrow$ $f^{k_{i}} w \rightarrow x$ as $i \rightarrow \infty$. Now since f is an orbitally continuous on ($X, M, *$), then $\left.f\left(x_{n}\right)=f\left(f^{k_{i}} w\right)\right) \rightarrow f(x)$ as $i \rightarrow \infty$.

Denote with ϕ the set of all the function $\varphi:[0,1] \rightarrow[0,1]$ with the following properties:
(1) φ is nondecreasing and continuous
(2) $\quad \varphi(\tau)=0$ iff $\tau=1$

Definition 2.9: Let $(X, M, *)$ be a fuzzy metric space andf: $X \rightarrow X$, let $\mathbb{M}(x, y)=$ $\min \{M(x, y, t), M(x, f(x), t), M(y, f(y), t), M(x, f(y), t) * M(y, f(x), t)\}$

We say
(1) $\quad f$ is an $\alpha-\eta-\varphi$-contraction function if

$$
\alpha(x, y) \geq \eta(x, y) \Rightarrow M(f(x), f(y), t) \geq \varphi(\mathbb{M}(x, y))
$$

(2) $\quad f$ is $\alpha-\varphi$-contraction function if $\eta(x, y)=1$ for all $x, y \in X$.

Theorem 2.10: Let $(X, M, *)$ be a fuzzy metric space and let $f: X \rightarrow X$, suppose that $\alpha, \eta: X \times X \rightarrow[0, \infty)$ are two function. Assume that the following assertions hold
(i) $\quad(X, M, *)$ is an $\alpha-\eta$-complete fuzzy metric space .
(ii) $\quad f$ is an α-admissible function with respect to η.
(iii) f is $\alpha-\eta-\varphi$-contraction function on X.
(iv) f is an $\alpha-\eta$-continuous function .
(v) There exist $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq \eta\left(x_{0}, f\left(x_{0}\right)\right)$.

Then f has a fixed point in X.
Proof: Let $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq \eta\left(x_{0}, f\left(x_{0}\right)\right)$
Define a sequence $\left\{x_{n}\right\}$ such that $x_{n}=f\left(x_{n-1}\right)$ for all $n \in \mathbb{N}$
If $x_{n}=x_{n+1}$ for some n, then $x=x_{n}$ is a fixed point of f.
Suppose $x_{n} \neq x_{n+1}$
Since f is α-admissible function with respect η and
$\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq \eta\left(x_{0}, f\left(x_{0}\right)\right)$
Then $\alpha\left(x_{1}, x_{2}\right)=\alpha\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \geq \eta\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)=\eta\left(x_{1}, x_{2}\right)$
By continuing this process, we get

$$
\alpha\left(x_{n}, f\left(x_{n}\right)\right)=\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)=\eta\left(x_{n}, f\left(x_{n}\right)\right)
$$

By (1) in definition (2.9)

$$
M\left(x_{n}, x_{n+1}, t\right)=M\left(f\left(x_{n-1}\right), f\left(x_{n}\right), t\right) \geq \alpha\left(\mathbb{M}\left(x_{n-1}, x_{n}\right)\right)
$$

Where

$$
\left.\begin{array}{l}
\mathbb{M}\left(x_{n-1}, x_{n}\right)=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n-1}, f\left(x_{n-1}\right), t\right), M\left(x_{n}, f\left(x_{n}\right), t\right),\right. \\
\left.\quad M\left(x_{n-1}, f\left(x_{n}\right), t\right) * M\left(x_{n}, f\left(x_{n-1}\right), t\right)\right\} \\
\quad=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right), M\left(x_{n}, x_{n+1}, t\right),\right. \\
\left.M\left(x_{n-1} x_{n+1}, t\right) * M\left(x_{n}, x_{n}, t\right)\right\}
\end{array}\right] \begin{aligned}
& \geq \min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right), M\left(x_{n-1}, x_{n}, t\right) * M\left(x_{n}, x_{n+1}, t\right)\right\} \\
& =\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}
\end{aligned}
$$

Since φ is nondecreasing and continuous, we have
$M\left(x_{n}, x_{n+1}, t\right) \geq \varphi\left(\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}\right)$
If $\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}=M\left(x_{n}, x_{n+1}, t\right)$
Then

$$
\begin{aligned}
M\left(x_{n}, x_{n+1}, t\right) & \geq \varphi\left(\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}\right) \geq \varphi\left(M\left(x_{n}, x_{n+1}, t\right)\right) \\
& >M\left(x_{n}, x_{n+1}, t\right)
\end{aligned}
$$

Which is contradiction.
Therefore $\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}=M\left(x_{n-1}, x_{n}, t\right)$
Hence for all $n \in \mathbb{N}$ we have

$$
\begin{gathered}
M\left(x_{n}, x_{n+1}, t\right) \geq \varphi\left(M\left(x_{n-1}, x_{n}, t\right)\right) \geq \varphi^{2}\left(M\left(x_{n-2}, x_{n-1}, t\right)\right) \\
\geq \cdots \geq \varphi^{n}\left(M\left(x_{0}, x_{1}, t\right)\right)
\end{gathered}
$$

Let $n, m \in \mathbb{N}$ with $n>m$, then
$M\left(x_{n}, x_{m}, t\right) \geq \varphi\left(M\left(x_{n-1}, x_{n}, t\right)\right) \geq \cdots \geq \varphi^{n}\left(M\left(x_{0}, x_{1}, t\right)\right)$
Therefore $\lim _{n \rightarrow \infty} M\left(x_{n}, x_{m}, t\right)=1$
Hence $\left\{x_{n}\right\}$ is a Cauchy sequence
Since X is an $\alpha-\eta$-complete fuzzy metric space there is $x \in X$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

Since f is an $\alpha-\eta$-continuous function so $x_{n+1}=f\left(x_{n}\right) \rightarrow f(x)$ as $n \rightarrow \infty$

Hence $f(x)=x$
Suppose y is a fixed point of f such that $f(y)=y$
$M(x, y, t)=M(f(x), f(y), t) \geq \varphi(\mathbb{M}(x, y))$
Hence $x=y$
Example 2.11: Let $X=[0,3]$ be equipped with the ordinary metric
$d(x, y)=|x-y|, \varphi(\tau)=\sqrt{\tau}$ for all $\tau \in[0,1]$. Define $M(x, y, t)=e^{-\frac{2|x-y|}{t}}$ for all $x, y \in X$ and $t>0$, and $\alpha, \eta: X \times X \rightarrow[0, \infty)$

By $\alpha(x, y)=\left\{\begin{array}{l}(x+y)^{2} \text { if } x, y \in X \\ 0 \quad \text { if o. } w \\ \eta(x, y)=2 x y,\end{array}\right.$
Clearly, $(X, M, *)$ is an $\alpha-\eta$ - complete fuzzy metric space with respect to t-norm $a * b=a b$. (by [8])

Let $f: X \rightarrow X$ be defined as

$$
\begin{aligned}
& f(x)= \begin{cases}1 & x \in[0,1] \\
\frac{3-x}{2} & x \in(1,3]\end{cases} \\
& d(f(x), f(y))=|f(x)-f(y)|=\frac{1}{2}|x-y| \leq|x-y|=d(x, y)
\end{aligned}
$$

It follows that $M(f(x), f(y), t)=e^{-\frac{2|f(x)-f(y)| \mid}{t}} \geq e^{-\frac{|x-y|}{t}}=\varphi(\mathbb{M}(x, y))$
Thus f is $\alpha-\eta-\varphi$-contraction function in fuzzy metric space ($\mathrm{X}, \mathrm{M}, *$).
Corollary 2.12: Let $(X, M, *)$ be a fuzzy metric space and let $f: X \rightarrow X$, suppose that $\alpha, \eta: X \times X \rightarrow[0, \infty)$ are two function. Assume that the following assertions hold:
(i) $\quad(X, M, *)$ is an α-complete fuzzy metric space .
(ii) f is an α-admissible function .
(iii) f is $\alpha-\varphi$-contraction function on X.
(iv) f is an α-continuous function .
(v) There exist $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq 1$.

Then f has a fixed point in X.

Theorem 2.13: Let $(X, M, *)$ be a fuzzy metric space and let $f: X \rightarrow X$, suppose that $\alpha, \eta: X \times X \rightarrow[0, \infty)$ are two function. Assume that the following assertions hold:
(i) $\quad(X, M, *)$ is an α-complete fuzzy metric space
(ii) $\quad f$ is an α-admissible function with respect to η.
(iii) $\quad f$ is $\alpha-\eta-\varphi$-contraction function on X.
(iv) There exist $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq \eta\left(x_{0}, f\left(x_{0}\right)\right)$.
(v) If $\left\{x_{n}\right\}$ is a sequence in $X \alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$

With $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then
Either $\alpha\left(f\left(x_{n}\right), x\right) \geq \eta\left(f\left(x_{n}\right), f^{2}\left(x_{n}\right)\right)$
Or $\quad \alpha\left(f^{2}\left(x_{n}\right), x\right) \geq \eta\left(f^{2}\left(x_{n}\right), f^{3}\left(x_{n}\right)\right)$ for all $n \in \mathbb{N}$
Then f has a fixed point in X.
Proof: Let $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq \eta\left(x_{0}, f\left(x_{0}\right)\right)$
Define a sequence $\left\{x_{n}\right\}$ in X by $x_{n}=f^{n}\left(x_{0}\right)=f\left(x_{n-1}\right)$ for all $n \in \mathbb{N}$.
Now is in the proof of theorem (2.10) we have $\alpha\left(x_{n+1}, x_{n}\right) \geq \eta\left(x_{n+1}, x_{n}\right)$
There exist $x \in X$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$
Let $M(x, f(x), t) \neq 1$, from (v)
Either $\alpha\left(f\left(x_{n-1}\right), x\right) \geq \eta\left(f\left(x_{n-1}\right), f^{2}\left(x_{n-1}\right)\right)$
Or

$$
\alpha\left(f^{2}\left(x_{n-1}\right), x\right) \geq \eta\left(f^{2}\left(x_{n-1}\right), f^{3}\left(x_{n-1}\right)\right)
$$

Then either $\alpha\left(x_{n}, x\right) \geq \eta\left(x_{n}, x_{n+1}\right)$
Or $\alpha\left(x_{n+1}, x\right) \geq \eta\left(x_{n+1}, x_{n+2}\right)$
Let $\alpha\left(x_{n}, x\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ from definition (2.9) condition (1), we get

$$
M\left(x_{n+1}, f(x), t\right)=M\left(f\left(x_{n}\right), f(x), t\right) \geq \varphi\left(\mathbb{M}\left(x_{n}, x\right)\right)
$$

Where

$$
\begin{gathered}
\mathbb{M}\left(x_{n}, x\right)=\min \left\{M\left(x_{n}, x, t\right), M\left(x_{n}, f\left(x_{n}\right), t\right), M(x, f(x), t),\right. \\
\left.M\left(x_{n}, f(x), t\right) * M\left(x, f\left(x_{n}\right), t\right)\right\} \\
=\varphi\left(\operatorname { m i n } \left\{M\left(x_{n}, x, t\right), M\left(x_{n}, x_{n+1} t\right), M(x, f(x), t),\right.\right. \\
\left.\left.M\left(x_{n}, f(x), t\right) * M\left(x, x_{n+1}, t\right)\right\}\right)
\end{gathered}
$$

$$
>\min \left\{M\left(x_{n}, x, t\right), M\left(x_{n}, x_{n+1} t\right), M(x, f(x), t), M\left(x_{n}, f(x), t\right) * M\left(x, x_{n+1}, t\right)\right\}
$$

By taking $n \rightarrow \infty$ in the above we get

$$
M(x, f(x), t)=\varphi(\min \{1, M(x, f(x), t)\})>M(x, f(x), t)
$$

Which is contradiction.
Hence $M(x, f(x), t)=1 \Rightarrow f(x)=x$.
Corollary 2.14: Let $(X, M, *)$ be a fuzzy metric space and let $f: X \rightarrow X$, suppose that $\alpha, \eta: X \times X \rightarrow[0, \infty)$ are two function. Assume that the following assertions hold:
(i) $(X, M, *)$ is an α-complete fuzzy metric space.
(ii) $\quad f$ is an α-admissible function.
(iii) f is $\alpha-\varphi$-contraction function on X.
(iv) There exist $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq 1$.
(v) If $\left\{x_{n}\right\}$ is a sequence in $X \alpha\left(x_{n}, x_{n+1}\right) \geq 1$

With $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then
Either $\alpha\left(f\left(x_{n}\right), x\right) \geq 1$
Or $\quad \alpha\left(f^{2}\left(x_{n}\right), x\right) \geq 1$ for all $n \in \mathbb{N}$
Then f has a fixed point in X.
Corollary 2.15: Let $(X, M, *)$ be a complete fuzzy metric space and let $f: X \rightarrow X$ be a continuous function such that f is contraction function that is

$$
M(f(x), f(y), t) \geq \varphi(\mathbb{M}(x, y)) \text { for all } x, y \in X
$$

Then f has a fixed point in X.

2.2 Fixed Point in Orbitally f-Complete Fuzzy Metric Space

Theorem 2.2.16: Let $(X, M, *)$ be a fuzzy metric space and $f: X \rightarrow X$ such that the following assertion hold:
(i) $(X, M, *)$ is an orbitally f-complete fuzzy metric space.
(ii) there exist φ be a function such that $M(f(x), f(y), t) \geq \varphi(\mathbb{M}(x, y))$ for all $x, y \in O(w)$ for some $w \in X$.
(iii) If $\left\{x_{n}\right\}$ be a sequence .such that $\left\{x_{n}\right\} \subseteq O(w)$ with $x_{n} \rightarrow x$ as $n \rightarrow \infty$, $x \in O(w)$.
Then f has fixed point in X.

Proof: Define $\alpha: X \times X \rightarrow[0, \infty)$ from remark (2.8), $(X, M, *)$ is an α-complete fuzzy metric space and f is an α-admissible function.

Let $\alpha(x, y) \geq 1$ for all $x, y \in O(w)$
Then from (ii)

$$
M(f(x), f(y), t) \geq \varphi(\mathbb{M}(x, y))
$$

That is f is an $\alpha-\varphi$-contraction function
Let $\left\{x_{n}\right\}$ sequence such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ with $x_{n} \rightarrow x$
So $\left\{x_{n}\right\} \subseteq O(w)$ from (iii) we have $x \in O(w)$
That is $\alpha\left(x_{n}, x\right) \geq 1$ by corollary (2.13)
Then f has unique fixed point in X.
Corollary 2.2.17: Let $(X, M, *)$ be a fuzzy metric space and $f: X \rightarrow X$ such that the following assertion hold:
(i) $\quad(\mathrm{X}, \mathrm{M}, *)$ is an orbitally f-complete fuzzy metric space.
(ii) there exist $k \in(0,1)$ such that $M(f(x), f(y), t) \geq k M(x, y)$ for all $x, y \in O(w)$ for some $w \in X$.
(iii) If $\left\{x_{n}\right\}$ be a sequence such that $\left\{\mathrm{x}_{\mathrm{n}}\right\} \subseteq \mathrm{O}(\mathrm{w})$ with $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ as $n \rightarrow \infty$. Then $x \in O(w)$. Then f has fixed point in X.

2.3 Suzuki Type Fixed Point Result

From Theorem (2.10) we deduce the following Suzuki type fixed point result
Theorem 2.3.18: Let $(X, M, *)$ be a complete fuzzy metric space and let $f: X \rightarrow X$ continuous function .Assume that there exist $k \in(0,1)$ such that

$$
\begin{equation*}
M(x, f(x), t) \geq M(x, y, t) \Longrightarrow M(f(x), f(y), t) \geq k \mathbb{M}(x, y) \tag{1}
\end{equation*}
$$

\qquad
For all $x, y \in X$, where

$$
\begin{gathered}
\mathbb{M}(x, y)=\min \{M(x, y, t), M(x, f(x), t), M(y, f(y), t), \\
M(x, f(y), t) * M(y, f(x), t)\}
\end{gathered}
$$

Then f has a fixed point in X.
Proof: Define $\alpha, \eta: X \times X \rightarrow[0, \infty)$ and $\varphi:[0,1] \rightarrow[0,1]$ by
$\alpha(x, y)=M(x, f(x), t) \quad, \quad \eta(x, y)=M(x, y, t)$
Such that $\alpha(x, y) \geq \eta(x, y)$ for all $x, y \in X$
And let $\varphi(\tau)=k \tau, \tau \in[0,1]$
By condition (i) -(v) of theorem (2.10)
Let $\alpha(x, f(x)) \geq \eta(x, y)$
Then $M(x, f(x), t) \geq M(x, y, t)$
From (1) we have $M(f(x), f(y), t) \geq k \mathbb{M}(x, y)=\varphi(\mathbb{M}(x, y))$
Then f is $\alpha-\eta-\varphi$-contraction function by condition of theorem (2.10) and f has fixed point, then the unique fixed point follows from (1).

Corollary 2.3.19: Let $(X, M, *)$ be a complete fuzzy metric space and let $f: X \rightarrow X$ continuous function. Assume that there exist $k \in(0,1)$ such that

$$
M(x, f(x), t) \geq M(x, y, t) \Longrightarrow M(f(x), f(y), t) \geq k M(x, y, t)
$$

For all $x, y \in X$,
Then f has a fixed point in X.

2.4 An $\alpha-\boldsymbol{\psi}$ - $\boldsymbol{\phi}$-Contraction Function

Definition 2.4.20: Let $(X, M, *)$ be a complete fuzzy metric space. Let $f: X \rightarrow X$ be an α-admissible which satisfies the following

$$
\psi(M(f(x), f(y), t)) \geq \psi(\mathbb{M}(x, y))-\phi(\mathbb{M}(x, y))
$$

Such that
(i) $\quad \psi$ is continuous and decreasing with $\psi(\tau)=0$ iff $\tau=1$.
(ii) $\quad \phi$ is continuous with $\phi(\tau)=0$ iff $\tau=1$ f is called $\alpha-\psi-\phi$ - contraction function .

Theorem 2.4.21: Let $(X, M, *)$ be a complete fuzzy metric space . Let $f: X \rightarrow X$ be an α-admissible which satisfies the following

$$
\psi(M(f(x), f(y), t)) \geq \psi(\mathbb{M}(x, y))-\phi(\mathbb{M}(x, y))
$$

Such that
(i) $\quad(X, M, *)$ is an α-complete.
(ii) f is α-continuous function
(iv) There exist $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq 1$.

Proof: Let $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq 1$
Define a sequence $\left\{x_{n}\right\}$ such that $x_{n}=f\left(x_{n-1}\right)$ for all $n \in \mathbb{N}$
If $x_{n}=x_{n+1}$ for some n, then $x=x_{n}$ is a fixed point of f.
Suppose $x_{n} \neq x_{n+1}$
Since f is α-admissible function with respect η and
$\alpha\left(x_{0}, f\left(x_{0}\right)\right)=\alpha\left(x_{0}, x_{1}\right) \geq 1$
Then $\alpha\left(x_{1}, x_{2}\right)=\alpha\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \geq \eta\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)=\eta\left(x_{1}, x_{2}\right)$
By continuing this process, we get

$$
\begin{aligned}
& \alpha\left(x_{n}, f\left(x_{n}\right)\right)=\alpha\left(x_{n}, x_{n+1}\right) \geq 1 \text { for all } n \in \mathbb{N} \\
& \psi\left(M\left(x_{n}, x_{n+1}, t\right)\right)=\psi\left(M\left(f\left(x_{n-1}\right), f\left(x_{n}\right), t\right)\right) \\
& \geq \psi\left(\mathbb{M}\left(x_{n-1}, x_{n}\right)\right)-\phi\left(\mathbb{M}\left(x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

Where
$\mathbb{M}\left(x_{n-1}, x_{n}\right)=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n-1}, f\left(x_{n-1}\right), t\right), M\left(x_{n}, f\left(x_{n}\right), t\right)\right.$,

$$
\left.M\left(x_{n-1}, f\left(x_{n}\right), t\right) * M\left(x_{n}, f\left(x_{n-1}\right), t\right)\right\}
$$

$$
=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right.
$$

$$
\left.M\left(x_{n-1} x_{n+1}, t\right) * M\left(x_{n}, x_{n}, t\right)\right\}
$$

$\geq \min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right), M\left(x_{n-1}, x_{n}, t\right) * M\left(x_{n}, x_{n+1}, t\right)\right\}$
$=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}$
Since ψ decreasing, then $M\left(x_{n-1}, x_{n}, t\right)<M\left(x_{n}, x_{n+1}, t\right)$ that is $\left\{M\left(x_{n}, x_{n+1}, t\right)\right\}$ is an increasing sequence thus there exist $l(t) \in(0,1]$ such that $\lim _{n \rightarrow \infty} M\left(x_{n}, x_{n+1}, t\right)=l(t)<1$

Now taking $n \rightarrow \infty$ we obtain for all $t>0$

$$
\psi(l(t)) \geq \psi(l(t))-\phi(l(t)) \text { which is contradiction } l(t)=1
$$

Thus we conclude for all $t>0$

$$
\lim _{n \rightarrow \infty} M\left(x_{n}, x_{n+1}, t\right)=1
$$

$\left\{x_{n}\right\}$ is Cauchy sequence .since X is α-complete ,then $x_{n} \rightarrow x$

$$
\begin{aligned}
\psi\left(M\left(x_{n+1}, f(x), t\right)\right)=\psi & \left(M\left(f\left(x_{n}\right), f(x), t\right)\right. \\
& \geq \psi\left(\mathbb{M}\left(x_{n}, x\right)\right)-\phi\left(\mathbb{M}\left(x_{n}, x\right)\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the above inequality using properties ψ, ϕ

$$
\psi\left(\lim _{n \rightarrow \infty} M\left(x_{n}, f(x), t\right)\right) \geq \psi(1)-\phi(1)=0
$$

Thus $\lim _{n \rightarrow \infty} M\left(x_{n}, f(x), t\right)=1$
Hence $x_{n} \rightarrow f(x) \Rightarrow f(x)=x$.
Now we assume y is a fixed point of f such that $f(y)=y$

$$
\psi(M(x, y, t))=\psi(M(f(x), f(y), t)) \geq \psi(\mathbb{M}(x, y))-\phi(\mathbb{M}(x, y))=0
$$

$$
\Rightarrow M(x, y, t)=1 \Rightarrow x=y
$$

2.5 Application On $\alpha-\eta-\varphi$-Contraction

Definition 2.5.22: Let $(X, M, *)$ be a fuzzy metric space and $f: X \rightarrow X$ be an (α, β)-admissible function, f is said to be
(a) (α, β)-contraction function of type (I), if

$$
\alpha(x, y) \beta(x, y) M(f(x), f(y), t) \geq \varphi(\mathbb{M}(x, y)) .
$$

(b) $\quad(\alpha, \beta)$-contraction function of type (II), if there exist $0<\ell \leq 1$ such that

$$
(\alpha(x, y) \beta(x, y)+\ell)^{M(f(x), f(y), t)} \geq(1+\ell)^{\varphi(\mathbb{M}(x, y))}
$$

Theorem 2.5.23: Let $(X, M, *)$ be a complete fuzzy metric space and let $f: X \rightarrow X$ be an α-continuous and (α, β)-contraction function of type (I), (II), if there exist $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq 1$ and $\beta\left(x_{0}, f\left(x_{0}\right)\right) \geq 1$, then f has a unique fixed point in X.

Proof: Let $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq 1$ and $\beta\left(x_{0}, f\left(x_{0}\right)\right) \geq 1$
Define a sequence $\left\{x_{n}\right\}$ such that $x_{n}=f\left(x_{n-1}\right)$ for all $n \in \mathbb{N}$
Since f is (α, β)-admissible function and $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geq 1$
Then $\alpha\left(x_{1}, x_{2}\right)=\alpha\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \geq 1$
By continuing this process, we get

$$
\alpha\left(x_{n}, x_{n+1}\right)=\alpha\left(x_{n}, f\left(x_{n}\right)\right) \geq 1
$$

Similarly we have $\beta\left(x_{n}, x_{n+1}\right)=\beta\left(x_{n}, f\left(x_{n}\right)\right) \geq 1$
If $x_{n}=x_{n+1}$ for some n, then $x=x_{n}$ is a fixed point of f.
Suppose $x_{n} \neq x_{n+1}$
(a)

$$
\begin{aligned}
& \alpha\left(x_{n}, x_{n+1}\right) \beta\left(x_{n}, x_{n+1}\right) M\left(x_{n}, x_{n+1}, t\right) \\
&=\alpha\left(x_{n}, x_{n+1}\right) \beta\left(x_{n}, x_{n+1}\right) M\left(f\left(x_{n-1}\right), f\left(x_{n}\right), t\right) \\
& \geq \varphi\left(\mathbb{M}\left(x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

Where

$$
\begin{aligned}
& \mathbb{M}\left(x_{n-1}, x_{n}\right)=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n-1}, f\left(x_{n-1}\right), t\right), M\left(x_{n}, f\left(x_{n}\right), t\right),\right. \\
& \left.M\left(x_{n-1}, f\left(x_{n}\right), t\right) * M\left(x_{n}, f\left(x_{n-1}\right), t\right)\right\} \\
& \quad=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right), M\left(x_{n}, x_{n+1}, t\right),\right. \\
& \left.M\left(x_{n-1} x_{n+1}, t\right) * M\left(x_{n}, x_{n}, t\right)\right\} \\
& \geq \min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right), M\left(x_{n-1}, x_{n}, t\right) * M\left(x_{n}, x_{n+1}, t\right)\right\} \\
& =\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}
\end{aligned}
$$

$$
\text { If } \min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}=M\left(x_{n}, x_{n+1}, t\right)
$$

Then

$$
\begin{aligned}
M\left(x_{n}, x_{n+1}, t\right) & \geq \varphi\left(\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}\right) \geq \varphi\left(M\left(x_{n}, x_{n+1}, t\right)\right) \\
& >M\left(x_{n}, x_{n+1}, t\right)
\end{aligned}
$$

Which is contradiction
Therefore $\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}=M\left(x_{n-1}, x_{n}, t\right)$
Hence for all $n \in \mathbb{N}$ we have

$$
\begin{gathered}
M\left(x_{n}, x_{n+1}, t\right) \geq \varphi\left(M\left(x_{n-1}, x_{n}, t\right)\right) \geq \varphi^{2}\left(M\left(x_{n-2}, x_{n-1}, t\right)\right) \\
\geq \cdots \geq \varphi^{n}\left(M\left(x_{0}, x_{1}, t\right)\right)
\end{gathered}
$$

Let $n, m \in \mathbb{N}$ with $n>m$, then

$$
\begin{aligned}
M\left(x_{n}, x_{m}, t\right) & =\alpha\left(x_{n}, x_{n+1}\right) \beta\left(x_{n}, x_{n+1}\right) M\left(f\left(x_{n-1}\right), f\left(x_{n}\right), t\right) \geq \varphi\left(\mathbb{M}\left(x_{n-1}, x_{n}\right)\right) \\
& \geq \cdots \geq \varphi^{n}\left(M\left(x_{0}, x_{1}, t\right)\right)
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} M\left(x_{n}, x_{m}, t\right)=1$

Hence $\left\{x_{n}\right\}$ is a Cauchy sequence
Since X is an $\alpha-\eta$-complete fuzzy metric space there is $x \in X$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

$$
M\left(x_{n}, f(x), t\right)=\alpha\left(x_{n}, x\right) \beta\left(x_{n}, x\right) M\left(f\left(x_{n}\right), f(x), t\right) \geq \varphi\left(\mathbb{M}\left(x_{n}, x\right)\right)
$$

Hence $f(x)=x$
Suppose y is a fixed point of f such that $f(y)=y$
$M(x, y, t)=\alpha(x, y) \beta(x, y) M(f(x), f(y), t) \geq \varphi(\mathbb{M}(x, y))$.
Hence $x=y$.
(b)

$$
\begin{aligned}
&\left(\alpha\left(x_{n}, x_{n+1}\right) \beta\left(x_{n}, x_{n+1}\right)+\ell\right)^{M\left(x_{n}, x_{n+1}, t\right)} \\
&=\left(\alpha\left(x_{n}, x_{n+1}\right) \beta\left(x_{n}, x_{n+1}\right)+\ell\right)^{M\left(f\left(x_{n-1}\right), f\left(x_{n}\right), t\right)} \\
& \geq(1+\ell)^{\varphi\left(\mathbb{M}\left(x_{n-1}, x_{n}\right)\right)}
\end{aligned}
$$

Where
$\mathbb{M}\left(x_{n-1}, x_{n}\right)=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n-1}, f\left(x_{n-1}\right), t\right), M\left(x_{n}, f\left(x_{n}\right), t\right)\right.$, $\left.M\left(x_{n-1}, f\left(x_{n}\right), t\right) * M\left(x_{n}, f\left(x_{n-1}\right), t\right)\right\}$

$$
\begin{gathered}
=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right), M\left(x_{n}, x_{n+1}, t\right),\right. \\
\left.M\left(x_{n-1} x_{n+1}, t\right) * M\left(x_{n}, x_{n}, t\right)\right\}
\end{gathered}
$$

$\geq \min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right), M\left(x_{n-1}, x_{n}, t\right) * M\left(x_{n}, x_{n+1}, t\right)\right\}$
$=\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}$
If $\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}=M\left(x_{n}, x_{n+1}, t\right)$
Then
$M\left(x_{n}, x_{n+1}, t\right) \geq \varphi\left(\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}\right) \geq \varphi\left(M\left(x_{n}, x_{n+1}, t\right)\right)$ $>M\left(x_{n}, x_{n+1}, t\right)$
Which is contradiction
Therefore $\min \left\{M\left(x_{n-1}, x_{n}, t\right), M\left(x_{n}, x_{n+1}, t\right)\right\}=M\left(x_{n-1}, x_{n}, t\right)$
Hence for all $n \in \mathbb{N}$ we have

$$
\begin{gathered}
M\left(x_{n}, x_{n+1}, t\right) \geq \varphi\left(M\left(x_{n-1}, x_{n}, t\right)\right) \geq \varphi^{2}\left(M\left(x_{n-2}, x_{n-1}, t\right)\right) \\
\geq \cdots \geq \varphi^{n}\left(M\left(x_{0}, x_{1}, t\right)\right)
\end{gathered}
$$

Let $n, m \in \mathbb{N}$ with $n>m$, then

$$
\begin{aligned}
M\left(x_{n}, x_{m}, t\right)= & \left(\alpha\left(x_{n}, x_{n+1}\right) \beta\left(x_{n}, x_{n+1}\right)+1\right)^{M\left(f\left(x_{n-1}\right), f\left(x_{n}\right), t\right)} \\
& \geq(1+\ell)^{\varphi\left(\mathbb{M}\left(x_{n-1}, x_{n}\right)\right)} \geq \cdots \geq(1+\ell)^{\varphi^{n}\left(M\left(x_{0}, x_{1}, t\right)\right)}
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} M\left(x_{n}, x_{m}, t\right)=1$
Hence $\left\{x_{n}\right\}$ is a Cauchy sequence
Since X is an $\alpha-\eta$-complete fuzzy metric space there is $x \in X$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

$$
\begin{gathered}
\left(\alpha\left(x_{n}, x\right) \beta\left(x_{n}, x\right)+\ell\right)^{M\left(x_{n}, f(x), t\right)}=\left(\alpha\left(x_{n}, x\right) \beta\left(x_{n}, x\right)+\ell\right)^{M\left(f\left(x_{n}\right), f(x), t\right)} \\
\geq(1+\ell)^{\varphi\left(\mathbb{M}\left(x_{n}, x\right)\right)}
\end{gathered}
$$

Hence $f(x)=x$
Suppose y is a fixed point of f such that $f(y)=y$

$$
(\alpha(x, y) \beta(x, y)+\ell)^{M(f(x), f(y), t)} \geq(1+\ell)^{\varphi(\mathbb{M}(x, y))} .
$$

Hence $x=y$.

References

[1] A. George and P. Veramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399.
[2] M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets and Systems, 27(1988), 385-389.
[3] S. Heipern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83(1981), 566-569.
[4] N. Hussain, M. Kutbi and P. Salimi, Fixed Point Theory in α-Complete Metric Space with Application, Hindawi Publishing Corporation, (2014), 11.
[5] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.
[6] P. Salimia, C. Vetro and P. Vetro, Fixed point theorems for twisted (α, β)-ψ-contractive type mappings and applications, Faculty of Sciences and Mathematics, University of $\mathrm{Ni}^{\imath} \mathrm{s}$, Serbia, 24(4) (2013), 605-615.
[7] P. Salimi, C. Vetro and P. Vetro, Some new fixed point results in nonArchimedean fuzzy metric space, Modeling and Control, 18(3) (2013), 344-358.
[8] Y. Shen, D. Qiu and W. Chen, On Convergence of Fixed Points in Fuzzy Metric Spaces, Hindawi Publishing Corporation, (2013), 6.
[9] B.C. Tripathy, S. Paul and N.R. Das, A fixed point theorem in a generalized fuzzy metric space, Bol. Soc. Paran. Mat., 32(2) (2014), 221227.
[10] L.A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338-353.

