

Gen. Math. Notes, Vol. 26, No. 2, February 2015, pp. 104-118 ISSN 2219-7184; Copyright © ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

On α - η - φ -Contraction in Fuzzy Metric Space and its Application

Noori F. AL-Mayahi¹ and Sarim H. Hadi²

^{1,2}Department of Mathematics, University of AL–Qadissiya College of Computer Science and Mathematics ¹E-mail: afm2005@yahoo.com ²E-mail: sarim.h2014@yahoo.com

(Received: 11-8-14 / Accepted: 3-11-14)

Abstract

The aim of this paper is to introduce new concepts of α - η -complete fuzzy metric space and α - η -continuous function and establish fixed point results for α - η - φ -contraction function in α - η -complete fuzzy metric space. As an application, we derive some Suzuki type fixed point theorems, fixed point in orbitally f-complete. Moreover, we introduce concept α - ψ - ϕ -contraction function and application on α - η - φ -contraction.

Keywords: α - η -complete, α - η -continuous, α - η - φ -contraction, orbitally fcomplete, Suzuki Type Fixed Point Result, α - ψ - ϕ -Contraction Function, Application on α - η - φ -Contraction.

1 Introduction

The study of fixed points of functions in a fuzzy metric space satisfying certain contractive conditions has been at the center of vigorous research activity. In 1965, the concept of fuzzy sets was introduced by Zadeh [10]. With the concept of fuzzy sets, the fuzzy metric space was introduced by I. Kramosil and J. Michalek

[5] in 1975. Helpern [3] in 1981first proved a fixed point theorem for fuzzy functions. Also M.Grabiec [2] in 1988 proved the contraction principle in the setting of the fuzzy metric spaces. Moreover, A. George and P. Veeramani [1] in1994 modified the notion of fuzzy metric spaces with the help of t-norm.

This paper we introduce new concepts of α - η -complete fuzzy metric space and α - η -continuous function and establish fixed point results for α - η - φ -contraction function in α - η -complete fuzzy metric space. As an application, we derive some Suzuki type fixed point theorems, fixed point in orbitally *f*-complete. Moreover, we introduce concept α - ψ - ϕ -contraction function and application on α - η - φ -contraction.

2 Preliminaries

Definition 2.1 [4]: Let $f: X \to X$ and $\alpha: X \times X \to [0, \infty)$ be two function, f is said to be α -admissible function if

$$\alpha(x, y) \ge 1 \implies \alpha(f(x), f(y)) \ge 1 \text{ for all } x, y \in X.$$

Definition 2.2 [6]: Let $f: X \to X$ and $\alpha, \beta: X \times X \to [0, \infty)$ be two function, f is said to be (α, β) -admissible function if

$$\begin{cases} \alpha(x,y) \ge 1\\ \beta(x,y) \ge 1 \end{cases} \implies \begin{cases} \alpha(f(x),f(y)) \ge 1\\ \beta(f(x),f(y)) \ge 1 \end{cases} \text{ for all } x,y \in X.$$

Definition 2.3 [4]: Let $f: X \to X$ and $\alpha, \eta: X \times X \to [0, \infty)$ be two function, f is said to be α -admissible function with respect η if

$$\alpha(x, y) \ge \eta(x, y) \implies \alpha(f(x), f(y)) \ge \eta(f(x), f(y)), \text{ for all } x, y \in X$$

Not that if we take $\eta(x, y) = 1$, then this definition reduces to definition (2.1).

Definition 2.4: *Let* (*X*, *M*,*) *be a fuzzy metric space and*

 $\alpha, \eta: X \times X \to [0, \infty)$, X is said to be α - η -complete iff every Cauchy sequence $\{x_n\}$ with $\alpha(x_n, x_{n+1}) \ge \eta(x_n, x_{n+1})$ for all $n \in \mathbb{N}$ converge in X

Note: *X* is said to be α -complete if $\eta(x, y) = 1$ for all $x, y \in X$.

Example 2.5: Let X = [0,1] and $M(x, y, t) = \frac{t}{t+|x-y|}$, if t > 0 with $a * b = min \{a, b\}$ for every $a, b \in [0,1]$, define $\alpha, \eta: X \times X \to [0,\infty)$

By
$$\alpha(x, y) = \begin{cases} (x+y)^2 & \text{if } x, y \in X \\ 0 & \text{if } o.w \end{cases}$$

$$\eta(x,y) = 2xy$$

Then (*X*, *M*,*) is α - η -complete fuzzy metric space.

Definition 2.6: Let (X, M, *) be a fuzzy metric space and let $\alpha, \eta: X \times X \to [0, \infty)$ and $f: X \to X$, f is said to be α - η -continuous function on X if for $x \in X$ and $\{x_n\}$ be a sequence in X with $x_n \to x$ as $n \to \infty$, $\alpha(x_n, x_{n+1}) \ge \eta(x_n x_{n+1})$ for all $n \in \mathbb{N}$ implies $f(x_n) \to f(x)$.

Definition 2.7 [9]:

(1) Let f be a function of a fuzzy metric space (X, M, *) into itself. (X, M, *) is said to be f-orbitally complete if and only if every Cauchy sequence which is contained in $\{x, f(x), f^2(x), f^3(x), \cdots\}$ for some $x \in X$ converges in X.

A f -orbitally complete fuzzy metric space may not be complete.

(2) A function $f: X \to X$ is called orbitally continuous at $x \in X$ if $\lim_{n \to \infty} f^n(x) = x$ implies $\lim_{n \to \infty} f f^n(x) = f(x)$

The function f is orbitally continuous on X if f is orbitally continuous for all $x \in X$.

Remark 2.8:

(1) Let (X, M, *) be a fuzzy metric space and $f: X \to X$ be a function and let X be an orbitally f-complete. Define $\alpha, \eta: X \times X \to [0, \infty)$ by

$$\alpha(x, y) = \begin{cases} 3 & if \ x, y \in O(w) \\ 1 & o.w \end{cases}, \quad \eta(x, y) = 1 \end{cases}$$

Where O(w) is an orbit of a point $w \in X$. (X, M, *) is an α - η -complete.

If $\{x_n\}$ be a Cauchy sequence with $\alpha(x_n, x_{n+1}) \ge \eta(x_n, x_{n+1})$ for all $n \in \mathbb{N}$ then $\{x_n\} \in O(w)$

Now, since X is an orbitally f-complete fuzzy metric space, then $\{x_n\}$ converge in X. We can say that X is α - η -complete.

(2) Let (X, M, *) and $\alpha, \eta: X \times X \to [0, \infty)$ is in (1), let $f: X \to X$ be an orbitally continuous function on (X, M *). Then f is $\alpha \cdot \eta$ -continuous function. Indeed if $x_n \to x$ as $n \to \infty$ and $\alpha(x_n, x_{n+1}) \ge \eta(x_n x_{n+1})$ for all $n \in \mathbb{N}$, so $x_n \in O(w)$ for all $n \in \mathbb{N}$, then there exist sequence $(k_i)_{i \in \mathbb{N}}$ of positive integer such that $x_n \to f^{k_i} w \to x$ as $i \to \infty$. Now since f is an orbitally continuous on (X, M, *), then $f(x_n) = f(f^{k_i}w) \to f(x)$ as $i \to \infty$.

Denote with ϕ the set of all the function $\varphi: [0,1] \rightarrow [0,1]$ with the following properties:

(1) φ is nondecreasing and continuous

(2) $\varphi(\tau) = 0 \quad iff \ \tau = 1$

Definition 2.9: Let (X, M, *) be a fuzzy metric space and $f: X \to X$, let $\mathbb{M}(x, y) = \min \{M(x, y, t), M(x, f(x), t), M(y, f(y), t), M(x, f(y), t) * M(y, f(x), t)\}$

We say

(1) $f \text{ is an } \alpha - \eta - \varphi \text{-contraction function if}$ $\alpha(x, y) \ge \eta(x, y) \Longrightarrow M(f(x), f(y), t) \ge \varphi(\mathbb{M}(x, y)).$

(2) f is α - φ -contraction function if $\eta(x, y) = 1$ for all $x, y \in X$.

Theorem 2.10: Let (X, M, *) be a fuzzy metric space and let $f: X \to X$, suppose that $\alpha, \eta: X \times X \to [0, \infty)$ are two function. Assume that the following assertions hold

- (i) (X, M, *) is an α - η -complete fuzzy metric space.
- (ii) f is an α -admissible function with respect to η .
- (iii) f is $\alpha \eta \varphi$ -contraction function on X.
- (iv) f is an α - η -continuous function.
- (v) There exist $x_0 \in X$ such that $\alpha(x_0, f(x_0)) \ge \eta(x_0, f(x_0))$.

Then f has a fixed point in X.

Proof: Let $x_0 \in X$ such that $\alpha(x_0, f(x_0)) \ge \eta(x_0, f(x_0))$

Define a sequence $\{x_n\}$ such that $x_n = f(x_{n-1})$ for all $n \in \mathbb{N}$

If $x_n = x_{n+1}$ for some *n*, then $x = x_n$ is a fixed point of *f*.

Suppose $x_n \neq x_{n+1}$

Since *f* is α -admissible function with respect η and

 $\alpha(x_0, f(x_0)) \ge \eta(x_0, f(x_0))$

Then $\alpha(x_1, x_2) = \alpha(f(x_0), f(x_1)) \ge \eta(f(x_0), f(x_1)) = \eta(x_1, x_2)$

By continuing this process, we get

$$\alpha(x_n, f(x_n)) = \alpha(x_n, x_{n+1}) \ge \eta(x_n, x_{n+1}) = \eta(x_n, f(x_n))$$

By (1) in definition (2.9)

$$M(x_n, x_{n+1}, t) = M(f(x_{n-1}), f(x_n), t) \ge \alpha \big(\mathbb{M}(x_{n-1}, x_n) \big)$$

Where

$$\mathbb{M}(x_{n-1}, x_n) = \min \{ M(x_{n-1}, x_n, t), M(x_{n-1}, f(x_{n-1}), t), M(x_n, f(x_n), t), \\ M(x_{n-1}, f(x_n), t) * M(x_n, f(x_{n-1}), t) \}$$

$$= \min \{ M(x_{n-1}, x_n, t), M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t), M(x_n, x_{n+1}, t), M(x_n, x_{n+1}, t), M(x_{n-1}, x_{n+1}, t) + M(x_n, x_n, t) \}$$

$$\geq \min \{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t), M(x_{n-1}, x_n, t) * M(x_n, x_{n+1}, t)\}$$

 $= \min \{ M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t) \}$

Since φ is nondecreasing and continuous, we have

$$M(x_n, x_{n+1}, t) \ge \varphi(\min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\})$$

If
$$min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\} = M(x_n, x_{n+1}, t)$$

Then

$$M(x_n, x_{n+1}, t) \ge \varphi(\min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\}) \ge \varphi(M(x_n, x_{n+1}, t))$$

> $M(x_n, x_{n+1}, t)$

Which is contradiction.

Therefore $min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\} = M(x_{n-1}, x_n, t)$

Hence for all $n \in \mathbb{N}$ we have

$$M(x_{n}, x_{n+1}, t) \ge \varphi \big(M(x_{n-1}, x_{n}, t) \big) \ge \varphi^{2} \big(M(x_{n-2}, x_{n-1}, t) \big) \\\ge \dots \ge \varphi^{n} \big(M(x_{0}, x_{1}, t) \big)$$

Let $n, m \in \mathbb{N}$ with n > m, then

$$M(x_n, x_m, t) \ge \varphi \left(M(x_{n-1}, x_n, t) \right) \ge \dots \ge \varphi^n \left(M(x_0, x_1, t) \right)$$

Therefore $\lim_{n\to\infty} M(x_n, x_m, t) = 1$

Hence $\{x_n\}$ is a Cauchy sequence

Since *X* is an α - η -complete fuzzy metric space there is $x \in X$ such that $x_n \to x$ as $n \to \infty$.

Since f is an α - η -continuous function so $x_{n+1} = f(x_n) \to f(x)$ as $n \to \infty$

Hence f(x) = x

Suppose *y* is a fixed point of *f* such that f(y) = y

$$M(x, y, t) = M(f(x), f(y), t) \ge \varphi(\mathbb{M}(x, y))$$

Hence x = y

Example 2.11: Let X = [0,3] be equipped with the ordinary metric

 $d(x, y) = |x - y|, \varphi(\tau) = \sqrt{\tau}$ for all $\tau \in [0, 1]$. Define $M(x, y, t) = e^{-\frac{2|x-y|}{t}}$ for all $x, y \in X$ and t > 0, and $\alpha, \eta: X \times X \to [0, \infty)$

By
$$\alpha(x, y) = \begin{cases} (x + y)^2 & \text{if } x, y \in X \\ 0 & \text{if } o.w \end{cases}$$
$$\eta(x, y) = 2xy,$$

Clearly, (X, M, *) is an α - η - complete fuzzy metric space with respect to t -norm a * b = ab. (by [8])

Let $f: X \to X$ be defined as

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ \frac{3-x}{2} & x \in (1,3] \\ d(f(x), f(y)) = |f(x) - f(y)| = \frac{1}{2}|x - y| \le |x - y| = d(x, y) \end{cases}$$

It follows that $M(f(x), f(y), t) = e^{-\frac{2|f(x) - f(y)|}{t}} \ge e^{-\frac{|x-y|}{t}} = \varphi(\mathbb{M}(x, y))$

Thus f is α - η - ϕ -contraction function in fuzzy metric space (X, M,*).

Corollary 2.12: Let (X, M, *) be a fuzzy metric space and let $f: X \to X$, suppose that $\alpha, \eta: X \times X \to [0, \infty)$ are two function. Assume that the following assertions hold:

- (i) (X, M, *) is an α -complete fuzzy metric space.
- (ii) f is an α -admissible function.
- (iii) f is α - φ -contraction function on X.
- (iv) f is an α -continuous function.
- (v) There exist $x_0 \in X$ such that $\alpha(x_0, f(x_0)) \ge 1$.

Then f has a fixed point in X.

Theorem 2.13: Let (X, M, *) be a fuzzy metric space and let $f: X \to X$, suppose that $\alpha, \eta: X \times X \to [0, \infty)$ are two function. Assume that the following assertions hold:

- (i) (X, M, *) is an α -complete fuzzy metric space
- (ii) f is an α -admissible function with respect to η .
- (iii) f is $\alpha \eta \varphi$ -contraction function on X.
- (iv) There exist $x_0 \in X$ such that $\alpha(x_0, f(x_0)) \ge \eta(x_0, f(x_0))$.
- (v) If $\{x_n\}$ is a sequence in $X \alpha(x_n, x_{n+1}) \ge \eta(x_n, x_{n+1})$

With $x_n \to x$ as $n \to \infty$, then

Either $\alpha(f(x_n), x) \ge \eta(f(x_n), f^2(x_n))$

Or
$$\alpha(f^2(x_n), x) \ge \eta(f^2(x_n), f^3(x_n))$$
 for all $n \in \mathbb{N}$

Then f has a fixed point in X.

Proof: Let $x_0 \in X$ such that $\alpha(x_0, f(x_0)) \ge \eta(x_0, f(x_0))$

Define a sequence $\{x_n\}$ in X by $x_n = f^n(x_0) = f(x_{n-1})$ for all $n \in \mathbb{N}$.

Now is in the proof of theorem (2.10) we have $\alpha(x_{n+1}, x_n) \ge \eta(x_{n+1}, x_n)$

There exist $x \in X$ such that $x_n \to x$ as $n \to \infty$

Let $M(x, f(x), t) \neq 1$, from (v)

Either $\alpha(f(x_{n-1}), x) \ge \eta(f(x_{n-1}), f^2(x_{n-1}))$

Or
$$\alpha(f^2(x_{n-1}), x) \ge \eta(f^2(x_{n-1}), f^3(x_{n-1}))$$

Then either $\alpha(x_n, x) \ge \eta(x_n, x_{n+1})$

Or $\alpha(x_{n+1}, x) \ge \eta(x_{n+1}, x_{n+2})$

Let $\alpha(x_n, x) \ge \eta(x_n, x_{n+1})$ from definition (2.9) condition (1), we get

$$M(x_{n+1}, f(x), t) = M(f(x_n), f(x), t) \ge \varphi \big(\mathbb{M}(x_n, x) \big)$$

Where

 $M(x_n, x) = \min \{ M(x_n, x, t), M(x_n, f(x_n), t), M(x, f(x), t), \\ M(x_n, f(x), t) * M(x, f(x_n), t) \}$

 $= \varphi(\min\{M(x_n, x, t), M(x_n, x_{n+1}t), M(x, f(x), t), \\ M(x_n, f(x), t) * M(x, x_{n+1}, t)\})$

> $min\{M(x_n, x, t), M(x_n, x_{n+1}t), M(x, f(x), t), M(x_n, f(x), t) * M(x, x_{n+1}, t)\}$

By taking $n \to \infty$ in the above we get

 $M(x, f(x), t) = \varphi(\min\{1, M(x, f(x), t)\}) > M(x, f(x), t)$

Which is contradiction.

Hence $M(x, f(x), t) = 1 \implies f(x) = x$.

Corollary 2.14: Let (X, M, *) be a fuzzy metric space and let $f: X \to X$, suppose that $\alpha, \eta: X \times X \to [0, \infty)$ are two function. Assume that the following assertions hold:

- (i) (X, M, *) is an α -complete fuzzy metric space.
- (ii) f is an α -admissible function.
- (iii) f is α - φ -contraction function on X.
- (iv) There exist $x_0 \in X$ such that $\alpha(x_0, f(x_0)) \ge 1$.
- (v) If $\{x_n\}$ is a sequence in $X \alpha(x_n, x_{n+1}) \ge 1$

With $x_n \to x$ as $n \to \infty$, then

Either $\alpha(f(x_n), x) \ge 1$

Or $\alpha(f^2(x_n), x) \ge 1$ for all $n \in \mathbb{N}$

Then *f* has a fixed point in *X*.

Corollary 2.15: Let (X, M, *) be a complete fuzzy metric space and let $f: X \to X$ be a continuous function such that f is contraction function that is

 $M(f(x),f(y),t) \geq \varphi\bigl(\mathbb{M}(x,y)\bigr) \text{ for all } x,y \in X$

Then *f* has a fixed point in *X*.

2.2 Fixed Point in Orbitally *f* - Complete Fuzzy Metric Space

Theorem 2.2.16: Let (X, M, *) be a fuzzy metric space and $f: X \to X$ such that the following assertion hold:

- (i) (X, M, *) is an orbitally *f*-complete fuzzy metric space.
- (ii) there exist φ be a function such that $M(f(x), f(y), t) \ge \varphi(\mathbb{M}(x, y))$ for all $x, y \in O(w)$ for some $w \in X$.
- (iii) If $\{x_n\}$ be a sequence .such that $\{x_n\} \subseteq O(w)$ with $x_n \to x$ as $n \to \infty$, $x \in O(w)$. Then f has fixed point in X

Then f has fixed point in X.

Proof: Define $\alpha: X \times X \to [0, \infty)$ from remark (2.8), (X, M, *) is an α -complete fuzzy metric space and f is an α -admissible function.

Let $\alpha(x, y) \ge 1$ for all $x, y \in O(w)$

Then from (ii)

 $M(f(x), f(y), t) \ge \varphi(\mathbb{M}(x, y))$

That is *f* is an α - φ -contraction function

Let $\{x_n\}$ sequence such that $\alpha(x_n, x_{n+1}) \ge 1$ with $x_n \to x$

So $\{x_n\} \subseteq O(w)$ from (iii) we have $x \in O(w)$

That is $\alpha(x_n, x) \ge 1$ by corollary (2.13)

Then f has unique fixed point in X.

Corollary 2.2.17: Let (X, M, *) be a fuzzy metric space and $f: X \to X$ such that the following assertion hold:

- (i) (X, M,*) is an orbitally f-complete fuzzy metric space.
- (ii) there exist $k \in (0,1)$ such that $M(f(x), f(y), t) \ge k\mathbb{M}(x, y)$ for all $x, y \in O(w)$ for some $w \in X$.
- (iii) If $\{x_n\}$ be a sequence such that $\{x_n\} \subseteq O(w)$ with $x_n \to x$ as $n \to \infty$. Then $x \in O(w)$. Then f has fixed point in X.

2.3 Suzuki Type Fixed Point Result

From Theorem (2.10) we deduce the following Suzuki type fixed point result

Theorem 2.3.18: Let (X, M, *) be a complete fuzzy metric space and let $f: X \to X$ continuous function .Assume that there exist $k \in (0,1)$ such that

$$M(x, f(x), t) \ge M(x, y, t) \Longrightarrow M(f(x), f(y), t) \ge k\mathbb{M}(x, y)$$
(1)

For all $x, y \in X$, where

$$\mathbb{M}(x, y) = \min \{ M(x, y, t), M(x, f(x), t), M(y, f(y), t), \\ M(x, f(y), t) * M(y, f(x), t) \}$$

Then f has a fixed point in X.

Proof: Define $\alpha, \eta: X \times X \to [0, \infty)$ and $\varphi: [0, 1] \to [0, 1]$ by

 $\alpha(x,y) = M(x,f(x),t) \quad , \quad \eta(x,y) = M(x,y,t)$

Such that $\alpha(x, y) \ge \eta(x, y)$ for all $x, y \in X$

And let $\varphi(\tau) = k\tau$, $\tau \in [0,1]$

By condition (i) -(v) of theorem (2.10)

Let $\alpha(x, f(x)) \ge \eta(x, y)$

Then $M(x, f(x), t) \ge M(x, y, t)$

From (1) we have $M(f(x), f(y), t) \ge k\mathbb{M}(x, y) = \varphi(\mathbb{M}(x, y))$

Then f is $\alpha - \eta - \varphi$ -contraction function by condition of theorem (2.10) and f has fixed point, then the unique fixed point follows from (1).

Corollary 2.3.19: Let (X, M, *) be a complete fuzzy metric space and let $f: X \to X$ continuous function. Assume that there exist $k \in (0,1)$ such that

$$M(x, f(x), t) \ge M(x, y, t) \Longrightarrow M(f(x), f(y), t) \ge kM(x, y, t)$$

For all $x, y \in X$,

Then f has a fixed point in X.

2.4 An α - ψ - ϕ -Contraction Function

Definition 2.4.20: Let (X, M, *) be a complete fuzzy metric space. Let $f: X \to X$ be an α -admissible which satisfies the following

$$\psi(M(f(x), f(y), t)) \ge \psi(\mathbb{M}(x, y)) - \phi(\mathbb{M}(x, y))$$

Such that

- (i) ψ is continuous and decreasing with $\psi(\tau) = 0$ iff $\tau = 1$.
- (ii) ϕ is continuous with $\phi(\tau) = 0$ iff $\tau = 1$ f is called $\alpha \cdot \psi \cdot \phi$ - contraction function.

Theorem 2.4.21: Let (X, M, *) be a complete fuzzy metric space. Let $f: X \to X$ be an α -admissible which satisfies the following

$$\psi(M(f(x), f(y), t)) \ge \psi(\mathbb{M}(x, y)) - \phi(\mathbb{M}(x, y))$$

Such that

- (i) (X, M, *) is an α -complete.
- (ii) f is α -continuous function
- (iv) There exist $x_0 \in X$ such that $\alpha(x_0, f(x_0)) \ge 1$.

Proof: Let $x_0 \in X$ such that $\alpha(x_0, f(x_0)) \ge 1$

Define a sequence $\{x_n\}$ such that $x_n = f(x_{n-1})$ for all $n \in \mathbb{N}$

If $x_n = x_{n+1}$ for some *n*, then $x = x_n$ is a fixed point of *f*.

Suppose $x_n \neq x_{n+1}$

Since *f* is α -admissible function with respect η and

$$\alpha(x_0, f(x_0)) = \alpha(x_0, x_1) \ge 1$$

Then $\alpha(x_1, x_2) = \alpha(f(x_0), f(x_1)) \ge \eta(f(x_0), f(x_1)) = \eta(x_1, x_2)$

By continuing this process, we get

$$\alpha(x_n, f(x_n)) = \alpha(x_n, x_{n+1}) \ge 1 \text{ for all } n \in \mathbb{N}$$

$$\psi(M(x_n, x_{n+1}, t)) = \psi(M(f(x_{n-1}), f(x_n), t))$$

$$\ge \psi(\mathbb{M}(x_{n-1}, x_n)) - \phi(\mathbb{M}(x_{n-1}, x_n))$$

Where

$$\mathbb{M}(x_{n-1}, x_n) = \min \{ M(x_{n-1}, x_n, t), M(x_{n-1}, f(x_{n-1}), t), M(x_n, f(x_n), t), \\ M(x_{n-1}, f(x_n), t) * M(x_n, f(x_{n-1}), t) \}$$

$$= \min \{ M(x_{n-1}, x_n, t), M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t), M(x_n, x_{n+1}, t), M(x_{n-1}, x_{n+1}, t) * M(x_n, x_n, t) \}$$

$$\geq \min \{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t), M(x_{n-1}, x_n, t) * M(x_n, x_{n+1}, t)\}$$

$$= \min \{ M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t) \}$$

Since ψ decreasing, then $M(x_{n-1}, x_n, t) < M(x_n, x_{n+1}, t)$ that is $\{M(x_n, x_{n+1}, t)\}$ is an increasing sequence thus there exist $l(t) \in (0,1]$ such that $\lim_{n\to\infty} M(x_n, x_{n+1}, t) = l(t) < 1$

Now taking $n \to \infty$ we obtain for all t > 0

$$\psi(l(t)) \ge \psi(l(t)) - \phi(l(t))$$
 which is contradiction $l(t) = 1$

Thus we conclude for all t > 0

$$\lim_{n\to\infty} M(x_n, x_{n+1}, t) = 1$$

 $\{x_n\}$ is Cauchy sequence .since *X* is α -complete ,then $x_n \rightarrow x$

$$\psi(M(x_{n+1}, f(x), t)) = \psi(M(f(x_n), f(x), t))$$

$$\geq \psi(\mathbb{M}(x_n, x)) - \phi(\mathbb{M}(x_n, x))$$

Letting $n \to \infty$ in the above inequality using properties ψ, ϕ

$$\psi(\lim_{n\to\infty} M(x_n, f(x), t)) \ge \psi(1) - \phi(1) = 0$$

Thus $\lim_{n\to\infty} M(x_n, f(x), t) = 1$

Hence $x_n \to f(x) \Longrightarrow f(x) = x$.

Now we assume y is a fixed point of f such that f(y) = y

 $\psi(M(x,y,t)) = \psi(M(f(x),f(y),t)) \ge \psi(\mathbb{M}(x,y)) - \phi(\mathbb{M}(x,y)) = 0$ $\Rightarrow M(x,y,t) = 1 \Rightarrow x = y.$

2.5 Application On α - η - φ -Contraction

Definition 2.5.22: Let (X, M, *) be a fuzzy metric space and $f: X \to X$ be an (α, β) -admissible function, f is said to be

- (a) (α, β) -contraction function of type (I), if $\alpha(x, y)\beta(x, y)M(f(x), f(y), t) \ge \varphi(\mathbb{M}(x, y)).$
- (b) (α, β) -contraction function of type (II), if there exist $0 < \ell \le 1$ such that $(\alpha(x, y)\beta(x, y) + \ell)^{M(f(x), f(y), \ell)} \ge (1 + \ell)^{\varphi(\mathbb{M}(x, y))}$

Theorem 2.5.23: Let (X, M, *) be a complete fuzzy metric space and let $f: X \to X$ be an α -continuous and (α, β) -contraction function of type (I), (II), if there exist $\alpha(x_0, f(x_0)) \ge 1$ and $\beta(x_0, f(x_0)) \ge 1$, then f has a unique fixed point in X.

Proof: Let $x_0 \in X$ such that $\alpha(x_0, f(x_0)) \ge 1$ and $\beta(x_0, f(x_0)) \ge 1$

Define a sequence $\{x_n\}$ such that $x_n = f(x_{n-1})$ for all $n \in \mathbb{N}$

Since *f* is (α, β) -admissible function and $\alpha(x_0, f(x_0)) \ge 1$

Then $\alpha(x_1, x_2) = \alpha(f(x_0), f(x_1)) \ge 1$

By continuing this process, we get

$$\alpha(x_n, x_{n+1}) = \alpha(x_n, f(x_n)) \ge 1$$

Similarly we have $\beta(x_n, x_{n+1}) = \beta(x_n, f(x_n)) \ge 1$

If $x_n = x_{n+1}$ for some *n*, then $x = x_n$ is a fixed point of *f*.

(a) $\alpha(x_n, x_{n+1})\beta(x_n, x_{n+1})M(x_n, x_{n+1}, t) = \alpha(x_n, x_{n+1})\beta(x_n, x_{n+1})M(f(x_{n-1}), f(x_n), t) \ge \varphi(\mathbb{M}(x_{n-1}, x_n))$ Where $\mathbb{M}(x_{n-1}, x_n) = \min \{M(x_{n-1}, x_n, t), M(x_{n-1}, f(x_{n-1}), t), M(x_n, f(x_n), t), M(x_{n-1}, f(x_n), t), M(x_n, f(x_n), t)\}$

$$= \min \{ M(x_{n-1}, x_n, t), M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t), M(x_n, x_{n+1}, t), M(x_n, x_{n+1}, t), M(x_{n-1}, x_{n+1}, t) \}$$

$$\geq \min \{ M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t), M(x_{n-1}, x_n, t) * M(x_n, x_{n+1}, t) \}$$
$$= \min \{ M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t) \}$$

If $min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\} = M(x_n, x_{n+1}, t)$

Then

$$M(x_n, x_{n+1}, t) \ge \varphi(\min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\}) \ge \varphi(M(x_n, x_{n+1}, t)) > M(x_n, x_{n+1}, t)$$

Which is contradiction

Therefore $min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\} = M(x_{n-1}, x_n, t)$

Hence for all $n \in \mathbb{N}$ we have

$$M(x_{n}, x_{n+1}, t) \ge \varphi \big(M(x_{n-1}, x_{n}, t) \big) \ge \varphi^{2} \big(M(x_{n-2}, x_{n-1}, t) \big) \\\ge \dots \ge \varphi^{n} \big(M(x_{0}, x_{1}, t) \big)$$

Let $n, m \in \mathbb{N}$ with n > m, then

$$M(x_n, x_m, t) = \alpha(x_n, x_{n+1})\beta(x_n, x_{n+1})M(f(x_{n-1}), f(x_n), t) \ge \varphi(\mathbb{M}(x_{n-1}, x_n))$$

$$\ge \dots \ge \varphi^n(M(x_0, x_1, t))$$

Therefore $\lim_{n\to\infty} M(x_n, x_m, t) = 1$

Suppose $x_n \neq x_{n+1}$

Hence $\{x_n\}$ is a Cauchy sequence

Since *X* is an α - η -complete fuzzy metric space there is $x \in X$ such that $x_n \to x$ as $n \to \infty$.

$$M(x_n, f(x), t) = \alpha(x_n, x)\beta(x_n, x)M(f(x_n), f(x), t) \ge \varphi(\mathbb{M}(x_n, x))$$

Hence f(x) = x

Suppose *y* is a fixed point of *f* such that f(y) = y

$$M(x, y, t) = \alpha(x, y)\beta(x, y)M(f(x), f(y), t) \ge \varphi(\mathbb{M}(x, y)).$$

Hence x = y.

(b)

$$(\alpha(x_n, x_{n+1})\beta(x_n, x_{n+1}) + \ell)^{M(x_n, x_{n+1}, t)} = (\alpha(x_n, x_{n+1})\beta(x_n, x_{n+1}) + \ell)^{M(f(x_{n-1}), f(x_n), t)} \ge (1 + \ell)^{\varphi(\mathbb{M}(x_{n-1}, x_n))}$$

Where

$$\mathbb{M}(x_{n-1}, x_n) = \min \{ M(x_{n-1}, x_n, t), M(x_{n-1}, f(x_{n-1}), t), M(x_n, f(x_n), t), \\ M(x_{n-1}, f(x_n), t) * M(x_n, f(x_{n-1}), t) \}$$

$$= \min \{ M(x_{n-1}, x_n, t), M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t), M(x_n, x_{n+1}, t), M(x_n, x_{n+1}, t), M(x_{n-1}, x_{n+1}, t) \}$$

$$\geq \min \{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t), M(x_{n-1}, x_n, t) * M(x_n, x_{n+1}, t)\}$$

$$= \min \{ M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t) \}$$

If $min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\} = M(x_n, x_{n+1}, t)$

Then

$$M(x_n, x_{n+1}, t) \ge \varphi(\min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\}) \ge \varphi(M(x_n, x_{n+1}, t)) > M(x_n, x_{n+1}, t)$$

Which is contradiction

Therefore $min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\} = M(x_{n-1}, x_n, t)$

Hence for all $n \in \mathbb{N}$ we have

$$M(x_n, x_{n+1}, t) \ge \varphi \big(M(x_{n-1}, x_n, t) \big) \ge \varphi^2 \big(M(x_{n-2}, x_{n-1}, t) \big) \\ \ge \dots \ge \varphi^n \big(M(x_0, x_1, t) \big)$$

Let $n, m \in \mathbb{N}$ with n > m, then

$$M(x_n, x_m, t) = (\alpha(x_n, x_{n+1})\beta(x_n, x_{n+1}) + 1)^{M(f(x_{n-1}), f(x_n), t)}$$

$$\geq (1 + \ell)^{\varphi(\mathbb{M}(x_{n-1}, x_n))} \geq \cdots \geq (1 + \ell)^{\varphi^n(M(x_0, x_1, t))}$$

Therefore $\lim_{n\to\infty} M(x_n, x_m, t) = 1$

Hence $\{x_n\}$ is a Cauchy sequence

Since *X* is an α - η -complete fuzzy metric space there is $x \in X$ such that $x_n \to x$ as $n \to \infty$.

 $(\alpha(x_n, x)\beta(x_n, x) + \ell)^{M(x_n, f(x), t)} = (\alpha(x_n, x)\beta(x_n, x) + \ell)^{M(f(x_n), f(x), t)}$ $\geq (1 + \ell)^{\varphi(\mathbb{M}(x_n, x))}$

Hence f(x) = x

Suppose *y* is a fixed point of *f* such that f(y) = y

$$(\alpha(x,y)\beta(x,y)+\ell)^{M(f(x),f(y),t)} \ge (1+\ell)^{\varphi(\mathbb{M}(x,y))}.$$

Hence x = y.

References

- [1] A. George and P. Veramani, On some results in fuzzy metric spaces, *Fuzzy Sets and Systems*, 64(1994), 395-399.
- [2] M. Grabiec, Fixed points in fuzzy metric space, *Fuzzy Sets and Systems*, 27(1988), 385-389.
- [3] S. Heipern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83(1981), 566-569.
- [4] N. Hussain, M. Kutbi and P. Salimi, *Fixed Point Theory in* α *-Complete Metric Space with Application*, Hindawi Publishing Corporation, (2014), 11.
- [5] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, *Kybernetica*, 11(1975), 326-334.
- [6] P. Salimia, C. Vetro and P. Vetro, Fixed point theorems for twisted (α, β) - ψ -contractive type mappings and applications, *Faculty of Sciences and Mathematics*, University of Ni^{*}s, Serbia, 24(4) (2013), 605-615.
- [7] P. Salimi, C. Vetro and P. Vetro, Some new fixed point results in non-Archimedean fuzzy metric space, *Modeling and Control*, 18(3) (2013), 344-358.
- [8] Y. Shen, D. Qiu and W. Chen, *On Convergence of Fixed Points in Fuzzy Metric Spaces*, Hindawi Publishing Corporation, (2013), 6.
- [9] B.C. Tripathy, S. Paul and N.R. Das, A fixed point theorem in a generalized fuzzy metric space, *Bol. Soc. Paran. Mat.*, 32(2) (2014), 221-227.
- [10] L.A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338-353.