Quantum Chemical Study on some substituted thiourea as corrosion inhibition for aluminum

Qhatan Adnan Yousif Department of Chemistry, Al-Qadisiya University – College of Education

(NJC)

(Received on 18/11/2007) (Accepted for publication on 13/4/2008)

Abstract

The present work involved use the computational molecular modeling that it dependent on the semi-empirical methods such as MINDO/3, MNDO, AM1 and PM3 to study the quantum chemical for some substituted thiourea that it used as corrosion inhibitor for aluminum in nitric acid were carried out in gaseous and aqueous phase.

The possible correlations between experimentally obtained efficiencies and calculated highest occupied molecular orbital energy level (E_{HOMO}), lowest unoccupied molecular energy level (E_{LUMO}) and the difference between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were studied. Correlation between inhibition efficiencies and charges on nitrogen and sulfur atoms were also investigated.

Regression analysis were fulfilled for all quantum parameters and protection efficiencies that it introduced in this research .

(MINDO/3) (PM3) MNDO/3

(AM1) (MNDO)

Introduction

Corrosion is the destructive attack of metal or alloy by chemical or electrochemical reaction with it's environment . Aqueous solutions of acids are among the most corrosive media. The rate at which metals are destroyed in acidic media is very high, especially when soluble corrosion products are formed ⁽¹⁾. The corrosion process consists of a set redox reaction which are electrochemical in nature. Thus, the metal is oxidized to corrosion products at anodic sites and some species are reduced at cathodic sites ⁽²⁾. Addition of inhibitors remains one of the necessary procedures used to protect metals and alloys against attack in many industrial environments . Therefore, the development of corrosion inhibitors based organic compounds on containing nitrogen, sulfur and oxygen atoms are of growing interest in the field of corrosion and industrial chemistries as corrosion poses a serious problem to the service life time of alloys used in industry ⁽³⁾. Recently, quantitative structure activity relationship (QSAR) has been a subject of intense interest in many disciplines of chemistry. The development of semiempirical quantum chemical calculations emphasizes the scientific approaches involved in the selection of inhibitors by correlating the experimental data with quantum-chemical properties . The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), charges on reactive center, dipole moment (μ) and conformations of molecules have been used to achieve the (3-5) appropriate correlations The application of (QSAR) in corrosion research was reported by several authors ⁽⁶⁻ ¹¹⁾. The present paper is concerned with a theoretical investigation of the inhibition efficiency of some substituted thioureas of aluminum using molecular orbital calculations

Methods of Calculation

Quantum chemistry uses a variety of approaches to approximate the solution of the Schrödinger equation for the system of interest . Semi-empirical methods , as the name suggests , use some parameters derived from experimental work and deal only with valence electrons . Within these two broad divisions there are many different methods which vary in the approximations made , the computational effort involved and the accuracy of the results . Semi-empirical calculations are generally several orders of magnitude faster than higher level calculations (both ab Initio and DFT methods) and can therefore be used for larger systems and can also provide a useful first step in deciding which structures and reactions to investigate at higher levels of theory ⁽¹²⁻¹⁶⁾

Theoretical calculations were carried out at the Restricted Hartree – Fock level (RHF) using MNDO " Modified Neglect of Diatomic Overlap method based on the Neglect Diatomic Differential Overlap (NDDO) approximation", " Modified Intermediate MINDO/3 Neglect of Differential Overlap, version 3, it is a modification of the INDO method ", AM1" Austin Model 1 " and PM3 " Parameterized Method 3 " are both based on the Neglect of Diatomic Differential Overlap (NDDO) approximate Hamiltonian , all this methods were proposed and developed by M.J.S. Dewar and co-works (17-25). Semi empirical SCF-MO methods in the CS MOPAC 8.0 pro packet program (26), implemented on an Intel Celeron M processor 420 (1.6 GHZ, 533 MHZ FSB, 1MB L2 cache, 40 GB HDD and 256 DDR2) computer . The geometry of the molecules investigated determined was all optimizing geometrical variables (bond lengths and angles) using Eigenvector following (EF) by semi empirical MNDO, MINDO/3, PM3 and AM1 quantum chemical methods in CS MOPAC 8.0 pro packet program.

Results and Discussion

Structures of studied molecules in this work and experimentally observed percent inhibitions efficiencies are given in figure (1) and table (1), respectively.

To investigate the effect of molecular structure on the inhibition efficiency , some quantum chemical calculations were performed . Quantum chemical parameters such as the energy of the highest occupied molecular orbital , E_{HOMO} ; the energy of lowest unoccupied molecular orbital , E_{LUMO} of molecules and the charges densities on the N and S atoms in molecules are calculated and summarized in tables (2-9).

The studied molecules in tables (2 – 9) were divided into two series according to their behaviors in order to make

systematic studies between structures and inhibition efficiencies .

<u>Series 1</u>: 1, 2, 3, 4, 5. <u>Series 2</u>: 1, 2, 6, 7, 8.

Using the obtained data to interpret the results for series one and two. Generally, the group of thiourea and it's derivatives the charge (electron density) at the primary adsorption center S-atom, as well at the N-atom, (which is the second adsorption (27,28), charges in dependence of their substitutes . If compares thiourea with derivatives, the phenyl ring as in N – phenyl thiourea, together with introducing electron-withdrawing Cl group (chloro-phenyl thiourea) decreases the electron density at the primary adsorption site, the S-atom . The chemisorptions behaviour of the thiourea and it's derivatives on the metal surfaces is investigated in documented (28-30). It is shown that the inhibiting effectiveness of thiourea and it's derivatives increase with increase of the temperature of the corrosion medium . Also their presence in the solutions decreases the values of the apparent activation energy of the hydrogen

evolution reaction. The adsorption of the investigated thioureas is the best described by the isotherm of Temkin⁽²⁸⁾. The higher values of free energy of adsorption are another phenomena that support the chemisorptions of thiourea and it's derivatives . This leads to explain the thiourea compound is less effective than N-phenyl thiourea and chloro-phenyl thioureas. This is attributed to the higher surface area projected by the ringsubstituted inhibitors on the metal surface through the delocalized electrons which it parallel to the electrode surface . 1: 3 Di – substituted phenyl thioureas are not as effective as N-phenyl thioureas because of the presence of two phenyl groups at 1,3 positions of thiourea, which may cause steric hindrance during the adsorption of molecules on the metallic surface . Also , the presence of the Cl group in the ortho and mata position does not have any beneficial effect. But, when it is in the para position the inhibitive efficiency is increased ⁽²⁷⁾. This is due to reduce of the negative charge (electron density) at the adsorption's centers of the molecule giving rise to an increase in the inhibition effect (tables 2 - 9), this is confirm by the best correlation obtained in AM1 (aqueous phase), PM3 (gas phase) and MINDO/3 (aqueous phase) for series one . The first - order linear regression analysis ^(31,32) was made of the relationship between inhibition efficiencies and the charges of molecules (figures 2-4). Also, the best correction obtained in PM3 (aqueous phase) for series two (figure, 5). General variation of charge (electron density) atoms for inhibitor molecules with protection efficiency P% are linearity. Generally, the obtained good correlations between the charges and inhibition efficiencies can be interpreted as physical adsorption of inhibitor molecule on metal surface . Physical adsorption although weak is usually an inevitable stage precede ⁽³³⁻³⁶⁾to chemisorption . The molecules were adsorbed in parallel mode to the surface metal there should be good correlations between calculated charges of each molecule versus inhibition efficiencies . Organic molecules may offer electrons to

unoccupied d-orbitals of metals and accept the electrons in the d-orbitals of metals by using anti-bonding ⁽²⁹⁾. As it seen from figures (6,7)the best correlations were obtained using (AM1 and MINDO/3) in aqueous phase and PM3 in gas phase for series one. Generally, Correlations are almost in the same order both in AM1 and MINDO/3 in aqueous phase for series one . correlations coefficients grater than 60% were well accepted in quantum chemical calculations studies ⁽⁹⁾. The higher the of corrosion E_{HOMO} of organic molecules , the easier is it to offer electrons to unoccupied dorbitals of metals, and the higher is the inhibition efficiency. The lower the ELUMO of organic molecules, the easier is the acceptance of electrons of d-orbitals of metals and the higher is the inhibition efficiency. Actually, this is the case that is observed . In order to prove the formation of feedback bonds, a secondorder linear regression⁽³¹⁻³²⁾ analysis was performed on the inhibition efficiency, E_{HOMO} and E_{LUMO} . The following equation were obtained .

P% = 266.965 + 20.180HOMO-1.585LUMO $R^2 = 0.999$, AM1, aqueous phase for series one(1) P% = 285.152 +23.968HOMO-6.155LUMO $R^2 = 0.996$, MINDO/3, aqueous phase for series one....(2) P% = 800.572+74.282HOMO +31.673LUMO $R^2 = 0.728$, PM3 aqueous phase for series two(3)

The coefficients of E_{HOMO} and E_{LUMO} are positive and negative respectively indicate the acceptor properties of thiourea and it's derivatives which are acting as inhibitors, this is evident in equations (1, 2) for series one . Another point regarding MO level is the gap between the E_{LUMO} and E_{HOMO} of the molecules, figures (8-10). This gap can be used as a characteristic quantity for metallic complexes . Cherry and Fpiotis ⁽³⁷⁾ have used the concept of ELUMO -E_{HOMO} gap in developing a theoretical model capable of qualitatively explaining the structural stability and conformation in many molecular systems . Furthermore, the energy gap may be related to the redox potential and electrical sensitivities of the complexes ${}^{(38,39)}$. The first –order linear regression analysis was made of the relationship between inhibition efficiency and $E_{LUMO} - E_{HOMO}$. The regression equations for the series one and two, respectively.

 $P\% = 205.899-14.412gap R^{2} = 0.96 ,$ AMI, aqueous phase for series one(4) $P\% = 220.420-16.624gap R^{2} = 0.946 ,$ MINDO/3 , aqueous phase for series one.....(5) $P\% = 329.372-32.613gap R^{2} = 0.787 ,$ PM3, gas phase for series one(6) $P\% = 230.004 - 18.717gap R^{2} = 0.116 ,$ PM3 , aqueous phase for series

two(7) As can be seen from inhibition efficiency versus E_{LUMO} - E_{HOMO} graphs and from the regression equations (4 – 6) the correlation values for series one is higher (accepted) than from series two (see equation , 7) , which indicate the stability of formation complexes for series

Conclusions

The protection efficiency of thiourea and its derivatives inhibitors may be

one. But, on reversal in series two.

explained in terms of molecular parameters . Using QSAR approach we have established a direct correlation , for the different molecules studies , between their molecular structure and their protection efficiency by using a LR (linear regression) model . The best correlation found in aqueous phase especially at MINDO/3 and AM1 methods among the another methods .

P% 55

P% 68

P% 68

P% 68

P% 70

P% 55

P% 55

P% 60

Figure (1): Structure of studied molecules

Table (1) : percent inhibition efficiencies, P% of some substituted thioureas for thecorrosion of aluminum in 20% HNO3 by 250 ppm inhibitors at 250 C.

Inhibitors (Molecules)	P%*
Thiourea	55
Phenyl thiourea	68
O-chloro-phenyl thiourea	68
m-chloro-phenyl thiourea	68
P-chloro-phenyl thiourea	70
1:3 Di- phenyl thiourea	55
1:2 Di-m-chloro phenyl thiourea	55
1:2 Di -p-chloro phenyl thiourea	55

* percent inhibition efficiencies have been taken from Reference ⁽²⁷⁾

Table (2) : Calculated the quantum chemical parameters , higher occupied molecular orbital energy (HOMO) , lower unoccupied molecular orbital energy (LUMO) , the energy gap, charges on nitrogen atoms and sulfur atom for gas phase PM3 for thiourea derivatives .

Inhibitor P%	E _{HOMO} eV	E _{LUMO} eV	E _{gap} eV	Z _(1N)	Z _(4N)	Z _(S)	$Z^{\pi}_{(1N)}$	$Z^{\pi}_{(4N)}$	$Z^{\pi}_{(S)}$
55	-8.783	-0.728	8.0550	0.1157	0.1154	-0.3113	0.022117	0.021919	-0.263703
68	-8.64	-0.952	7.6880	0.2306	0.0603	-0.3093	0.165676	-0.029836	-0.281809
68	-8.715	-1.058	7.6570	0.2144	0.0681	-0.3046	0.14806	-0.023305	-0.279179
68	-8.734	-1.057	7.6770	0.2181	0.0636	-0.2973	0.152705	-0.027303	-0.270208
70	-8.757	-0.958	7.7990	0.1752	0.0836	-0.2941	0.116146	-0.008333	-0.249082
55	-8.526	-1.011	7.5150	0.1504	0.1821	-0.3013	0.091905	0.120605	-0.279514
55	-8.693	-1.215	7.4780	0.1505	0.1847	-0.2944	0.091731	0.121761	-0.276095
60	-8.69	-1.228	7.4620	0.1523	0.185	-0.2941	0.093731	0.12306	-0.274482

Table (3) : Calculated the quantum chemical parameters , higher occupied molecular orbital energy (HOMO) , lower unoccupied molecular orbital energy (LUMO) , the energy gap, charges on nitrogen atoms and sulfur atom for gas phase AM1 for thiourea derivatives.

Inhibitor P%	E _{HOMO} eV	E _{LUMO} eV	E _{gap} eV	Z _(1N)	Z _(4N)	Z _(S)	$Z^{\pi}_{(1N)}$	$Z^{\pi}_{(4N)}$	$Z^{\pi}_{(S)}$
55	-8.533	0.3350	8.868	3959	3959	3295	555435	555403	283457
68	-8.440	1780	8.262	2783	3974	2907	410083	554004	248651
68	-9.877	3570	9.520	2683	3053	7758	411143	481089	769460
68	-8.572	3630	8.209	2802	3957	2849	411879	553029	242568
70	-8.575	4080	8.167	2801	3969	2851	412430	554261	243029
55	-8.296	4010	7.895	2780	2780	2446	404885	404727	202809
55	-8.530	6930	7.837	2906	2906	2463	422051	421950	203961
60	-8.538	7120	7.826	2783	2783	2354	405740	405576	193310

 Table (4) : Calculated the quantum chemical parameters , higher occupied molecular

 orbital energy (HOMO) , lower unoccupied molecular orbital energy (LUMO) , the

 energy gap, charges on nitrogen atoms and sulfur atom for gas phase MNDO for

 thiourea derivatives

Inhibitor P%	E _{HOMO} eV	E _{LUMO} eV	E _{gap} eV	Z _(1N)	Z _(4N)	Z _(S)	$Z^{\pi}_{(1N)}$	$Z^{\pi}_{(4N)}$	$Z^{\pi}_{(S)}$
55	-9.107	1860	8.9210	2884	2885	1735	418289	418348	128614
68	-8.927	0990	8.8280	2960	2933	1804	413990	421030	135068
68	-8.940	4850	8.4550	3174	2939	2020	444429	422915	156447
68	-9.078	4380	8.640	2996	2924	1723	417142	420638	126657
70	-8.782	4380	8.3440	3567	3816	2502	486823	536593	203336
55	-8.763	0240	8.7390	3034	3041	1843	419647	420589	138201
55	-9.053	4480	8.6050	3066	3040	1721	423323	420442	125575
60	-9.086	5220	8.5640	3050	3056	1724	421498	422380	125834

Table (5) : Calculated the quantum chemical parameters , higher occupied molecular orbital energy (HOMO) , lower unoccupied molecular orbital energy (LUMO) , the energy gap, charges on nitrogen atoms and sulfur atom for gas phase MINDO/3 for thiourea derivatives

Inhibitor P%	E _{HOMO} eV	E _{LUMO} eV	E _{gap} eV	Z _(1N)	Z _(4N)	Z _(S)	$Z^{\pi}_{(1N)}$	$Z^{\pi}_{(4N)}$	$Z^{\pi}_{(S)}$
55	-8.576	.7550	9.3310	1636	1637	5270	251281	251331	585930
68	-8.357	.6380	8.9950	1277	1618	5340	195735	248046	592924
68	-8.364	.1260	8.4900	1121	1522	5297	181499	238767	596541
68	-8.475	.0510	8.5260	1316	1562	5274	200863	242974	585927
70	-8.492	.1620	8.6540	1247	1598	5304	191852	246479	587704
55	-8.169	.5390	8.7080	1261	1262	5397	192838	192885	596524
55	-8.1420	2250	7.9170	1021	1021	5138	174342	174317	657137
60	-8.4140	.0620	8.4760	1208	1208	5331	187019	187054	588679

 Table (6) : Calculated the quantum chemical parameters , higher occupied molecular

 orbital energy (HOMO) , lower unoccupied molecular orbital energy (LUMO) , the

 energy gap, charges on nitrogen atoms and sulfur atom for aqueous phase PM3 for

 thiourea derivatives

Inhibitor P%	E _{HOMO} eV	E _{LUMO} eV	E _{gap} eV	Z _(1N)	Z _(4N)	Z _(S)	Z ^π (1N)	$Z^{\pi}_{(4N)}$	$Z^{\pi}_{(S)}$
55	-9.746	536	9.210	.4232	.2054	8413	.327257	.106225	834803
68	-9.672	521	9.151	.2283	.3839	8201	.158743	.286654	809413
68	-9.838	545	9.293	.2796	.2782	7829	.211317	.209836	766907
68	-9.753	633	9.120	.2760	.2762	7761	.207325	.207462	759307
70	-9.692	677	9.015	.2758	.2740	7760	.206992	.205298	759147
55	-9.838	545	9.293	.2796	.2782	7829	.211317	.209836	766907
55	-9.753	633	9.120	.276	.2762	7761	.207325	.207462	759307
60	-9.692	677	9.015	.2758	.2740	7760	.206992	.205298	759147

Table (7) : Calculated the quantum chemical parameters , higher occupied molecular orbital energy (HOMO) , lower unoccupied molecular orbital energy (LUMO) , the energy gap, charges on nitrogen atoms and sulfur atom for aqueous phase AM1 for thiourea derivatives

Inhibitor P%	E _{HOMO} eV	E _{LUMO} eV	E _{gap} eV	Z _(1N)	Z _(4N)	Z _(S)	$Z^{\pi}_{(1N)}$	Z ^π (4N)	$Z^{\pi}_{(S)}$
55	-10.511	080	10.431	31680	3186	8383	491589	493174	838554
68	-9.874	156	9.7180	2630	3116	7912	406469	487181	786443
68	-9.876	352	9.5240	2688	3053	7756	411508	481181	769316
68	-9.882	332	9.550	2672	3070	7868	410435	482866	781608
70	-9.804	423	9.3810	2671	3081	7869	410479	483801	781756
55	-9.608	228	9.380	2570	2562	7334	399945	399181	722895
55	-9.668	411	9.2570	2579	2572	7209	400841	400189	709151
60	-9.590	497	9.0930	2581	2578	7236	401079	400813	712146

 Table (8) : Calculated the quantum chemical parameters , higher occupied molecular

 orbital energy (HOMO) , lower unoccupied molecular orbital energy (LUMO) , the

 energy gap, charges on nitrogen atoms and sulfur atom for aqueous phase MNDO for

 thiourea derivatives

Inhibitor P%	E _{HOMO} eV	E _{LUMO} eV	E _{gap} eV	Z _(1N)	Z _(4N)	Z _(S)	$Z^{\pi}_{(1N)}$	$Z^{\pi}_{(4N)}$	$Z^{\pi}_{(S)}$
55	-9.972	05900	9.9130	3030	3029	6201	459671	457914	595291
68	-9.626	06900	9.5570	3117	3213	6411	450778	489369	615601
68	-9.788	37300	9.4150	3168	3145	6289	455393	482919	602494
68	-9.795	34400	9.4510	3158	3174	6365	454650	485732	610689
70	-9.787	4410	9.3460	3181	3171	6368	457073	485460	611006
55	-9.581	0960	9.4850	3089	3089	6010	447740	447521	573306
55	-9.734	3660	9.3680	3098	3091	5921	448638	447867	563900
60	-9.733	4700	9.2630	3122	3131	5905	451326	451918	562196

Table (9) : Calculated the quantum chemical parameters , higher occupied molecular orbital energy (HOMO) , lower unoccupied molecular orbital energy (LUMO) , the energy gap, charges on nitrogen atoms and sulfur atom for aqueous phase MINDO/3

Inhibitor P%	E _{HOMO} eV	E _{LUMO} eV	E _{gap} eV	Z _(1N)	Z _(4N)	Z _(S)	$Z^{\pi}_{(1N)}$	$Z^{\pi}_{(4N)}$	$Z^{\pi}_{(S)}$
55	-9.972	0590	9.9130	30300	30290	6201	459671	457914	595291
68	-9.626	0690	9.5570	3117	3213	6411	450778	489369	615601
68	-9.581	0960	9.4850	3089	3089	6010	447740	447521	573306
68	-9.734	3660	9.3680	3098	3091	5921	448638	447867	563900
70	-9.733	4700	9.2630	3122	3131	5905	451326	451918	562196
55	-9.581	0960	9.4850	3089	3089	6010	447740	447521	573306
55	-9.734	3660	9.3680	3098	3091	5921	448638	447867	563900
60	-9.733	470	9.2630	3122	3131	5905	451326	451918	562196

for thiourea derivatives :

Figure (2): Graph of protection efficiency (P%) versus charges of nitrogen atoms and sulfur for aqueous phase AM1 for thiourea derivatives to the series one

Figure (2): (Continued)

Figure (2): (Continued)

Figure (3): Graph of protection efficiency (P%) versus charges of nitrogen atoms and sulfur for aqueous phase MINDO/3 for thiourea derivatives to the series one

Figure (3): (Continued)

Figure (4): Graph of protection efficiency (P%) versus charges of nitrogen atoms and sulfur for gas phase PM3 for thiourea derivatives to the series one.

Figure (5): Graph of protection efficiency (P%) versus charges of nitrogen atoms and sulfur for aqueous phase PM3 for thiourea derivatives to the series two.

Figure (6): Graph of protection efficiency (P%) versus higher occupied molecular orbital energy (HOMO) and lower unoccupied molecular orbital energy (LUMO), respectively for aqueous phase AM1 for thiourea derivatives to the series one.

Figure (7): Graph of protection efficiency (P%) versus higher occupied molecular orbital energy (HOMO) and lower unoccupied molecular orbital energy (LUMO), respectively for aqueous phase MINDO/3 for thiourea derivatives to the series one.

Figure (8): Graph of protection efficiency (P%) versus the energy gap for aqueous phase AM1 for thiourea derivatives to the series one.

Figure (9): Graph of protection efficiency (P%) versus the energy gap for aqueous phase MINDO/3 for thiourea derivatives to the series one

Figure (10): Graph of protection efficiency (P%) versus the energy gap for gas phase PM3 for thiourea derivatives to the series one.

References

- M.K.Awad , F.M.Mahgoub and M.M.EL-iskandarani , *J.Mol.Struct.*, 2000, 31,105 .
- 2- A.H.Ali , Q.A.Yousif , National Journal of Chemistry "NJC", 2007 ,
 25, 171.
- 3- N.K.Allam , *Applied surface science* ,
 2006 , 25 , 4570 .
- 4- F.Bentiss , M.Lagrenee and M.Traisnel , *Corrosion* , 2000 , 56 , 733 .
- 5- L.G.Qiu , A.J.xie and Y.H.Shen , *Corros.Sci.* , 2005 , **47** , 273 .

- 6- F.B.Growcock , *Corrosion* , 1989 ,
 45 , 1003 .
- 7- I.Lukovits , E.Kalman and
 G.palinkas , *Corrosion* , 1995 , 51 , 201 .
- 8- I.Lukovits , K.palifi and E.Kalman ,*Corrosion* , 1997 , 53 , 915 .
- 9- G.Bereket , C.Ogretir and A.Yort , J.Mol.Strcut. , 2001 , 571 , 139 .
- G.Bereket , C.Ogretir and E.Hur ,
 J.Mol.Struct. , 2001 , 578 , 88 .
- 11- K.C.Emregul and O.Atakol , *Mater.Chem.Phys.*, 2004 , **82** , 188 .
- 12- K.C.Emregul and O.Atakol , *Mater.Chem.Phys.*, 2004, **83**, 373.

- 13- H.Ashassi-Sorkhabi , B.Shaabani and
 D.Seifzadch , *Electrochem.Acta* ,
 2005 , 50 , 3446 .
- 14- H.Ashassi-Sorkhabi , BShaabani and
 D.Seifazadch , *Appl.Surf.Sci.* , 2005 ,
 23 , 3446 .
- 15- M.Ajmal , A.S.Mideen and
 M.A.Quraishi , *Corros . Sci.* 1994 ,
 36 , 79 .
- 16- D.Wang , Y.Ying and H.Xiao ,*Corros.Sci.*, 1999, 41, 1911.
- 17- M. J. Dewar and N. C. Barid, J.*Chem. Phys.*, 1969, 50, 1262
- M. J.Dewar and E. Haselbach, J. Am. Chem. Soc., 1970, 92, 590
- 19- R. C.Bingham , M. J. Dewar and D.
 H. LC, *J. Am. Chem. Soc.*, 1975, 97, 1285.
- 20- M. J.Dewar and W. Thiel, *j. Am.Chem. Soc.*, 1977, **99**, 4899, 4907 .
- 21- M. J.Dewar, E. Zoebisch, E. F. Healy and J. J. Stewart, *Am. Chem. Soc.*, 1985,107,3902-3909.
- 22- J. J.Stewart, J. Comput. Chem., 1989, 10, 209-221.
- 23- R. L.Andrew, "Molecular Modeling Principles and Applications", Second

Edition, Prentice Hall, London (2001).

- 24- I. N. Levine,"Quantum Chemistry", Third Edition Allyn and Bacon, Boston. (1983).
- 25- L.Piela " Ideas of quantum chemistry", First Edition, published by Elsevier B.V. (2007).
- 26- CS Chemoffice Pro for Microscoft Windows , CambridgeScientific Computing Inc. , USA .
- 27- D.D.Singh , R.S.Chaudhary and
 C.V.Agarwal , *Br.Corros. J.*, 1997 ,
 14, 235 .
- 28- A.Stoyanova and S.Raicheva *Corros. Sci.*, 1997, **39**, 1595.
- 29- S.Raicheva , E.Sokolova and
 A.Stoyanova , *Bulg.Chem.Comm.* ,
 1994 , 27 , 363 .
- 30- Q.A.Yousif, M.Sc., Thesis, College of Science, University of Baghdad, July, 2001.
- 31- C.P.Melanie , L.B.Sanford and P.M.David " Levine's Guide to SPSS for analysis of variance " Second Edition , L.E.Associates , Inc. publishers , New Jersey , (2003).

- 32- W.Stanley and C.Daniel , " Statistics for Research " Third Edition , John Wiely and Sons,INC. publication ,(2004).
- 33- L.L.Shrier , "Corrosion "; Metal / Environment Reactions ,Third Edition , Newnes-Butterworths , London , Vol. 1 , (1994).
- 34- G.Chond , " Catalysis by Metals " , First Edition , Academic press , New York , (1962).
- 35- R.G.Mortimer , " Physical Chemistry" Second Edition , V.C.H. publication , (2004).
- 36- K.J.Laidler " Chemical Kinetics " Second Edition ,McGraw Hill press, New York ,(1967).
- 37- W.Chery and N.Fpiotis *Acc.Chem.Res.*, 1977, **16**, 167.

,

,

- 38- Y.G.Wang and S.H.Chen*Corros.Sci.*, 1999, 41, 1769.
- 39- E.J.Rosa and G.Schrarzer ,*J.Phys.Chem.*, 1969, **73**, 2432.