A LINEAR OPERATOR OF A NEW CLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS

Waggas Galib Atshan

Department of Mathematics College of Computer Science and Mathematics University of Al-Qadisiya, Diwaniya, Iraq

Hadi Jabber Mustafa

Department of Mathematics College of Mathematics and Computer Science University of Kufa, Najaf, Kufa, Iraq

Emad Kadhim Mouajeeb

Department of Mathematics College of Mathematics and Computer Science University of Kufa, Najaf, Kufa, Iraq

Abstract

In the present paper, we introduce a new class of meromorphic multivalent functions defined by linear derivative operator. We obtain some geometric properties, like, coefficient inequality, convex set, extreme points, distortion and covering theorem, δ-neighborhoods, partial sums and arithmetic mean.

Keywords: Meromorphic multivalent functions, Linear derivative operator, Extreme points, δ neighborhoods, Partial sums.
2000 Mathematics Subject Classification: 30C45,30C50

INTRODUCTION

Let M_{p} be the class of all functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=1}^{\infty} a_{k-p} z^{k-p},(p \in N=\{1,2, \ldots\}, \tag{1}
\end{equation*}
$$

which are analytic and meromorphic multivalent in the punctured unit disk

$$
U^{*}=\{z \in \mathbb{C}: 0<|z|<1\}=U \backslash\{0\}
$$

Consider a subclass T_{p} of functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=1}^{\infty} a_{k-p} z^{k-p}, \quad\left(a_{k-p} \geq 0\right) . \tag{2}
\end{equation*}
$$

A function $f \in T_{p}$ is meromorphic multivalent starlike function of order $\rho(0 \leq \rho<p)$ if

$$
\begin{equation*}
-R e\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\rho, \quad\left(0 \leq \rho<p ; z \in U^{*}\right) \tag{3}
\end{equation*}
$$

A functions $f \in T_{p}$ is meromorphic multivalent convex function of order $\rho(0 \leq \rho<p)$ if

$$
\begin{equation*}
-\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\rho, \quad\left(0 \leq \rho<p ; z \in U^{*}\right) \tag{4}
\end{equation*}
$$

The convolution (or Hadamard product) of two functions, f is given by (2) and

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{k=1}^{\infty} b_{k-p} z^{k-p}, \quad\left(b_{k-p} \geq 0, p \in N=\{1,2, \ldots\}\right) \tag{5}
\end{equation*}
$$

is defined by

$$
(f * g)(z)=z^{-p}-\sum_{k=1}^{\infty} a_{k-p} b_{k-p} z^{k-p}
$$

We shall need to state the extended linear derivative operator of Ruscheweyh type for the function belonging to the class T_{p} which is defined by the following convolution

$$
\begin{equation*}
D_{*}^{\lambda, \mathrm{p}} f(z)=\frac{z^{-p}}{(1-z)^{\lambda+p}} * f(z), \quad\left(\lambda>-p ; f \in T_{p}\right) \tag{6}
\end{equation*}
$$

In terms of binomial coefficients, (6) can be written as

$$
\begin{equation*}
D_{*}^{\lambda, \mathrm{p}} f(z)=z^{-p}+\sum_{k=1}^{\infty}\binom{\lambda+k}{k} a_{k-p} z^{k-p}, \quad\left(\lambda>-p ; f \in T_{p}\right) \tag{7}
\end{equation*}
$$

The linear operator $D^{\lambda, 1}$ analogous to $D_{*}^{\lambda, 1}$ was consider recently by Raina and Srivastava (2006) on the space of analytic and p-valent function in $U\left(U=U^{*} U\{0\}\right)$.

Also the linear operator $D_{*}^{\lambda, \mathrm{p}}$ was studied on meromorphic multivalent functions for other class in (Goyal and Prajapat, 2009).

Definition 1: Let $f \in T_{p}$ be given by (2). The class $E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$ is defined by

$$
\begin{align*}
& E^{\lambda, \mathrm{p}}(v, \alpha, \beta)=\left\{f \in T_{p}:\left|\frac{z^{p+2}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime \prime}+z^{p+1}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime}-p^{2}}{v Z^{p+1}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime}+\alpha(1+v) p-p}\right|<\beta, \quad(0 \leq \alpha<1,\right. \\
&0<\beta \leq 1, \lambda>-p, 0<v \leq 1, p \in N\} . \tag{8}
\end{align*}
$$

Najafzadeh and Ebadian (2013), Atshan and Kulkarni (2009), Atshan and Buti (2011), Khairnar and More (2008), studied meromorphic univalent and multivalent functions for different classes.

COEFFICIENT INEQUALITY

Theorem 1: Let $f \in T_{p}$. Then $f \in E^{\lambda, \mathrm{p}}(v, \alpha, \beta)$ if and only if

$$
\begin{align*}
& \sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v] a_{k-p} \leq \beta p(1-\alpha)(1+v), \tag{9}\\
& \quad(0 \leq \alpha<1, \quad 0<\beta \leq 1, \quad \lambda>-p, \quad 0<v \leq 1, \quad p \in N) .
\end{align*}
$$

The result is sharp for the function

$$
f(z)=z^{-p}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]} z^{k-p}, \quad k \geq 1 .
$$

Proof: Assume that the inequality (9) holds true and let $|z|=1$, then from(8), we have

$$
\begin{aligned}
& \left|z^{p+2}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime \prime}+z^{p+1}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime}-p^{2}\right|-\beta\left|v z^{p+1}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime}+\alpha(1+v) p-p\right| \\
& =\left|\sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)^{2} a_{k-p} z^{k}\right|-\beta\left|p(1-\alpha)(1+v)-v \sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p) a_{k-p} z^{k}\right| \\
& \leq \sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v] a_{k-p}-\beta p(1-\alpha)(1+v) \leq 0,
\end{aligned}
$$

by hypothesis.

Hence, by the principle of maximum modulus, $f \in E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$.
Conversely, suppose that f defined by (2) is in the class $E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$.
Hence

$$
\begin{aligned}
& \left|\frac{z^{p+2}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime \prime}+z^{p+1}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime}-p^{2}}{v Z^{p+1}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime}+\alpha(1+v) p-p}\right| \\
= & \left|\frac{\sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)^{2} a_{k-p} z^{k}}{p(1-\alpha)(1+v)-v \sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p) a_{k-p} z^{k}}\right|<\beta,
\end{aligned}
$$

Since $\operatorname{Re}(z)<|z|$ for all z , we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)^{2} a_{k-p} z^{k}}{p(1-\alpha)(1+v)-v \sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p) a_{k-p} z^{k}}\right\}<\beta . \tag{10}
\end{equation*}
$$

We can choose the value of z on the real axis, so that $z^{p+1}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime}$ is real. Let $z \rightarrow 1^{-}$, through real values, so we can write (10) as

$$
\sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v] a_{k-p} \leq \beta p(1-\alpha)(1+v) .
$$

Finally sharpness follows if we take

$$
f(z)=z^{-p}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]} z^{k-p}, \quad k \geq 1 .
$$

Corollary 1: Let $f \in E^{\lambda, \mathrm{p}}(v, \alpha, \beta)$. Then

$$
a_{k-p} \leq \frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]^{\prime}}
$$

where

$$
(0 \leq \alpha<1, \quad 0<\beta \leq 1, \quad \lambda>-p, \quad 0 \leq v \leq 1, \quad p \in N) .
$$

CONVEX SET

Theorem 2: Let the functions

$$
\begin{aligned}
& f(z)=z^{-p}+\sum_{k=1}^{\infty} a_{k-p} z^{k-p}, \quad\left(a_{k-p} \geq 0\right), \\
& g(z)=z^{-p}+\sum_{k=1}^{\infty} b_{k-p} z^{k-p}, \quad\left(b_{k-p} \geq 0\right),
\end{aligned}
$$

be in the class $E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$. Then for $0 \leq m \leq 1$, the function

$$
\begin{equation*}
d(z)=(1-m) f(z)+m g(z)=z^{-p}+\sum_{k=1}^{\infty} c_{k-p} z^{k-p} \tag{11}
\end{equation*}
$$

where

$$
c_{k-p}=(1-m) a_{k-p}+m b_{k-p} \geq 0
$$

is also in the class $E^{\lambda, \mathrm{p}}(v, \alpha, \beta)$.

Proof: Suppose that each of the functions f and g is in the class $E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$. Then, making use of Theorem 1, we see that
$\sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v] c_{k-p}$
$=(1-m) \sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v] a_{k-p}+m \sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v] b_{k-p}$
$\leq(1-m) \beta p(1-\alpha)(1+v)+m \beta p(1-\alpha)(1+v)$
$=\beta p(1-\alpha)(1+v)$,
which completes the proof of Theorem 2.

EXTREME POINTS

Theorem 3: Let $f_{-p}=z^{-p}$ and

$$
\begin{equation*}
f_{k-p}(z)=z^{-p}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]} z^{k-p}, \tag{12}
\end{equation*}
$$

for $k=1,2, \ldots \quad$. Then $f \in E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$ if and only if it can be expressed in the form

$$
f(z)=\sum_{k=0}^{\infty} d_{k-p} f_{k-p}(z),
$$

where

$$
d_{k-p} \geq 0 \quad \text { and } \quad \sum_{k=0}^{\infty} d_{k-p}=1 .
$$

Proof: Suppose that

$$
f(z)=\sum_{k=0}^{\infty} d_{k-p} f_{k-p}(z)
$$

where

$$
d_{k-p} \geq 0 \quad \text { and } \quad \sum_{k=0}^{\infty} d_{k-p}=1
$$

Then
$f(z)=d_{-p} f_{-p}(z)+\sum_{k=1}^{\infty} d_{k-p} f_{k-p}(z)$
$=d_{-p} z^{-p}+\sum_{k=1}^{\infty} d_{k-p}\left(z^{-p}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]} z^{k-p}\right)$
$f(z)=z^{-p}+\sum_{k=1}^{\infty} \frac{\beta p(1-\alpha)(1+v) d_{k-p}}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]} z^{k-p}$
$=z^{-p}+\sum_{k=1}^{\infty} Q_{k-p} Z^{k-p}$,
where
$Q_{k-p}=\frac{\beta p(1-\alpha)(1+v) d_{k-p}}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}$.
By Theorem 1 , we have $f \in E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$ if and only if
$\sum_{k=1}^{\infty} \frac{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}{\beta p(1-\alpha)(1+v)} Q_{k-p} \leq 1$,
for
$f(z)=z^{-p}+\sum_{k=1}^{\infty} Q_{k-p} z^{k-p}$.
Hence
$\sum_{k=1}^{\infty} \frac{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}{\beta p(1-\alpha)(1+v)} \times d_{k-p} \frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}$
$=\sum_{k=1}^{\infty} d_{k-p}=1-d_{-p} \leq 1$.
The proof is complete.
Conversely, assume $f \in E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$. Then we show that f can be written in the form:

$$
f(z)=\sum_{k=0}^{\infty} d_{k-p} f_{k-p}(z)
$$

Now $f \in E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$, implies from Theorem 1

$$
a_{k-p} \leq \frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]} .
$$

Setting

$$
d_{k-p}=\frac{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}{\beta p(1-\alpha)(1+v)} a_{k-p}, \quad k=1,2, \ldots
$$

and

$$
d_{-p}=1-\sum_{k=1}^{\infty} d_{k-p},
$$

then

$$
\begin{aligned}
& f(z)=z^{-p}+\sum_{k=1}^{\infty} a_{k-p} z^{k-p} \\
& =z^{-p}+\sum_{k=1}^{\infty} \frac{\beta p(1-\alpha)(1+v) d_{k-p}}{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]} \\
& =z^{-p}+\sum_{k=1}^{\infty}\left(f_{k-p}-z^{-p}\right) d_{k-p} \\
& =z^{-p}\left(1-\sum_{k=1}^{\infty} d_{k-p}\right)+\sum_{k=0}^{\infty} d_{k-p} f_{k-p} \\
& =z^{-p} d_{-p}+\sum_{k=1}^{\infty} d_{k-p} f_{k-p} \\
& =\sum_{k=0}^{\infty} d_{k-p} f_{k-p}(z) .
\end{aligned}
$$

DISTORTION AND COVERING THEOREM

Theorem 4: If the function $f \in E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$, then for $0<|z|<1$

$$
\begin{align*}
& \frac{1}{|z|^{p}}-\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}(1-p)[(1-p)+\beta v]}|z|^{1-p} \leq|f(z)| \\
\leq & \frac{1}{|z|^{p}}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}(1-p)[(1-p)+\beta v]}|z|^{1-p} . \tag{13}
\end{align*}
$$

The result is sharp and attained for

$$
f(z)=\frac{1}{z^{p}}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}(1-p)[(1-p)+\beta v]} z^{1-p}
$$

Proof: Let $f \in E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$. Then
$|f(z)|=\left|\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k-p} z^{k-p}\right|$
$\leq \frac{1}{|z|^{p}}+\sum_{k=1}^{\infty} a_{k-p}|z|^{k-p}$
$\leq \frac{1}{|z|^{p}}+|z|^{1-p} \sum_{k=1}^{\infty} a_{k-p}$.
By Theorem1, we have
$\sum_{k=1}^{\infty} a_{k-p} \leq \frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}(1-p)[(1-p)+\beta v]}$.
Thus
$|f(z)| \leq \frac{1}{|z|^{p}}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}(1-p)[(1-p)+\beta v]}|z|^{1-p}$.
Similarly, we have
$|f(z)| \geq \frac{1}{z^{p}}-\sum_{k=1}^{\infty} a_{k-p}|z|^{k-p}$
$\geq \frac{1}{z^{p}}-|z|^{1-p} \sum_{k=1}^{\infty} a_{k-p}$
$|f(z)| \geq \frac{1}{|z|^{p}}-\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}(1-p)[(1-p)+\beta v]}|z|^{1-p}$.
Hence result (13) follows.

Theorem 5: If $f \in E^{\lambda, \mathrm{p}}(v, \alpha, \beta)$, then for $0<|z|<1$

$$
\begin{equation*}
\frac{p}{|z|^{p+1}}-\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}[(1-p)+\beta v]}|z|^{-p} \leq\left|f^{\prime}(z)\right| \leq \frac{p}{|z|^{p+1}}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}[(1-p)+\beta v]}|z|^{-p}, \tag{14}
\end{equation*}
$$

with equality for

$$
f(z)=\frac{1}{z^{p}}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}(1-p)[(1-p)+\beta v]} z^{1-p} .
$$

Proof: Let $f \in E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$. Then
$\left|f^{\prime}(z)\right| \leq \frac{p}{|z|^{p+1}}+\sum_{k=1}^{\infty}(k-p) a_{k-p}|z|^{k-p-1}$
$\leq \frac{p}{|z|^{p+1}}+|z|^{-p} \sum_{k=1}^{\infty}(1-p) a_{k-p}$
$\leq \frac{p}{|z|^{p+1}}+\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}[(1-p)+\beta v]}|z|^{-p}$.
On the other hand

$$
\begin{aligned}
& \left|f^{\prime}(z)\right| \geq \frac{p}{|z|^{p+1}}-\sum_{k=1}^{\infty}(k-p) a_{k-p}|z|^{k-p-1} \\
& \geq \frac{p}{|z|^{p+1}}-|z|^{-p} \sum_{k=1}^{\infty}(1-p) a_{k-p} \\
& \geq \frac{p}{|z|^{p+1}}-\frac{\beta p(1-\alpha)(1+v)}{\binom{\lambda+1}{1}[(1-p)+\beta v]}|z|^{-p},
\end{aligned}
$$

which complete the proof.

NEIGHBORHOODS AND PARTIAL SUMS

Definition 2: Let $(0 \leq \alpha<1,0<\beta \leq 1, \lambda>-p, 0 \leq v \leq 1, p \in N)$ and $\delta \geq 0$.
We define the δ-neighborhood of a function $f \in T_{p}$ and denote $N_{\delta}(f)$ such that

$$
\begin{align*}
& \quad N_{\delta}(f)=\left\{g \in T_{p}: g(z)\right. \\
& =z^{-p} \\
& +\sum_{k=1}^{\infty} b_{k-p} z^{k-p}, \text { and } \sum_{k=1}^{\infty} \frac{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}{\beta p(1-\alpha)(1+v)}\left|a_{k-p}-b_{k-p}\right| \\
& \leq \delta\} . \quad \text { (15) } \tag{15}
\end{align*}
$$

Goodman (1957), Ruscheweyh (1981) and Altintas and Owa (1996) have investigated neighborhoods for analytic univalent functions, we consider this concept for the class $E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$.

Theorem 6: Let the function $f(z)$ defined by (2) be in the class $E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta)$, for every complex number μ with $|\mu|<\delta, \delta \geq 0$,
let $\frac{f(z)+\mu z^{-p}}{1+\mu} \in E^{\lambda, \mathrm{p}}(v, \alpha, \beta)$, then $\quad N_{\delta}(f) \subset E^{\lambda, \mathrm{p}}(v, \alpha, \beta), \quad \delta \geq 0$.
Proof: Since $f \in E^{\lambda, \mathrm{p}}(\nu, \alpha, \beta), f$ satisfies (9) and we can write for $\gamma \in \mathbb{C},|\gamma|=1$, that

$$
\begin{equation*}
\left[\frac{z^{p+2}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime \prime}+z^{p+1}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime}-p^{2}}{v z^{p+1}\left(D_{*}^{\lambda, \mathrm{p}} f(z)\right)^{\prime}+\alpha(1+v) p-p}\right] \neq \gamma . \tag{16}
\end{equation*}
$$

Equivalently, we must have

$$
\begin{equation*}
\frac{(f * Q)(z)}{z^{-p}} \neq 0, \quad z \in U^{*}, \tag{17}
\end{equation*}
$$

where

$$
Q(z)=z^{-p}+\sum_{k=1}^{\infty} e_{k-p} z^{k-p},
$$

such that

$$
e_{k-p}=\frac{\gamma\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}{\beta p(1-\alpha)(1+v)}
$$

Satisfying

$$
\left|e_{k-p}\right| \leq \frac{\gamma\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}{\beta p(1-\alpha)(1+v)} \text { and } k \geq 1, \quad p \in N .
$$

Since

$$
\frac{f(z)+\mu z^{-p}}{1+\mu} \in E^{\lambda, p}(v, \alpha, \beta),
$$

by (17)

$$
\begin{equation*}
\frac{1}{z^{p}}\left(\frac{f(z)+\mu z^{-p}}{1+\mu} * Q(z)\right) \neq 0 . \tag{18}
\end{equation*}
$$

Now assume that $\left|\frac{(f * Q)(z)}{z^{-p}}\right|<\delta$. Then, by (18), we have

$$
\left|\frac{1}{1+\mu} \frac{(f * Q)(z)}{z^{-p}}+\frac{\mu}{1+\mu}\right| \geq \frac{|\mu|}{|1+\mu|}-\frac{1}{|1+\mu|}\left|\frac{(f * Q)(z)}{z^{-p}}\right|>\frac{|\mu|-\delta}{|1+\mu|} \geq 0 .
$$

This is a contradiction as $|\mu|<\delta$. Therefore $\left|\frac{f * Q)(z)}{z^{-p}}\right| \geq \delta$.
Letting

$$
g(z)=z^{-p}+\sum_{k=1}^{\infty} b_{k-p} z^{k-p} \in N_{\delta}(f) .
$$

Then

$$
\begin{aligned}
& \delta-\left|\frac{(g * Q)(z)}{z^{-p}}\right| \leq\left|\frac{(f-g) * Q(z)}{z^{-p}}\right| \\
& \leq\left|\sum_{k=1}^{\infty}\left(a_{k-p}-b_{k-p}\right) e_{k-p} z^{k-p}\right| \\
& \leq \sum_{k=1}^{\infty}\left|a_{k-p}-b_{k-p}\right|\left|e_{k-p}\right||z|^{k-p} \\
& <|z|^{k-p} \sum_{k=1}^{\infty}\left[\frac{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}{\beta p(1-\alpha)(1+v)}\right]\left|a_{k-p}-b_{k-p}\right| \\
& \leq \delta,
\end{aligned}
$$

therefore $\frac{(g * Q)(z)}{z^{-p}} \neq 0$, and we get $g(z) \in E^{\lambda, \mathrm{p}}(v, \alpha, \beta)$, so $N_{\delta}(f) \subset E^{\lambda, \mathrm{p}}(v, \alpha, \beta)$.

Theorem 7: Let $f(z)$ be defined by (2) and the partial sums $S_{1}(z)$ and $S_{q}(z)$ be defined by $S_{1}(z)=z^{-p}$ and

$$
S_{q}(z)=z^{-p}+\sum_{k=1}^{q-1} a_{k-p} z^{k-p}, \quad(q>1) .
$$

Also suppose that

$$
\sum_{k=1}^{\infty} C_{k-p} a_{k-p} \leq 1
$$

where

$$
\begin{equation*}
C_{k-p}=\frac{\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]}{\beta p(1-\alpha)(1+v)} . \tag{19}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{f(z)}{S_{q}(z)}\right\}>1-\frac{1}{C_{q}} \tag{20}\\
& \operatorname{Re}\left\{\frac{S_{q}(z)}{f(z)}\right\}>1-\frac{C_{q}}{1+C_{q}}, \quad\left(z \in U^{*}, \quad q>1\right) . \tag{21}
\end{align*}
$$

Each of the bounds in (19) and (20) is the best possible for $k \in N$.

Proof: For the coefficients C_{k-p} given by (19), it is not difficult to verify that $C_{k-p+1}>C_{k-p}>$ $1, k=1,2, \ldots$.
Therefore, by using the hypothesis (19), we have

$$
\begin{equation*}
\sum_{k=1}^{q-1} a_{k-p}+C_{q} \sum_{k=q}^{\infty} a_{k-p} \leq \sum_{k=1}^{\infty} C_{k-p} a_{k-p} \leq 1 . \tag{22}
\end{equation*}
$$

By setting

$$
\begin{aligned}
G_{1}(z) & =C_{q}\left(\frac{f(z)}{S_{q}(z)}-\left(1-\frac{1}{C_{q}}\right)\right) \\
& =\frac{C_{q} \sum_{k=q}^{\infty} a_{k-p} z^{k}}{1+\sum_{k=q}^{\infty} a_{k-p} z^{k}}+1
\end{aligned}
$$

and applying (22) we find that

$$
\begin{aligned}
\left|\frac{G_{1}(z)-1}{G_{1}(z)+1}\right| & =\left|\frac{C_{q} \sum_{k=q}^{\infty} a_{k-p} z^{k}}{2+2 \sum_{k=1}^{q-1} a_{k-p} z^{k}+C_{q} \sum_{k=q}^{\infty} a_{k-p} z^{k}}\right| \\
& \leq \frac{C_{q} \sum_{k=q}^{\infty} a_{k-p}}{2-2 \sum_{k=1}^{q-1} a_{k-p}-C_{q} \sum_{k=q}^{\infty} a_{k-p}} \leq 1 .
\end{aligned}
$$

This proof (20). Therefore, $\operatorname{Re}\left(G_{1}(z)\right)>0$ and we obtain

$$
\operatorname{Re}\left\{\frac{f(z)}{S_{q}(z)}\right\}>1-\frac{1}{C_{q}} .
$$

Now, in the same manner, we can prove the assertion (21) by setting

$$
G_{2}(z)=\left(1+C_{q}\right)\left(\frac{S_{q}(z)}{f(z)}-\frac{C_{q}}{1+C_{q}}\right) .
$$

This completes the proof.

Theorem 8: Let $f_{1}(z), f_{2}(z), \ldots, f_{l}(z)$ defined by

$$
\begin{equation*}
f_{i}(z)=z^{-p}+\sum_{k=1}^{\infty} a_{k-p, i} z^{k-p}, \quad\left(a_{k-p, i} \geq 0, \quad i=1,2, \ldots, l, \quad k \geq 1\right) \tag{23}
\end{equation*}
$$

be in the class $E^{\lambda, p}(\nu, \alpha, \beta)$. Then the arithmetic mean of $f_{i}(z)(i=1,2, \ldots, l)$ defined by

$$
\begin{equation*}
h(z)=\frac{1}{l} \sum_{i=1}^{l} f_{i}(z) \tag{24}
\end{equation*}
$$

is also in the class $E^{\lambda, p}(\nu, \alpha, \beta)$.

Proof: By (23), (24), we can write

$$
\begin{aligned}
h(z) & =\frac{1}{l} \sum_{i=1}^{l}\left(z^{-p}+\sum_{k=1}^{\infty} a_{k-p, i} z^{k-p}\right) \\
& =z^{-p}+\sum_{k=1}^{\infty}\left(\frac{1}{l} \sum_{i=1}^{l} a_{k-p, i}\right) z^{k-p} .
\end{aligned}
$$

Since $f_{i} \in E^{\lambda, p}(v, \alpha, \beta)$ for every $(i=1,2, \ldots, l)$ so by using Theorem1, we prove that
$\sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v]\left(\frac{1}{l} \sum_{i=1}^{l} a_{k-p, i}\right)$
$=\frac{1}{l} \sum_{i=1}^{l}\left(\sum_{k=1}^{\infty}\binom{\lambda+k}{k}(k-p)[(k-p)+\beta v] a_{k-p, i}\right)$
$\leq \frac{1}{l} \sum_{i=1}^{l} \beta p(1-\alpha)(1+v)$.
$=\beta p(1-\alpha)(1+v)$.

REFERENCES

Altintas, O. and S. Owa, 1996. Neighborhoods of certain analytic functions with negative coefficients. IJMMS, 19: 797-800.

Atshan, W.G. and R.H. Buti, 2011. Fractional calculus of a class of univalent functions with negative coefficients defined by hadamard product with rafid-operator. European Journal of pure and Applied Mathematics, 4(2): 162-173.
Atshan, W.G. and S.R. Kulkarni, 2009. On application of differential subordination for certain subclass of meromorphically p -valent functions with positive coefficients defined by linear operator. J. Ineq. Pure Appl. Math, 10(2): 11.

Goodman, A.W., 1957. Univalent functions and non-analytic curves. Proc. Amer. Math. Soc, 8: 598-601.
Goyal, S.P. and J.K. Prajapat, 2009. A new class of meromorphic multivalent functions involving certain linear operator. 25(2): 167-176.
Khairnar, S.M. and M. More, 2008. On a class of meromorphic multivalent functions with negative coefficients defined by ruscheweyh derivative. Int. Math. Forum, 3(22): 1087-1097.

Najafzadeh, S. and A. Ebadian, 2013. Convex family of meromorphically multivalent functions on connected sets. Math. And Com. Mod, 57: 301-305.
Raina, R.K. and H.M. Srivastava, 2006. Inclusion and neighborhoods properties of some analytic and multivalent functions. J. In-equal. Pure and Appl. Math, 7(1): 1-6.
Ruscheweyh, S., 1981. Neighborhoods of univalent functions. Proc. Amer. Math. Soc, 81: 521-527.

