ON A NEW CLASS OF UNIVALENT FUNCTIONS WITH APPLICATION OF FRACTIONAL CALCULUS OPERATORS DEFINED BY HOHLOV OPERATOR

Waggas Galib Atshan
Department of Mathematics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwaniya-Iraq

A. H. Majeed

Department of Mathematics, College of Science, University of Baghdad, Baghdad-Iraq
Kassim A. Jassim
Department of Mathematics, College of Science, University of Baghdad, Baghdad-Iraq

Abstract

In the present paper, we discuss some properties of a new class of univalent functions in the unit disk defined by Hohlov operator with application of fractional calculus operators, like, distortion theorem using fractional calculus techniques for the class $H(a, b, c, \gamma, \beta)$,coefficient inequalities , extreme points, convex linear combination, and arithmetic mean. Also some results for our class are obtained.

Keywords: Univalent function, Fractional Calculus, Distortion theorem, Extreme points, Convex linear combinations and arithmetic mean.
Mathematics Subject Classification : 30C45.

1. INTRODUCTION

Let A denote the class of functions of the form:-

$$
=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic and univalent in the open unit disk $U=\{z \in C:|z|<1\}$. If a function f is given by (1) and g is defined by

$$
g(z)
$$

$$
\begin{equation*}
=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{2}
\end{equation*}
$$

is in the class A , the convolution(or Hadamard dproduct) of $f(\mathrm{z})$ and $g(\mathrm{z})$ is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}, z \tag{3}
\end{equation*}
$$

$\in U$.
Let H denote the subclass of A consisting of functions of the form:-

$$
=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad,\left(a_{n} \geq 0\right)
$$

Definition(1)[1][5]:-The Gaussian hypergeometric function denoted by ${ }_{2} \mathrm{~F}_{1}(a, b, c ; z)$ and is defined by

$$
\begin{gathered}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n},|z| \\
\quad<1
\end{gathered}
$$

where $\quad(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)} \quad, c>b>0$ and $c>a+b$.
It is well known [2] that under the conditions $c>b>0$ and $c>a+b$, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} \\
= & \frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} . \tag{5}
\end{align*}
$$

Definition(2):- Let $f(\mathrm{z}) \in H$ be of the form (4), then the Hohlov operator $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}),(\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}): \mathrm{H} \rightarrow \mathrm{H})$ [3] is defined by means of a Hadamard product below:

$$
\begin{align*}
\mathrm{F}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) f(\mathrm{z}) & =\left(\mathrm{z}_{2} \mathrm{~F}_{1}(\mathrm{a}, \mathrm{~b}, \mathrm{c} ; \mathrm{z})\right) * f(\mathrm{z}) \\
& =z-\sum_{n=0}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} z^{n} \tag{6}
\end{align*}
$$

$\left(a, b, c \in N, c \notin z_{0}^{-}, z \in U\right)$.
The integral representation of Hohlov operator is given by
$F(a, b, c) f(z)$
$=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \int_{0}^{1} \frac{(1-\sigma)^{c-a-b} \sigma^{b-2}}{\Gamma(c-a-b+1)}{ }_{2} F_{1}(c-a, 1-a ; c-a-b+1 ; 1-\sigma) f(z) d \sigma$,
$(a>0, b>0, c-a-b+1>0, f \in H, z \in U)$

$$
\begin{equation*}
=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} I_{1,2}^{(a-2, b-2),(1-a, c-b)} f(z) \tag{7}
\end{equation*}
$$

Definition(3):-A function $f(\mathrm{z})$ in H is in the class $\mathrm{H}(a, b, c, \gamma, \beta, k)$ if and only if it satisfies the condition:-

$$
\left|\frac{z(F(a, b, c) f(z))^{\prime \prime \prime}-\gamma(F(a, b, c) f(z))^{\prime \prime}}{(F(a, b, c) f(z))^{\prime \prime}+2(1-\gamma)}\right|
$$

$$
\begin{equation*}
<\beta \tag{8}
\end{equation*}
$$

where $0 \leq \gamma \leq 1,0<\beta \leq 1, z \in U$.

2.THE CLASS H(A,B,C, $\boldsymbol{\gamma}, \boldsymbol{\beta})$

Theorem(1):-Let the function f be defined by (4).Then $f \in \mathrm{H}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \gamma, \beta)$ if and only if

$$
\begin{align*}
\sum_{n=2}^{\infty} n(n-1)(& n-2+\beta+\gamma) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} \\
\leq & 2 \beta(1-\gamma) \tag{9}
\end{align*}
$$

where $0 \leq \gamma \leq 1,0<\beta \leq 1$.
The result (9) is sharp for the function

$$
f(z)=z-\frac{2 \beta(1-\gamma)}{n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}} z^{n}, n \geq 2
$$

Proof:- Suppose that the inequality (9)holds true and $|z|=1$.Then we obtain

$$
\begin{aligned}
& \left|z(F(a, b, c) f(z))^{\prime \prime \prime}-\gamma(F(a, b, c) f(z))^{\prime \prime}\right|-\beta\left|(F(a, b, c) f(z))^{\prime \prime}+2(1-\gamma)\right| \\
& \begin{aligned}
&=\left\lvert\,-\sum_{n=2}^{\infty} n(n-1)(n-2) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} z^{n-2}\right. \\
& \left.+\gamma \sum_{n=2}^{\infty} n(n-1) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} z^{n-2} \right\rvert\,
\end{aligned} \\
& \quad-\beta\left|2(1-\gamma)-\sum_{n=2}^{\infty} n(n-1) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} z^{n-2}\right| \\
& \leq \sum_{n=2}^{\infty} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n}-2 \beta(1-\gamma) \\
& \leq 0, \text { by hypothesis. }
\end{aligned}
$$

Hence, by maximum modulus principle, $f \in H(a, b, c, \gamma, \beta)$.

Now, suppose that $f \in H(a, b, c, \gamma, \beta)$ so that

$$
\left|\frac{z(F(a, b, c) f(z))^{\prime \prime \prime}-\gamma(F(a, b, c) f(z))^{\prime \prime}}{(F(a, b, c) f(z))^{\prime \prime}+2(1-\gamma)}\right|<\beta, \quad z \in U
$$

then

$$
\begin{aligned}
& \left|z(F(a, b, c) f(z))^{\prime \prime \prime}-\gamma(F(a, b, c) f(z))^{\prime \prime}\right| \\
& \quad<\beta\left|(F(a, b, c) f(z))^{\prime \prime}+2(1-\gamma)\right|
\end{aligned}
$$

we get

$$
\begin{aligned}
& \left\lvert\,-\sum_{n=2}^{\infty} n(n-1)(n-2) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} z^{n-2}\right. \\
& \left.+\gamma \sum_{n=2}^{\infty} n(n-1) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} z^{n-2} \right\rvert\, \\
& <\beta\left|2(1-\gamma)-\sum_{n=2}^{\infty} n(n-1) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} z^{n-1}\right|
\end{aligned}
$$

thus
$\sum_{n=2}^{\infty} n(n-1)(n-2+\beta+\gamma) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} \leq 2 \beta(1-\gamma)$.
Finally sharpness follows if we take
$f(z)=z-\frac{2 \beta(1-\gamma)}{n(n-1)(n-2+\beta+\gamma) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}} z^{n}, n \geq 2$.
The proof is complete.
Corollary (1):- Let $f \in H(a, b, c, \gamma, \beta)$.Then

$$
a_{n} \leq \frac{2 \beta(1-\gamma)}{n(n-1)(n-2+\beta+\gamma) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}}
$$

The result is sharp for the functions of the form:-

$$
f(z)=z-\frac{2 \beta(1-\gamma)}{n(n-1)(n-2+\beta+\gamma) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}} z^{n}, n \geq 2
$$

3. APPLICATION OF THE FRACTIONAL CALCULUS

Various operators of fractional calculus (that is, fractional derivative and fractional integral)have been rather extensively studied by many researches [4-8].

However, we try to restrict ourselves to the following definitions given by Owa [9] for convenience.
Definition (4) (Fractional integral operator):- The fractional integral of order λ is defined for a function $f(\mathrm{z})$, by

$$
\begin{gather*}
D_{z}^{-\lambda} f(z) \\
=\frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(t)}{(z-t)^{1-\lambda}} d t \quad,(\lambda>0), \tag{10}
\end{gather*}
$$

where $f(\mathrm{z})$ is an analytic function in a simply -connected region of the z-plane containing the origin ,and the multiplicity of $(z-t)^{\lambda-1}$ is removed by requiring $\log (z-t)$ to be real, when $z-t$ > 0.

Definition (5)(Fractional derivative operator):- The fractional derivatives of order λ, is defined, for a function $f(z)$, by

$$
=\frac{D_{z}^{\lambda} f(z)}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z} \frac{f(t)}{(z-t)^{\lambda}} d t,(0 \leq \lambda<1),
$$

where $f(z)$ is constrained, and the multiplicity of $(z-t)^{-\lambda}$ is removed, as in Definition(4).
Definition(6):-Under the hypothesis of Definition (5), the fractional derivative of order $\mathrm{k}+\lambda$ is defined, for a function $f(\mathrm{z})$, by

$$
\begin{align*}
& D_{z}^{k+\lambda} f(z) \\
= & \frac{d^{k}}{d z^{k}} D_{z}^{\lambda} f(z),\left(0 \leq \lambda<1, k \in \mathrm{~N}_{0}\right) . \tag{12}
\end{align*}
$$

Next, we state the following definition of fractional integral operator given by Srivastava, et al. [10].

Definition(7):- For real numbers $\alpha>0, \eta$ and δ, the fractional operator, $I_{0, z}^{\alpha, \eta, \delta}$ is defined by

$$
\begin{align*}
& I_{0, z}^{\alpha, \eta, \delta} f(z) \\
& =\frac{z^{-\alpha-\eta}}{\Gamma(\alpha)} \int_{0}^{z}(z-t)^{\alpha-1} \mathrm{~F}(\alpha+\eta,-\delta ; \alpha ; 1 \\
& \tag{13}\\
& \left.\quad-\frac{t}{2}\right) f(t) d t
\end{align*}
$$

where $f(z)$ is analytic function in a simply connected region of the z-plane containing the origin with order
$f(z)=\mathrm{O}\left(|z|^{\epsilon}\right), \mathrm{z} \rightarrow 0$, where $\epsilon>\max (0, \eta-\delta)-1$,

$$
F(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n}
$$

and $(\lambda)_{n}$ is the Pochhammer symbol defined by

$$
(\lambda)_{n}=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}=\left\{\begin{array}{cc}
1 & (n=0) \\
\lambda(\lambda+1) \ldots & (\lambda+n-1)(n \in N
\end{array}\right.
$$

and the multiplicity of $(z-t)^{\alpha-1}$ is removed by requiring $\log (\mathrm{z}-\mathrm{t})$ to be real, when $\quad \mathrm{z}-\mathrm{t}>0$. In order to prove our result concerning the fractional integral operator, we recall here the following lemma due to Srivastava, et al. [10].
Lemma(1):- Let $\alpha>0$ and $\mathrm{n}>\eta-\delta-1$.Then

$$
I_{0, z}^{\alpha, \eta, \delta} z^{n}=\frac{\Gamma(n+1) \Gamma(n-\eta+\delta+1)}{\Gamma(n-\eta+1) \Gamma(n+\alpha+\delta+1)} z^{n-\eta}
$$

Now making use of above Lemma 1 , we state and prove the following theorem:-
Theorem(2):- Let $\alpha>0, \eta<2, \alpha+\delta>-2, \eta(\alpha+\delta) \leq 3 \alpha$.If $\mathrm{f}(\mathrm{z})$ defined by (4) is in the class $\mathrm{H}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \gamma, \beta)$, then

$$
\begin{aligned}
\left|I_{0, z}^{\alpha, \eta, \delta} f(z)\right| \geq & \frac{\Gamma(2-\eta+\delta)|z|^{1-\eta}}{\Gamma(2-\eta) \Gamma(2+\alpha+\delta)}(1 \\
& \left.-\frac{2 c \beta(1-\gamma)(2-\eta+\delta)}{(2-\eta)(2+\alpha+\delta)(\gamma+\beta) a b}|z|\right)(14)
\end{aligned}
$$

and

$$
\begin{align*}
\left|I_{0, z}^{\alpha, \eta, \delta} f(z)\right| \leq & \frac{\Gamma(2-\eta+\delta)|z|^{1-\eta}}{\Gamma(2-\eta) \Gamma(2+\alpha+\delta)}(1 \\
& \left.+\frac{2 c \beta(1-\gamma)(2-\eta+\delta)}{(2-\eta)(2+\alpha+\delta)(\gamma+\beta) a b}|z|\right) \tag{15}
\end{align*}
$$

for $z \in U_{0}$;where

$$
U_{0}= \begin{cases}U & n \leq 1 \\ U-\{0\} & n>1\end{cases}
$$

The result is sharp and is given by

$$
\begin{array}{r}
f(z) \\
=z-\frac{\beta(1-\gamma)}{a b(\gamma+\beta)} z^{2} . \tag{16}
\end{array}
$$

Proof:-By using Lemma(1), we have

$$
\begin{align*}
I_{0,7}^{\alpha, \eta, \delta} f(z)= & \frac{\Gamma(2-\eta+\delta)}{\Gamma(2-\eta) \Gamma(2+\alpha+\delta)} z^{1-\eta} \\
& \quad-\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(n-\eta+\delta+1)}{\Gamma(n-\eta+1) \Gamma(n+\alpha+\delta+1)} a_{n} z^{n-\eta} \tag{17}
\end{align*}
$$

Setting

$$
M(z)=\frac{\Gamma(2-\eta) \Gamma(2+\alpha+\delta)}{\Gamma(2-\eta+\delta)} z^{\eta} I_{0, z}^{\alpha, \eta, \delta} f(z)=z-\sum_{n=2}^{\infty} m(n) a_{n} z^{n}
$$

where

$$
m(n)
$$

$$
\begin{equation*}
=\frac{(2-\eta+\delta)_{n-1}(1)_{n}}{(2-\eta)_{\mathrm{n}-1}(2+\alpha+\delta)_{n-1}},(n \geq 2) \tag{18}
\end{equation*}
$$

It is easily verified that $m(\mathrm{n})$ is non-increasing for $n \geq 2$, and thus we have

$$
\begin{gather*}
0<m(n) \leq m(2) \\
=\frac{2(2-\eta+\delta)}{(2-\eta)(2+\alpha+\delta)} . \tag{19}
\end{gather*}
$$

Now, by application of Theorem (1) and (19), we obtain

$$
\begin{gathered}
|M(z)| \geq|z|-m(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
\geq|z|-\frac{2 c \beta(1-\gamma)(2-\eta+\delta)}{(2-\eta)(2+\alpha+\delta)(\gamma+\beta) a b}|z|^{2}
\end{gathered}
$$

which proves (14), and for (15), we can find that

$$
\begin{gathered}
|M(z)| \leq|z|+m(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
\leq|z|+\frac{2 c \beta(1-\gamma)(2-\eta+\delta)}{(2-\eta)(2+\alpha+\delta)(\gamma+\beta) a b}|z|^{2}
\end{gathered}
$$

and the proof is complete.
Taking $\eta=-\alpha=-\lambda$ and $\eta=-\alpha=\lambda$ in Theorem(2), we get two separate corollaries, which are contained in:-
Corollary (2):- Let the function f defined by (4) be in the class $\mathrm{H}(a, b, c, \gamma, \beta)$. Then we have

$$
\begin{align*}
& \left|D_{z}^{-\lambda} f(z)\right| \\
& \quad \geq \frac{|z|^{1+\lambda}}{\Gamma(2+\lambda)}\left(1-\frac{2 c \beta(1-\gamma)}{(2+\lambda)(\gamma+\beta) a b}|z|\right) \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
& \left|D_{z}^{-\lambda} f(z)\right| \\
& \quad \leq \frac{|z|^{1+\lambda}}{\Gamma(2+\lambda)}\left(1+\frac{2 c \beta(1-\gamma)}{(2+\lambda)(\gamma+\beta) a b}|z|\right) \tag{21}
\end{align*}
$$

Corollary(3):- Let the function f defined by (4) be in the class $\mathrm{H}(a, b, c, \gamma, \beta)$. Then we have

$$
\begin{align*}
& \left|D_{z}^{\lambda} f(z)\right| \\
& \geq \frac{|z|^{1-\lambda}}{\Gamma(2-\lambda)}\left(1-\frac{2 c \beta(1-\gamma)}{(2-\lambda)(\gamma+\beta) a b}|z|\right) \tag{22}
\end{align*}
$$

and

$$
\begin{align*}
& \left|D_{z}^{\lambda} f(z)\right| \\
& \leq \frac{|z|^{1-\lambda}}{\Gamma(2-\lambda)}\left(1+\frac{2 c \beta(1-\gamma)}{(2-\eta)(\gamma+\beta) a b}|z|\right) \tag{23}
\end{align*}
$$

4. EXTREME POINTS

In the following theorem, we obtain extreme points for the class $\mathrm{H}(a, b, c, \gamma, \beta)$.

Theorem(3):-
Let $f_{1}(z)=z$ and $f_{n}(z)=z-\frac{2 \beta(1-\gamma)}{n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}} z^{n}$,
$n=2,3,4, \ldots$.
Then $f \in \mathrm{H}(a, b, c, \gamma, \beta)$ if and only if can be expressed in the form

$$
f(z)=\sum_{n=1}^{\infty} \theta_{n} f_{n}(z)
$$

where $\theta_{k} \geq 0$ and $\sum_{n=1}^{\infty} \theta_{k}=1$.In particular, the extreme points of $\mathrm{H}(a, b, c, \gamma, \beta)$ are the functions $f_{1}(z)=z$ and

$$
f_{n}(z)=z-\frac{2 \beta(1-\gamma)}{n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}} z^{n}, n=2,3, \ldots
$$

Proof:- Firstly, let us express f as in the above theorem , therefore we can write

$$
\begin{aligned}
& f(z)=\sum_{n=1}^{\infty} \theta_{n} f_{n}(z) \\
& \\
& \quad=\theta_{1} z+\sum_{n=2}^{\infty} \theta_{n}\left[z-\frac{2 \beta(1-\gamma)}{n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}} z^{n}\right]
\end{aligned}
$$

$$
\begin{gathered}
=z\left(\theta_{1}+\sum_{n=2}^{\infty} \theta_{n}\right)-\sum_{n=2}^{\infty} \frac{2 \beta(1-\gamma) \theta_{n}}{n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}} z^{n} \\
=z-\sum_{n=2}^{\infty} v_{n} z^{n}
\end{gathered}
$$

where

$$
v_{n}=\frac{2 \beta(1-\gamma)}{n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}} \theta_{n}
$$

Therefore, $f \in \mathrm{H}(a, b, c, \gamma, \beta)$, since

$$
\sum_{n=2}^{\infty} \frac{v_{n} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}}{2 \beta(1-\gamma)}=\sum_{n=2}^{\infty} \theta_{n}=1-\theta_{1}<1
$$

Conversely, assume that $\mathrm{f} \in \mathrm{H}(a, b, c, \gamma, \beta)$.Then by (9), we may set

$$
\theta_{n}=\frac{n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}}{2 \beta(1-\gamma)} a_{n}, n \geq 2 \text { and } 1-\sum_{n=1}^{\infty} \theta_{n}=\theta_{1}
$$

Thus,

$$
\begin{aligned}
f(z)= & z-\sum_{n=2}^{\infty} a_{n} z^{n}=z-\sum_{n=2}^{\infty} \frac{2 \beta(1-\gamma) \theta_{n}}{n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}} z^{n} \\
& =z-\sum_{n=2}^{\infty} \theta_{n}\left(z-f_{n}(z)\right)=z\left(1-\sum_{n=2}^{\infty} \theta_{n}\right)+\sum_{n=2}^{\infty} \theta_{n} f_{n}(z) \\
& =\theta_{1} z+\sum_{n=2}^{\infty} \theta_{n} f_{n}(z)=\sum_{n=1}^{\infty} \theta_{n} f_{n}(z)
\end{aligned}
$$

This complete the proof.

5. DISTORTION THEOREM

In the following theorem, we obtain the distortion bounds for $\mathrm{f} \in \mathrm{H}(a, b, c, \gamma, \beta)$.
Theorem(4):- Let $f \in \mathrm{H}(a, b, c, \gamma, \beta)$.Then

$$
\begin{gather*}
r-\frac{c \beta(1-\gamma)}{(\gamma+\beta) a b} r^{2} \leq|f(z)| \leq r+\frac{c \beta(1-\gamma)}{(\gamma+\beta) a b} r^{2},|z|=r \\
\quad<1 \tag{24}
\end{gather*}
$$

The result is sharp for the function

$$
=z-\frac{c \beta(1-\gamma)}{(\gamma+\beta) a b} z^{2} .
$$

Proof:- By using (9) and corollary (1), we obtain

$$
\begin{aligned}
& 2(\gamma+\beta) \frac{a b}{c} \sum_{n=2}^{\infty} a_{n} \leq \sum_{n=2}^{\infty} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n} \\
& \leq 2 \beta(1-\gamma)
\end{aligned}
$$

This implies that

$$
\sum_{n=2}^{\infty} a_{n}
$$

$$
\begin{equation*}
\leq \frac{c \beta(1-\gamma)}{(\gamma+\beta) a b} \tag{26}
\end{equation*}
$$

For the function $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ and using (26) and $|z|=r<1$, we have $|f(z)| \leq|z|+\sum_{n=2}^{\infty} a_{n}|z|^{n} \leq r\left(1+r \sum_{n=2}^{\infty} a_{n}\right) \leq r+\frac{c \beta(1-\gamma)}{(\gamma+\beta) a b} r^{2}$.

Similarly

$$
|f(z)| \geq|z|-\sum_{n=2}^{\infty} a_{n}|z|^{n} \geq r\left(1-r \sum_{n=2}^{\infty} a_{n}\right) \geq r-\frac{c \beta(1-\gamma)}{(\gamma+\beta) a b} r^{2}
$$

Hence the proof is complete.
Corollary(4):- Let $f \in \mathrm{H}(a, b, c, \gamma, \beta)$. Then

$$
\begin{align*}
& 1-\frac{2 c \beta(1-\gamma)}{(\gamma+\beta) a b} r \leq\left|f^{\prime}(z)\right| \\
& \leq 1+\frac{2 c \beta(1-\gamma)}{(\gamma+\beta) a b} r . \tag{27}
\end{align*}
$$

The result is sharp for the function given by (25).

6. CONVEX LINEAR COMBINATION

In the following theorem, we show that this class $\mathrm{H}(a, b, c, \gamma, \beta)$ is closed under convex linear combination.

Theorem(5):-The class $\mathrm{H}(a, b, c, \gamma, \beta)$ is closed under convex linear combination.
Proof:- We want to show the function

$$
K(z)=(1-\mu) f_{1}(z)+\mu f_{2}(z), 0 \leq \mu
$$

$$
\begin{equation*}
\leq 1 \tag{28}
\end{equation*}
$$

is in the class $\mathrm{H}(a, b, c, \gamma, \beta)$, where $f_{1}(z), f_{2}(z) \in \mathrm{H}(a, b, c, \gamma, \beta)$ and

$$
f_{1}(z)=z+\sum_{n=2}^{\infty} a_{n, 1} z^{n}, f_{2}(z)=z+\sum_{n=2}^{\infty} a_{n, 2} z^{n}
$$

By (9) , we have

$$
\sum_{n=2}^{\infty} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n, 1} \leq 2 \beta(1-\gamma)
$$

and

$$
\begin{align*}
& \sum_{n=2}^{\infty} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n, 2} \\
& \quad \leq 2 \beta(1-\gamma), \tag{29}
\end{align*}
$$

Therefore

$$
\begin{aligned}
\mathrm{K}(\mathrm{z}) & =(1-\mu) f_{1}(z)+\mu f_{2}(z) \\
& =(1-\mu)\left(z+\sum_{n=2}^{\infty} a_{n, 1} z^{n}\right)+\mu\left(z+\sum_{n=2}^{\infty} a_{n, 2} z^{n}\right) \\
& =z+\sum_{n=2}^{\infty}\left[(1-\mu) a_{n, 1}+\mu a_{n, 2}\right] z^{n} .
\end{aligned}
$$

We must show $\mathrm{K}(\mathrm{z})$ with the coefficient $\left((1-\mu) a_{n, 1}+\mu a_{n, 2}\right)$ satisfy in the relation (9) also the coefficient $\left((1-\mu) a_{n, 1}+\mu a_{n, 2}\right)$ satisfy in the inequality in corollary(1).Further ,

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}\left((1-\mu) a_{n, 1}+\mu a_{n, 2}\right) \\
& =\sum_{n=2}^{\infty} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}(1-\mu) a_{n, 1} \\
& \quad+\sum_{n=2}^{\infty} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} \mu a_{n, 2} \\
& \leq(1-\lambda) 2 \beta(1-\gamma)+\lambda 2 \beta(1-\gamma)=2 \beta(1-\gamma)
\end{aligned}
$$

Therefore, it follows that $\mathrm{K}(\mathrm{z})$ is in the class $\mathrm{H}(a, b, c, \gamma, \beta)$.

7. ARITHMETIC MEAN

In the following theorem, we shall prove that the class $\mathrm{H}(a, b, c, \gamma, \beta)$ is closed under arithmetic mean.
Theorem(6):-Let $f_{1}(z), f_{2}(z) \ldots f_{l}(z)$ defined by

$$
=z+\sum_{n=2}^{f_{i}(z)} a_{n, i} z^{n},\left(a_{n, i} \geq 0, i=1,2, \ldots l, n \geq 2\right)
$$

be in the class $\mathrm{H}(a, b, c, \gamma, \beta)$. Then the arithmetic mean of $f_{i}(z)(i=1,2, \ldots, l)$ defined by

$$
h(z)
$$

$$
\begin{equation*}
=\frac{1}{l} \sum_{i=1}^{l} f_{i}(z) \tag{31}
\end{equation*}
$$

is also in the class $\mathrm{H}(a, b, c, \gamma, \beta)$.
Proof:- By (30),(31) we can write

$$
h(z)=\frac{1}{l} \sum_{i=1}^{l}\left(z+\sum_{n=2}^{\infty} a_{n, i} z^{n}\right)=z+\sum_{n=2}^{\infty}\left(\frac{1}{l} \sum_{i=1}^{l} a_{n, i}\right) z^{n} .
$$

Since $f_{i}(z) \in \mathrm{H}(a, b, c, \gamma, \beta)$ for every $\mathrm{i}=1,2, \ldots, l$, so by using Theorem(1), we prove that

$$
\begin{gathered}
\sum_{n=2}^{\infty} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}\left(\frac{1}{l} \sum_{i=1}^{l} a_{n, i}\right) \\
=\frac{1}{l} \sum_{i=1}^{l}\left(\sum_{n=2}^{\infty} n(n-1)(n-2+\gamma+\beta) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} a_{n, i}\right) \leq \frac{1}{l} \sum_{i=1}^{l} 2 \beta(1-\gamma) .
\end{gathered}
$$

The proof is complete.

REFERENCES

[1] Y. C. Kim and F. Ronning, "Integral transforms certain subclasses of analytic functions," J. Math .Anal. Appl., vol. 258, pp. 466-489, 2001.
[2] G. E. Andrews, R. Askey and R. Roy, Special functions. Cambridge: Cambridge Unieversity Press, 1999.
[3] Y. E. Hohlov, "Convolutional operators preserving univalent functions," Pliska Stud. Math. Bulgar, vol. 10, pp. 87-92, 1989.
[4] W. G. Atshan, "Application of fractional calculus operators for a new class of univalent functions with negative coefficients defined by Hohlov operator," Mathematica Slovaca, vol. 60, pp. 75-82, 2010.
[5] W. G. Atshan and S. R. Kulkarni, "Application of fractional calculus on certain class of p-valent functions with negative coefficients defined by Rusceweyh derivative," Int. Journal of Math. Analysis, vol. 1, pp. 1089-1101, 2007.
[6] H. M. Srivastava and R. G. Buschman, Convolution integral equation with special functions kernels. New York-London -Sydney -Toronto: John Wiley and Sons, 1977.
[7] H. M. Srivastava and S. Owa, "An application of the fractional derivative," Math. Japan, vol. 29, pp. 384-389, 1984.
[8] H. M. Srivastava and S. Owa, univalent functions, fractional calculus and their applications, Ellis Horwoods series in mathematics and its applications. Chichester/New York- Brisbane-Toronto: Ellis Horwood limited/ Halsted Press, A Division of John Wiley and Sons, 1989.
[9] S. Owa, "On the distortion theorems," Kyungpook Math. J., vol. 18, pp. 53-59, 1978.
[10] H. M. Srivastava, M. Saigo and S. Owa, "A class of distortion theorem of fractional calculus," J. Math. Anal. Appl., vol. 131, pp. 412-420, 1988.

