ON HIGHER HOMOMORPHISMS OF COMPLETELY PRIME GAMMA RINGS

Rajaa C. Shaheen
Department of Mathematics, College of Education, University of Al-Qadisiya, Al-Qadisiya, Iraq
1-INTRODEUCTION

An additive mapping θ of a ring \mathbf{R} into a ring \mathbf{R} is called a Jordan homomorphism if $\theta(\mathbf{a b}+\mathbf{b a})=\theta$ (a) θ (b) $+\theta$ (b) θ (a) for all $\mathbf{a}, \mathbf{b} \in \mathbf{R}$.I.N.Herstein in [3] had proved that every Jordan homomorphism on to prime ring of characterstic not 2 and 3 either a homomorphism or an antihomomorphism. While Smiley [8] had given a brief proof of this result and at the same time had removed the requirement that the characteristic of R be not 3.After this I.N.Herstein in [2] had proved that every Jordan homomorphism from R onto a 2-torsion free prime ring R is either a homomorphism or an antihomomorphism.

Let M and Γ be additive abelian groups, M is called $a \Gamma$-ring if for any $x, y, z \in M$ and $\alpha, \beta \in \Gamma$,the following conditions are satisfied
(1) $x \quad \alpha y \in M$
(2)(x+y) $\alpha z=x \alpha z+y \alpha z$
$\boldsymbol{x}(\alpha+\beta) z=x \quad \alpha z+x \quad \beta z$
$x \alpha(y+z)=x \alpha y+x \alpha z$
(3) $(x \alpha y) \beta z=x \alpha(y \beta z)$

The notion of Γ-ring was introduced by Nobusawa[5] and generalized by Barnes[1],many properties of Γ-ring were obtained by many researches.
M is called a 2-torsion free if $2 x=0$ implies $x=0$ for all $x \in M . A \Gamma$-ringM is called prime if $a \Gamma$ М $\Gamma b=0$ implies $a=0$ or $b=0$ and M is called completely prime if $a \quad \Gamma b=0$ implies $a=0$ or $b=0(a, b \in M)$,Since a Гb $\boldsymbol{b} \boldsymbol{a} \Gamma b \subset a \Gamma M \Gamma b$, then every completely prime Γ-ring is prime.

In [7],section two, Rajaa C.Shaheen, defined the concept of Jordan homomorphism on Γ-ring and study it onto 2-torsion free completely prime Γ ring.In [5] Rajaa C.Shaheen define a generalized Jordan homomorphism on ring
and study this concept onto 2 -torsion free semi- prime ring.In[7],Section three , Rajaa C.Shaheen defined this concept on Γ-rings and study it onto2-torsion free completely prime Γ - ring.

In [4] Anwar ,defined the concept of Jordan higher homomorphism and Generalized Jordan higher homomorphism on ring and study it on 2-torsion free prime ring.

Our study is to define the concept of Jordan higher homomorphism on Γ - ring and study it on 2-torsion free completely prime Γ - ring in section two also . we define the concept of Generalized Jordan higher homomorphism on Γ - ring and study it on 2-torsion free completely prime Γ - ring in section three .

2-Jordan Higher Homomorphism on Gamma Rings

Definition 2.1:- Let $\theta=\left(\Phi_{i}\right)_{i \in N}$ be a family of additive mappings of a Γ ring M into $a \Gamma$-ring N, we say that θ is a Higher Homomorphism on Gamma Ring(HH.for short)if for every $n \in N$, we have

$$
\phi_{n}(a \alpha b)=\sum_{i=1}^{n} \phi_{i}(a) \alpha \phi_{i}(b) \quad \forall a, b \in M, \alpha \in \Gamma .
$$

Definition 2.2:- Let $\theta=\left(\Phi_{i}\right)_{i \in N}$ be a family of additive mappings of a Γ ring M into $a \Gamma$-ring N, we say that θ is an anti- Higher Homomorphism on Gamma Ring(AHH.for short)if for every $n \in N$,we have
$\phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b})=\sum_{i=1}^{n} \phi_{i}(\boldsymbol{b}) \alpha \phi_{i}(\boldsymbol{a}) \quad \forall \boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{M}, \alpha \in \Gamma$.
Definition 2.3:- Let $\theta=\left(\Phi_{i}\right)_{i \in N}$ be a family of additive mappings of a Γ ring M into a $\Gamma_{\text {-ring }} N$, we say that θ is a Jordan Higher Homomorphism on Gamma Ring(JHH.for short)if for every $n \in N$, we have $\phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b}+\boldsymbol{b} \alpha a)=\sum_{i=1}^{n}\left(\phi_{i}(a) \alpha \phi_{i}(b)+\phi_{i}(b) \alpha \phi_{i}(a)\right) \quad \forall \boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{M}, \alpha \in \Gamma$.

Note that,when N is 2-torsion free, we define JHH be merely insisting that $\phi_{n}(a \alpha a)=\sum_{i=1}^{n} \phi_{i}(a) \alpha \phi_{i}(a) \quad \forall a \in M, \alpha \in \Gamma$.

Now we shall give the following lemma which is basic to prove the main result in this section

We should mentioned the reader that $\phi_{i}(a) \alpha \phi_{j}(b)=0 \quad \forall a, b \in M, \alpha \in \Gamma$ and $\boldsymbol{a} \alpha \boldsymbol{b} \beta_{\boldsymbol{c}=\boldsymbol{a}} \beta \boldsymbol{b} \alpha \boldsymbol{c} \quad \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \operatorname{M}($ resp.,N), $\alpha, \beta \in \Gamma$ will be freely used in this section.

Lemma 2.4 :-Let M, N be a Γ-ring and $\theta=\left(\Phi_{i}\right)_{i \in N}$ be a Jordan Higher
Homomorphism then the following statements are holds:
(i) $\phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\sum_{i=1}^{n} \quad \phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(b) \beta \phi_{i}(a)$
(ii) $\phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\sum_{i=1}^{n} \phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b}) \beta \phi_{i}(c)+\phi_{i}(c) \alpha \phi_{i}(b) \beta \phi_{i}(a)$
$\underline{\text { Proof:- }}$ (i)Since $\phi_{n}(\boldsymbol{a} \alpha b+b \alpha a)=\sum_{i=1}^{n} \quad\left(\phi_{i}(a) \alpha \phi_{i}(b)+\phi_{i}(b) \alpha \phi_{i}(a)\right)$ replace b by $\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a}$

$$
\begin{aligned}
& W=\phi_{n}(\boldsymbol{a} \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a) \\
& \quad=\sum_{i=1}^{n} \phi_{i}(a) \alpha \phi_{i}(a \beta b+b \beta a)+\sum_{i=1}^{n} \phi_{i}(a \beta b+b \beta a) \alpha \phi_{i}(a) \\
& =\sum_{i=1}^{n} \phi_{i}(a) \alpha\left(\sum_{k=1}^{i} \phi_{k}(a) \beta \phi_{k}(b)+\phi_{k}(b) \beta \phi_{k}(a)\right)+\sum_{i=1}^{n}\left(\sum_{k=1}^{i} \phi_{k}(a) \beta \phi_{k}(b)+\right. \\
& \left.\phi_{k}(b) \beta \phi_{k}(a)\right) \alpha \phi_{i}(a) \\
& \text { since } \phi_{i}(a) \alpha \phi_{j}(b)=\mathbf{0} \quad \forall a, b \in M, \alpha \in \Gamma .
\end{aligned}
$$

$$
W=\sum_{i=1}^{n} \phi_{i}(a) \alpha \phi_{i}(a) \beta \phi_{i}(b)+2 \sum_{i=1}^{n} \quad \phi_{i}(a) \alpha \phi_{i}(b) \beta \phi_{i}(a)
$$

$$
+\sum_{i=1}^{n} \phi_{i}(b) \beta \phi_{i}(a) \alpha \phi_{i}(a)
$$

on the other hand,

$$
\begin{aligned}
W & =\phi_{n}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a) \\
& =\phi_{n}(a \alpha a \beta b+b \beta a \alpha a)+2 \phi_{n}(a \alpha b \beta a)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \phi_{i}(\boldsymbol{a} \alpha \boldsymbol{a}) \beta \phi_{i}(\boldsymbol{b})+\sum_{i=1}^{n} \phi_{i}(\boldsymbol{b}) \beta \phi_{i}(\boldsymbol{a} \alpha \boldsymbol{a})+2 \phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a}) \\
& =\sum_{i=1}^{n} \phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{a}) \beta \phi_{i}(\boldsymbol{b})+\sum_{i=1}^{n} \phi_{i}(\boldsymbol{b}) \beta \phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{a})+2 \phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a})
\end{aligned}
$$

then by comparing these two expression of W, we get

$$
2 \phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta a)=2 \sum_{i=1}^{n} \quad \phi_{i}(a) \alpha \phi_{i}(b) \beta \phi_{i}(a)
$$

Since N is 2-torsion free, then
$\phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\sum_{i=1}^{n} \quad \phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(b) \beta \phi_{i}(\boldsymbol{a})$
(ii) by replacing a by a+c in (i)

$$
\begin{aligned}
W & =\phi_{n}((a+c) \alpha b \beta(a+c)) \\
& =\sum_{i=1}^{n} \phi_{i}(a+c) \alpha \phi_{i}(b) \beta \phi_{i}(a+c) \\
& =\sum_{i=1}^{n} \phi_{i}(a) \alpha \phi_{i}(b) \beta \phi_{i}(a)+\sum_{i=1}^{n} \phi_{i}(a) \alpha \phi_{i}(b) \beta \phi_{i}(c)+\sum_{i=1}^{n} \phi_{i}(c) \alpha \phi_{i}(b)
\end{aligned}
$$

$$
\beta \phi_{i}(a)+\sum_{i=1}^{n} \phi_{i}(c) \alpha \phi_{i}(b) \beta \phi_{i}(c)
$$

On the other hand

$$
\begin{aligned}
W & =\phi_{n}((a+c) \alpha b \beta(a+c)) \\
& =\phi_{n}(\boldsymbol{a} \alpha b \beta a+a \alpha b \beta c+c \alpha b \beta a+c \alpha b \beta c) \\
& =\phi_{n}(a \alpha b \beta a)+\phi_{n}\left(a \alpha b \beta_{c}+c \alpha b \quad \beta a\right)+\phi_{n}(c \alpha b \quad \beta c)
\end{aligned}
$$

by comparing these two expression of W, we get

$$
\phi_{n}\left(\boldsymbol{a} \alpha \boldsymbol{b} \beta_{\boldsymbol{c}+\boldsymbol{c}} \alpha \boldsymbol{b} \beta \boldsymbol{a}\right)=\sum_{i=1}^{n} \phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b}) \beta \phi_{i}(\boldsymbol{c})+\sum_{i=1}^{n} \phi_{i}(\boldsymbol{c}) \alpha \phi_{i}(\boldsymbol{b}) \beta \phi_{i}(\boldsymbol{a})
$$

Theorem2.5 :-Let $\theta=\left(\Phi_{i}\right)_{i \in N}$ be a Jordan Higher Homomorphism from a
Gamma ring M into a 2-torsion free completely prime Gamma ring N then θ is either a higher homomorphism or an anti-higher homomorphism

Proof:-Since

$\phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\sum_{i=1}^{n} \phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b}) \beta \phi_{i}(\boldsymbol{c})+\sum_{i=1}^{n} \phi_{i}(\boldsymbol{c}) \alpha \phi_{i}(b) \beta \phi_{i}(\boldsymbol{a})$
Replace c by $a \alpha b$
$W=\phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta(\boldsymbol{a} \alpha \boldsymbol{b})+(\boldsymbol{a} \alpha \boldsymbol{b}) \alpha \boldsymbol{b} \beta \boldsymbol{a})$
$=\sum_{i=1}^{n} \phi_{i}(a) \alpha \phi_{i}(b) \beta \phi_{i}(a \alpha b)+\sum_{i=1}^{n} \phi_{i}(\boldsymbol{a} \alpha \boldsymbol{b}) \alpha \phi_{i}(b) \beta \phi_{i}(a)$
on the other hand
$W=\phi_{n}(a \alpha b \beta(a \alpha b)+(a \alpha b) \alpha b \beta a)$
$=\phi_{n}((\boldsymbol{a} \alpha \boldsymbol{b}) \beta(\boldsymbol{a} \alpha \boldsymbol{b}))+\phi_{n}(\boldsymbol{a} \alpha(\boldsymbol{b} \beta \boldsymbol{b}) \alpha \boldsymbol{a})$
$=\sum_{i=1}^{n} \phi_{i}(a \alpha b) \beta \phi_{i}(a \alpha b)+\sum_{i=1}^{n} \phi_{i}(a) \alpha \phi_{i}(b \beta b) \beta \phi_{i}(a)$
By comparing these two expression of W, we get
$\sum_{i=1}^{n}\left(\phi_{i}(a \alpha b)-\phi_{i}(a) \alpha \phi_{i}(b)\right) \beta \phi_{i}(a \alpha b)-$
$\sum_{i=1}^{n}\left(\phi_{i}(\boldsymbol{a} \alpha \boldsymbol{b})-\phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b})\right) \beta \phi_{i}(\boldsymbol{b}) \alpha \phi_{i}(\boldsymbol{a})=\mathbf{0}$
Then
$\sum_{i=1}^{n}\left(\phi_{i}(a \alpha b)-\phi_{i}(a) \alpha \phi_{i}(b)\right) \beta\left(\sum_{i=1}^{n}\left(\phi_{i}(a \alpha b)-\phi_{i}(b) \alpha \phi_{i}(a)\right)=0\right.$
Since N is completely prime Gamma ring
then either $\sum_{i=1}^{n}\left(\phi_{i}(a \alpha b)-\phi_{i}(a) \alpha \phi_{i}(b)\right)=0$ or
$\sum_{i=1}^{n}\left(\phi_{i}(a \alpha b)-\phi_{i}(b) \alpha \phi_{i}(a)\right)=0$
if $\sum_{i=1}^{n} \quad \phi_{i}(\boldsymbol{a} \alpha \boldsymbol{b})-\sum_{i=1}^{n} \quad \phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b})=\mathbf{0} \Rightarrow$
$\phi_{n}(\boldsymbol{a} \alpha \boldsymbol{b})-\sum_{i=1}^{n} \phi_{i}(a) \alpha \phi_{i}(b)=\mathbf{0}$
$\Rightarrow \theta$ is HH
and if $\sum_{i=1}^{n} \phi_{i}(a \alpha b)-\sum_{i=1}^{n} \quad \phi_{i}(b) \alpha \phi_{i}(a)=0$
$\Rightarrow \phi_{n}(a \alpha b)-\sum_{i=1}^{n} \phi_{i}(b) \alpha \phi_{i}(a)=0 \Rightarrow \theta$ is $A H H$.

3-Generalized Jordan Higher Homomorphism on

 Completely Prime Gamma RingsDefinition 3.1:-Let $F=\left(f_{i}\right)_{i \in N}$ be a family of additive mappings of a Γ ring M into a Γ-ring N, F is said to be
-a generalized higher homomorphism on Gamma ring (GHH,for short) if there exist a $H H \theta=\left(\Phi_{i}\right)_{i \in N}$ of M into N such that for every $n \in N$, we have $f_{n}(\boldsymbol{a} \alpha \boldsymbol{b})=\sum_{i=1}^{n} f_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b}) \quad \forall \boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{M}, \alpha \in \Gamma$.

Definition 3.2:-Let $F=\left(f_{i}\right)_{i \in N}$ be a family of additive mappings of a Γ ring M into a $\Gamma_{-r i n g ~}^{N, F}$ is said to be
-a generalized anti- higher homomorphism on Gamma ring (GAHH,for short) if there exist an AHH $\theta=\left(\Phi_{i}\right)_{i \in N}$ of M into N such that for every $n \in N$,we have

$$
f_{n}(\boldsymbol{a} \alpha \boldsymbol{b})=\sum_{i=1}^{n} f_{i}(\boldsymbol{b}) \alpha \phi_{i}(\boldsymbol{a}) \quad \forall \boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{M}, \alpha \in \Gamma
$$

Definition 3.3:-Let $F=\left(f_{i}\right)_{i \in N}$ be a family of additive mappings of a Γ ring M into $a \Gamma$-ring N, F is said to be
-a generalized Jordan higher homomorphism on Gamma ring (GJHH,for short) if there exist a JHH $\theta=\left(\Phi_{i}\right)_{i \in N}$ of M into N such that for every $n \in N, w e$ have

$$
f_{n}(a \alpha b+b \alpha a)=\sum_{i=1}^{n} f_{i}(a) \alpha \phi_{i}(b)+\sum_{i=1}^{n} f_{i}(b) \alpha \phi_{i}(a) \quad \forall a, b \in M, \alpha \in \Gamma
$$

We should mentioned the reader that $\phi_{i}(a) \alpha \phi_{j}(b)=0 \quad \forall a, b \in M, \alpha \in \Gamma$ and $\boldsymbol{a} \alpha \boldsymbol{b} \beta_{\boldsymbol{c}=\boldsymbol{a}} \beta \boldsymbol{b} \alpha \boldsymbol{c} \quad \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \operatorname{M}($ resp.,N $), \alpha, \beta \in \Gamma$ and so $f_{i}(a) \alpha \phi_{j}(b)=0$ $\forall a, b \in M, \alpha \in \Gamma$ will be used freely in this section .

Lemma 3.4:- Let $F=\left(f_{i}\right)_{i \in N}$ be a GJHH of a Γ-ring M into a Γ-ring N and $\theta=\left(\Phi_{i}\right)_{i \in N}$ be the relating JHH , then
(i) If N is 2-torsion free Γ-ring, then
$f_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\sum_{i=1}^{n} \quad f_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b}) \beta \phi_{i}(\boldsymbol{a})$
(ii) $f_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\sum_{i=1}^{n} \quad f_{i}(\boldsymbol{a}) \alpha \phi_{i}(b) \beta \phi_{i}(c)+\sum_{i=1}^{n} \quad f_{i}(c) \alpha \phi_{i}(b)$ $\beta \phi_{i}(a)$

Proof:-by the same technique of the proof[Lemma2.4] we can prove this lemma■

Theorem3.5:- Let $F=\left(f_{i}\right)_{i \in N}$ be a generalized Jordan Higher
Homomorphism from a Gamma ring M into a 2-torsion free completely prime
Gamma ring N then F is either a generalized higher homomorphism or an generalized anti-higher homomorphism.

Proof:-Since

$$
f_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\sum_{i=1}^{n} f_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b}) \beta \phi_{i}(\boldsymbol{c})+\sum_{i=1}^{n} f_{i}(\boldsymbol{c}) \alpha \phi_{i}(\boldsymbol{b}) \beta \phi_{i}(\boldsymbol{a})
$$

replace $a b y a \alpha b$ and $c b y b \alpha a$

$$
\begin{aligned}
& W=f_{n}((\boldsymbol{a} \alpha \boldsymbol{b}) \alpha x \beta(\boldsymbol{b} \alpha \boldsymbol{a})+(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha \boldsymbol{x} \beta(\boldsymbol{a} \alpha \boldsymbol{b})) \\
& =\sum_{i=1}^{n} f_{i}(\boldsymbol{a} \alpha \boldsymbol{b}) \alpha \phi_{i}(x) \beta \phi_{i}(\boldsymbol{b} \alpha \boldsymbol{a})+\sum_{i=1}^{n} \quad f_{i}(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha \phi_{i}(x) \beta \phi_{i}(\boldsymbol{a} \alpha \boldsymbol{b})
\end{aligned}
$$

On the other hand
$W=f_{n}(\boldsymbol{a} \alpha \boldsymbol{b} \alpha x \beta(\boldsymbol{b} \alpha \boldsymbol{a})+(\boldsymbol{b} \alpha \boldsymbol{a} \alpha x \beta \boldsymbol{a} \alpha \boldsymbol{b})$

$$
=\sum_{i=1}^{n} f_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b}) \alpha \phi_{i}(x) \beta \phi_{i}(\boldsymbol{b}) \alpha \phi_{i}(\boldsymbol{a})+
$$

$$
\sum_{i=1}^{n} f_{i}(b) \alpha \phi_{i}(a) \alpha \phi_{i}(x) \beta \phi_{i}(a) \alpha \phi_{i}(b)
$$

By comparing these two expression of W, we get

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(f_{i}(\boldsymbol{a} \alpha \boldsymbol{b}) \alpha \phi_{i}(x) \beta \phi_{i}(\boldsymbol{b} \alpha \boldsymbol{a})+\sum_{i=1}^{n} f_{i}(\boldsymbol{b} \alpha \boldsymbol{a}) \alpha \phi_{i}(x) \beta \phi_{i}(\boldsymbol{a} \alpha \boldsymbol{b})-\right. \\
& \sum_{i=1}^{n} f_{i}(\boldsymbol{a}) \alpha \phi_{i}(\boldsymbol{b}) \alpha \phi_{i}(x) \beta \phi_{i}(\boldsymbol{b}) \alpha \phi_{i}(\boldsymbol{a})-\sum_{i=1}^{n} f_{i}(\boldsymbol{b}) \alpha \phi_{i}(\boldsymbol{a}) \alpha \phi_{i}(x) \beta \phi_{i}(\boldsymbol{a}) \alpha \\
& \phi_{i}(\boldsymbol{b})=\mathbf{0}
\end{aligned}
$$

Since $\theta=\left(\Phi_{i}\right)_{i \in N}$ is JHH on completely prime Gamma ring then θ is either a HH or AHH by[Theorem 2.5]

Case 1:-if θ is a HH ,then if we suppose that

$$
\left.a_{b}=\sum_{i=1}^{n} \quad f_{i}(\boldsymbol{a} \alpha \boldsymbol{b})-\sum_{i=1}^{n} f_{i}(\boldsymbol{b}) \alpha \phi_{i}(\boldsymbol{a})\right)
$$

$$
\text { and } a^{b}=\sum_{i=1}^{n} \quad f_{i}(\boldsymbol{a} \alpha b)-\sum_{i=1}^{n} \quad f_{i}(a) \alpha \phi_{i}(b)
$$

$$
\left(\sum_{i=1}^{n} f_{i}(\boldsymbol{a} \alpha \boldsymbol{b})-\sum_{i=1}^{n} f_{i}(\boldsymbol{b}) \alpha \phi_{i}(\boldsymbol{a})\right) \beta \phi_{i}(\boldsymbol{b} \alpha \boldsymbol{a}-\boldsymbol{a} \alpha \boldsymbol{b})+
$$

$$
\left(\sum_{i=1}^{n} \quad f_{i}(\boldsymbol{a} \alpha b)-\sum_{i=1}^{n} f_{i}(a) \alpha \phi_{i}(b)\right) \beta \phi_{i}(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha a)=\mathbf{0}
$$

$$
\Rightarrow a_{b} \beta \phi_{i}(\boldsymbol{b} \alpha \boldsymbol{a}-\boldsymbol{a} \alpha \boldsymbol{b})+a^{b} \beta \phi_{i}(\boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{b} \alpha \boldsymbol{a})=\mathbf{0}
$$

and it is easy to see that
$a^{b}=-a_{b}$
$2 a_{b} \beta \phi_{i}(\boldsymbol{b} \alpha \boldsymbol{a}-\boldsymbol{a} \alpha \boldsymbol{b})=\mathbf{0}$
Since N is 2-torsion free Gamma ring ,then
$a_{b} \beta \phi_{i}(\boldsymbol{b} \alpha \boldsymbol{a}-\boldsymbol{a} \alpha \boldsymbol{b})=\mathbf{0}$
Since N is completely prime Gamma ring then either $a_{b}=0 \operatorname{or} \phi_{i}(b \alpha a-a \alpha b)=0$ If $\phi_{i}(b \alpha a-a \alpha b)=0$ then $\theta=\left(\Phi_{i}\right)_{i \in N}$ is a higher anti-homomorphism which is contradictions with $\theta=\left(\Phi_{i}\right)_{i \in N}$ is Higher homomorphism then $a_{b}=0$ and so F is Generalized anti-higher homomorphism .

Case2:- by the same way, if $\theta=\left(\Phi_{i}\right)_{i \in N}$ is anti- higher homomorphism we have F is a Generalized higher homomorphism .

REFERANCES

[1]W.E.Barnes"On the Γ-ring of Nabusawa",PacificJ.Math.,18(1966),411-422.
[2] I. N.Herstien, "Topics in ring theory", Univ . of Chicago Press, Chicago 1969.
[3] I.N.Herstein ," Jordan Homomorphism" , Trans. Amer . Math. Soc .81(1956),331-351.
[4] Anwar Khalel,"On Higher Derivations and Higher Homomorphisms of Prime rings",ph.D thesis Technology university 2007.
[5] N. Nabusawa"On a generalization of the ring theory",OsakaJ.Math.,1(1964)
[6] Rajaa.C.Shaheen,"Generalized Jordan homomorhisms and Jordan left derivation on some rings,M.S.C thesis,AL-Mustansiryah univ.College of Education 2005.
[7] "Jordan Homomorphism and Generalized Jordan
Homomorphism on Completely Prime Gamma Ring 'to appear.
[8] M.F.Smiley," Jordan homomorphisms onto Prime Rings", Trans . Amer . Math . Soc. 84(1957), 426-429.

